mm.h revision 6d299e273a1b143cbe6e66cc7810f73ba0cd9488
/** @file
* MM - The Memory Manager.
*/
/*
* Copyright (C) 2006-2007 Sun Microsystems, Inc.
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
* Clara, CA 95054 USA or visit http://www.sun.com if you need
* additional information or have any questions.
*/
#ifndef ___VBox_mm_h
#define ___VBox_mm_h
#include <VBox/cdefs.h>
#include <VBox/types.h>
#include <VBox/x86.h>
#include <VBox/sup.h>
__BEGIN_DECLS
/** @defgroup grp_mm The Memory Manager API
* @{
*/
/** @name RAM Page Flags
* Since internal ranges have a byte granularity it's possible for a
* page be flagged for several uses. The access virtualization in PGM
* will choose the most restricted one and use EM to emulate access to
* the less restricted areas of the page.
*
* Bits 0-11 only since they are fitted into the offset part of a physical memory address.
* @{
*/
#if 1
/** Reserved - Not RAM, ROM nor MMIO2.
* If this bit is cleared the memory is assumed to be some kind of RAM.
* Normal MMIO may set it but that depends on whether the RAM range was
* created specially for the MMIO or not.
*
* @remarks The current implementation will always reserve backing
* memory for reserved ranges to simplify things.
*/
#define MM_RAM_FLAGS_RESERVED RT_BIT(0)
/** ROM - Read Only Memory.
* The page have a HC physical address which contains the BIOS code. All write
* access is trapped and ignored.
*
* HACK: Writable shadow ROM is indicated by both ROM and MMIO2 being
* set. (We're out of bits.)
*/
#define MM_RAM_FLAGS_ROM RT_BIT(1)
/** MMIO - Memory Mapped I/O.
* All access is trapped and emulated. No physical backing is required, but
* might for various reasons be present.
*/
#define MM_RAM_FLAGS_MMIO RT_BIT(2)
/** MMIO2 - Memory Mapped I/O, variation 2.
* The virtualization is performed using real memory and only catching
* a few accesses for like keeping track for dirty pages.
* @remark Involved in the shadow ROM hack.
*/
#define MM_RAM_FLAGS_MMIO2 RT_BIT(3)
#endif
#ifndef VBOX_WITH_NEW_PHYS_CODE
/** Physical backing memory is allocated dynamically. Not set implies a one time static allocation. */
#define MM_RAM_FLAGS_DYNAMIC_ALLOC RT_BIT(11)
#endif /* !VBOX_WITH_NEW_PHYS_CODE */
/** The shift used to get the reference count. */
#define MM_RAM_FLAGS_CREFS_SHIFT 62
/** The mask applied to the the page pool idx after using MM_RAM_FLAGS_CREFS_SHIFT to shift it down. */
#define MM_RAM_FLAGS_CREFS_MASK 0x3
/** The (shifted) cRef value used to indiciate that the idx is the head of a
* physical cross reference extent list. */
#define MM_RAM_FLAGS_CREFS_PHYSEXT MM_RAM_FLAGS_CREFS_MASK
/** The shift used to get the page pool idx. (Apply MM_RAM_FLAGS_IDX_MASK to the result when shifting down). */
#define MM_RAM_FLAGS_IDX_SHIFT 48
/** The mask applied to the the page pool idx after using MM_RAM_FLAGS_IDX_SHIFT to shift it down. */
#define MM_RAM_FLAGS_IDX_MASK 0x3fff
/** The idx value when we're out of of extents or there are simply too many mappings of this page. */
#define MM_RAM_FLAGS_IDX_OVERFLOWED MM_RAM_FLAGS_IDX_MASK
/** Mask for masking off any references to the page. */
#define MM_RAM_FLAGS_NO_REFS_MASK UINT64_C(0x0000ffffffffffff)
/** @} */
#ifndef VBOX_WITH_NEW_PHYS_CODE
/** @name MMR3PhysRegisterEx registration type
* @{
*/
typedef enum
{
/** Normal physical region (flags specify exact page type) */
MM_PHYS_TYPE_NORMAL = 0,
/** Allocate part of a dynamically allocated physical region */
MM_PHYS_TYPE_DYNALLOC_CHUNK,
MM_PHYS_TYPE_32BIT_HACK = 0x7fffffff
} MMPHYSREG;
/** @} */
#endif
/**
* Memory Allocation Tags.
* For use with MMHyperAlloc(), MMR3HeapAlloc(), MMR3HeapAllocEx(),
* MMR3HeapAllocZ() and MMR3HeapAllocZEx().
*
* @remark Don't forget to update the dump command in MMHeap.cpp!
*/
typedef enum MMTAG
{
MM_TAG_INVALID = 0,
MM_TAG_CFGM,
MM_TAG_CFGM_BYTES,
MM_TAG_CFGM_STRING,
MM_TAG_CFGM_USER,
MM_TAG_CSAM,
MM_TAG_CSAM_PATCH,
MM_TAG_DBGF,
MM_TAG_DBGF_INFO,
MM_TAG_DBGF_LINE,
MM_TAG_DBGF_LINE_DUP,
MM_TAG_DBGF_MODULE,
MM_TAG_DBGF_OS,
MM_TAG_DBGF_STACK,
MM_TAG_DBGF_SYMBOL,
MM_TAG_DBGF_SYMBOL_DUP,
MM_TAG_EM,
MM_TAG_IOM,
MM_TAG_IOM_STATS,
MM_TAG_MM,
MM_TAG_MM_LOOKUP_GUEST,
MM_TAG_MM_LOOKUP_PHYS,
MM_TAG_MM_LOOKUP_VIRT,
MM_TAG_MM_PAGE,
MM_TAG_PATM,
MM_TAG_PATM_PATCH,
MM_TAG_PDM,
MM_TAG_PDM_ASYNC_COMPLETION,
MM_TAG_PDM_DEVICE,
MM_TAG_PDM_DEVICE_USER,
MM_TAG_PDM_DRIVER,
MM_TAG_PDM_DRIVER_USER,
MM_TAG_PDM_USB,
MM_TAG_PDM_USB_USER,
MM_TAG_PDM_LUN,
MM_TAG_PDM_QUEUE,
MM_TAG_PDM_THREAD,
MM_TAG_PGM,
MM_TAG_PGM_CHUNK_MAPPING,
MM_TAG_PGM_HANDLERS,
MM_TAG_PGM_PHYS,
MM_TAG_PGM_POOL,
MM_TAG_REM,
MM_TAG_SELM,
MM_TAG_SSM,
MM_TAG_STAM,
MM_TAG_TM,
MM_TAG_TRPM,
MM_TAG_VM,
MM_TAG_VM_REQ,
MM_TAG_VMM,
MM_TAG_HWACCM,
MM_TAG_32BIT_HACK = 0x7fffffff
} MMTAG;
/** @defgroup grp_mm_hyper Hypervisor Memory Management
* @ingroup grp_mm
* @{ */
MMDECL(RTR3PTR) MMHyperR0ToR3(PVM pVM, RTR0PTR R0Ptr);
MMDECL(RTRCPTR) MMHyperR0ToRC(PVM pVM, RTR0PTR R0Ptr);
#ifndef IN_RING0
MMDECL(void *) MMHyperR0ToCC(PVM pVM, RTR0PTR R0Ptr);
#endif
MMDECL(RTR0PTR) MMHyperR3ToR0(PVM pVM, RTR3PTR R3Ptr);
MMDECL(RTRCPTR) MMHyperR3ToRC(PVM pVM, RTR3PTR R3Ptr);
MMDECL(RTR3PTR) MMHyperRCToR3(PVM pVM, RTRCPTR RCPtr);
MMDECL(RTR0PTR) MMHyperRCToR0(PVM pVM, RTRCPTR RCPtr);
#ifndef IN_RING3
MMDECL(void *) MMHyperR3ToCC(PVM pVM, RTR3PTR R3Ptr);
#else
DECLINLINE(void *) MMHyperR3ToCC(PVM pVM, RTR3PTR R3Ptr)
{
NOREF(pVM);
return R3Ptr;
}
#endif
#ifndef IN_GC
MMDECL(void *) MMHyperRCToCC(PVM pVM, RTRCPTR RCPtr);
#else
DECLINLINE(void *) MMHyperRCToCC(PVM pVM, RTRCPTR RCPtr)
{
NOREF(pVM);
return (void *)RCPtr;
}
#endif
#ifndef IN_RING3
MMDECL(RTR3PTR) MMHyperCCToR3(PVM pVM, void *pv);
#else
DECLINLINE(RTR3PTR) MMHyperCCToR3(PVM pVM, void *pv)
{
NOREF(pVM);
return pv;
}
#endif
#ifndef IN_RING0
MMDECL(RTR0PTR) MMHyperCCToR0(PVM pVM, void *pv);
#else
DECLINLINE(RTR0PTR) MMHyperCCToR0(PVM pVM, void *pv)
{
NOREF(pVM);
return pv;
}
#endif
#ifndef IN_GC
MMDECL(RTRCPTR) MMHyperCCToRC(PVM pVM, void *pv);
#else
DECLINLINE(RTRCPTR) MMHyperCCToRC(PVM pVM, void *pv)
{
NOREF(pVM);
return (RTRCPTR)pv;
}
#endif
#ifdef IN_GC
MMDECL(RTHCPTR) MMHyper2HC(PVM pVM, uintptr_t Ptr);
#else
DECLINLINE(RTHCPTR) MMHyper2HC(PVM pVM, uintptr_t Ptr)
{
NOREF(pVM);
return (RTHCPTR)Ptr;
}
#endif
#define MMHyperHC2GC(pVM, R3Ptr) MMHyperR3ToRC((pVM), (R3Ptr)) /**< @deprecated */
#define MMHyperGC2HC(pVM, RCPtr) MMHyperRCToR3((pVM), (RCPtr)) /**< @deprecated */
MMDECL(int) MMHyperAlloc(PVM pVM, size_t cb, uint32_t uAlignment, MMTAG enmTag, void **ppv);
MMDECL(int) MMHyperFree(PVM pVM, void *pv);
MMDECL(void) MMHyperHeapCheck(PVM pVM);
#ifdef DEBUG
MMDECL(void) MMHyperHeapDump(PVM pVM);
#endif
MMDECL(size_t) MMHyperHeapGetFreeSize(PVM pVM);
MMDECL(size_t) MMHyperHeapGetSize(PVM pVM);
MMDECL(RTGCPTR) MMHyperGetArea(PVM pVM, size_t *pcb);
MMDECL(bool) MMHyperIsInsideArea(PVM pVM, RTGCPTR GCPtr);
MMDECL(RTHCPHYS) MMPage2Phys(PVM pVM, void *pvPage);
MMDECL(void *) MMPagePhys2Page(PVM pVM, RTHCPHYS HCPhysPage);
MMDECL(int) MMPagePhys2PageEx(PVM pVM, RTHCPHYS HCPhysPage, void **ppvPage);
MMDECL(int) MMPagePhys2PageTry(PVM pVM, RTHCPHYS HCPhysPage, void **ppvPage);
/** @def MMHYPER_RC_ASSERT_RCPTR
* Asserts that an address is either NULL or inside the hypervisor memory area.
* This assertion only works while IN_GC, it's a NOP everywhere else.
* @thread The Emulation Thread.
*/
#ifdef IN_GC
# define MMHYPER_RC_ASSERT_RCPTR(pVM, RCPtr) Assert(MMHyperIsInsideArea((pVM), (RTRCUINTPTR)(RCPtr)) || !(RCPtr))
#else
# define MMHYPER_RC_ASSERT_RCPTR(pVM, RCPtr) do { } while (0)
#endif
/** @} */
#ifdef IN_RING3
/** @defgroup grp_mm_r3 The MM Host Context Ring-3 API
* @ingroup grp_mm
* @{
*/
MMR3DECL(int) MMR3InitUVM(PUVM pUVM);
MMR3DECL(int) MMR3Init(PVM pVM);
MMR3DECL(int) MMR3InitPaging(PVM pVM);
MMR3DECL(int) MMR3HyperInitFinalize(PVM pVM);
MMR3DECL(int) MMR3Term(PVM pVM);
MMR3DECL(void) MMR3TermUVM(PUVM pUVM);
MMR3DECL(void) MMR3Reset(PVM pVM);
MMR3DECL(int) MMR3IncreaseBaseReservation(PVM pVM, uint64_t cAddBasePages);
MMR3DECL(int) MMR3AdjustFixedReservation(PVM pVM, int32_t cDeltaFixedPages, const char *pszDesc);
MMR3DECL(int) MMR3UpdateShadowReservation(PVM pVM, uint32_t cShadowPages);
MMR3DECL(int) MMR3HCPhys2HCVirt(PVM pVM, RTHCPHYS HCPhys, void **ppv);
MMR3DECL(int) MMR3ReadGCVirt(PVM pVM, void *pvDst, RTGCPTR GCPtr, size_t cb);
MMR3DECL(int) MMR3WriteGCVirt(PVM pVM, RTGCPTR GCPtrDst, const void *pvSrc, size_t cb);
/** @defgroup grp_mm_r3_hyper Hypervisor Memory Manager (HC R3 Portion)
* @ingroup grp_mm_r3
* @{ */
MMDECL(int) MMR3HyperAllocOnceNoRel(PVM pVM, size_t cb, uint32_t uAlignment, MMTAG enmTag, void **ppv);
MMR3DECL(int) MMR3HyperMapHCPhys(PVM pVM, void *pvHC, RTHCPHYS HCPhys, size_t cb, const char *pszDesc, PRTGCPTR pGCPtr);
MMR3DECL(int) MMR3HyperMapGCPhys(PVM pVM, RTGCPHYS GCPhys, size_t cb, const char *pszDesc, PRTGCPTR pGCPtr);
MMR3DECL(int) MMR3HyperMapMMIO2(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, RTGCPHYS cb, const char *pszDesc, PRTRCPTR pRCPtr);
MMR3DECL(int) MMR3HyperMapHCRam(PVM pVM, void *pvHC, size_t cb, bool fFree, const char *pszDesc, PRTGCPTR pGCPtr);
MMR3DECL(int) MMR3HyperMapPages(PVM pVM, void *pvR3, RTR0PTR pvR0, size_t cPages, PCSUPPAGE paPages, const char *pszDesc, PRTGCPTR pGCPtr);
MMR3DECL(int) MMR3HyperReserve(PVM pVM, unsigned cb, const char *pszDesc, PRTGCPTR pGCPtr);
MMR3DECL(RTHCPHYS) MMR3HyperHCVirt2HCPhys(PVM pVM, void *pvHC);
MMR3DECL(int) MMR3HyperHCVirt2HCPhysEx(PVM pVM, void *pvHC, PRTHCPHYS pHCPhys);
MMR3DECL(void *) MMR3HyperHCPhys2HCVirt(PVM pVM, RTHCPHYS HCPhys);
MMR3DECL(int) MMR3HyperHCPhys2HCVirtEx(PVM pVM, RTHCPHYS HCPhys, void **ppv);
MMR3DECL(int) MMR3HyperReadGCVirt(PVM pVM, void *pvDst, RTGCPTR GCPtr, size_t cb);
/** @} */
/** @defgroup grp_mm_phys Guest Physical Memory Manager
* @ingroup grp_mm_r3
* @{ */
MMR3DECL(int) MMR3PhysRegister(PVM pVM, void *pvRam, RTGCPHYS GCPhys, unsigned cb, unsigned fFlags, const char *pszDesc);
#ifndef VBOX_WITH_NEW_PHYS_CODE
MMR3DECL(int) MMR3PhysRegisterEx(PVM pVM, void *pvRam, RTGCPHYS GCPhys, unsigned cb, unsigned fFlags, MMPHYSREG enmType, const char *pszDesc);
#endif
MMR3DECL(int) MMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTUINT cbRange, const void *pvBinary, bool fShadow, const char *pszDesc);
MMR3DECL(int) MMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTUINT cbRange);
MMR3DECL(int) MMR3PhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cbRange, const char *pszDesc);
MMR3DECL(uint64_t) MMR3PhysGetRamSize(PVM pVM);
/** @} */
/** @defgroup grp_mm_page Physical Page Pool
* @ingroup grp_mm_r3
* @{ */
MMR3DECL(void *) MMR3PageAlloc(PVM pVM);
MMR3DECL(RTHCPHYS) MMR3PageAllocPhys(PVM pVM);
MMR3DECL(void) MMR3PageFree(PVM pVM, void *pvPage);
MMR3DECL(void *) MMR3PageAllocLow(PVM pVM);
MMR3DECL(void) MMR3PageFreeLow(PVM pVM, void *pvPage);
MMR3DECL(void) MMR3PageFreeByPhys(PVM pVM, RTHCPHYS HCPhysPage);
MMR3DECL(void *) MMR3PageDummyHCPtr(PVM pVM);
MMR3DECL(RTHCPHYS) MMR3PageDummyHCPhys(PVM pVM);
/** @} */
/** @defgroup grp_mm_heap Heap Manager
* @ingroup grp_mm_r3
* @{ */
MMR3DECL(void *) MMR3HeapAlloc(PVM pVM, MMTAG enmTag, size_t cbSize);
MMR3DECL(void *) MMR3HeapAllocU(PUVM pUVM, MMTAG enmTag, size_t cbSize);
MMR3DECL(int) MMR3HeapAllocEx(PVM pVM, MMTAG enmTag, size_t cbSize, void **ppv);
MMR3DECL(int) MMR3HeapAllocExU(PUVM pUVM, MMTAG enmTag, size_t cbSize, void **ppv);
MMR3DECL(void *) MMR3HeapAllocZ(PVM pVM, MMTAG enmTag, size_t cbSize);
MMR3DECL(void *) MMR3HeapAllocZU(PUVM pUVM, MMTAG enmTag, size_t cbSize);
MMR3DECL(int) MMR3HeapAllocZEx(PVM pVM, MMTAG enmTag, size_t cbSize, void **ppv);
MMR3DECL(int) MMR3HeapAllocZExU(PUVM pUVM, MMTAG enmTag, size_t cbSize, void **ppv);
MMR3DECL(void *) MMR3HeapRealloc(void *pv, size_t cbNewSize);
MMR3DECL(char *) MMR3HeapStrDup(PVM pVM, MMTAG enmTag, const char *psz);
MMR3DECL(char *) MMR3HeapStrDupU(PUVM pUVM, MMTAG enmTag, const char *psz);
MMR3DECL(void) MMR3HeapFree(void *pv);
/** @} */
/** @} */
#endif /* IN_RING3 */
#ifdef IN_GC
/** @defgroup grp_mm_gc The MM Guest Context API
* @ingroup grp_mm
* @{
*/
MMGCDECL(void) MMGCRamRegisterTrapHandler(PVM pVM);
MMGCDECL(void) MMGCRamDeregisterTrapHandler(PVM pVM);
MMGCDECL(int) MMGCRamReadNoTrapHandler(void *pDst, void *pSrc, size_t cb);
MMGCDECL(int) MMGCRamWriteNoTrapHandler(void *pDst, void *pSrc, size_t cb);
MMGCDECL(int) MMGCRamRead(PVM pVM, void *pDst, void *pSrc, size_t cb);
MMGCDECL(int) MMGCRamWrite(PVM pVM, void *pDst, void *pSrc, size_t cb);
/** @} */
#endif /* IN_GC */
/** @} */
__END_DECLS
#endif