manager.c revision 5b6319dceedd81f3f1ce7eb70ea5defaef43bcec
/*-*- Mode: C; c-basic-offset: 8 -*-*/
/***
This file is part of systemd.
Copyright 2010 Lennart Poettering
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
systemd is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with systemd; If not, see <http://www.gnu.org/licenses/>.
***/
#include <assert.h>
#include <errno.h>
#include <string.h>
#include <signal.h>
#include <sys/signalfd.h>
#include <unistd.h>
#include <utmpx.h>
#include <libcgroup.h>
#include <termios.h>
#include <fcntl.h>
#include "manager.h"
#include "hashmap.h"
#include "macro.h"
#include "strv.h"
#include "log.h"
#include "util.h"
#include "ratelimit.h"
#include "cgroup.h"
#include "mount-setup.h"
#include "utmp-wtmp.h"
#include "unit-name.h"
#include "dbus-unit.h"
#include "dbus-job.h"
#include "missing.h"
#include "path-lookup.h"
/* As soon as 16 units are in our GC queue, make sure to run a gc sweep */
#define GC_QUEUE_ENTRIES_MAX 16
/* As soon as 5s passed since a unit was added to our GC queue, make sure to run a gc sweep */
/* Where clients shall send notification messages to */
#define NOTIFY_SOCKET "/org/freedesktop/systemd1/notify"
static int manager_setup_notify(Manager *m) {
union {
struct sockaddr_un un;
} sa;
struct epoll_event ev;
char *ne[2], **t;
int one = 1;
assert(m);
log_error("Failed to allocate notification socket: %m");
return -errno;
}
if (m->running_as == MANAGER_SESSION)
else
log_error("bind() failed: %m");
return -errno;
}
log_error("SO_PASSCRED failed: %m");
return -errno;
}
return -errno;
return -ENOMEM;
if (!t)
return -ENOMEM;
strv_free(m->environment);
m->environment = t;
return 0;
}
static int enable_special_signals(Manager *m) {
char fd;
assert(m);
/* Enable that we get SIGINT on control-alt-del */
if (reboot(RB_DISABLE_CAD) < 0)
log_warning("Failed to enable ctrl-alt-del handling: %m");
log_warning("Failed to open /dev/tty0: %m");
else {
/* Enable that we get SIGWINCH on kbrequest */
}
return 0;
}
static int manager_setup_signals(Manager *m) {
struct epoll_event ev;
assert(m);
/* We are not interested in SIGSTOP and friends. */
assert_se(sigaddset(&mask, SIGPWR) == 0); /* Some kernel drivers and upsd send us this on power failure */
return -errno;
return -errno;
if (m->running_as == MANAGER_INIT)
return enable_special_signals(m);
return 0;
}
Manager *m;
int r = -ENOMEM;
assert(running_as >= 0);
return -ENOMEM;
m->running_as = running_as;
m->confirm_spawn = confirm_spawn;
m->name_data_slot = -1;
goto fail;
goto fail;
goto fail;
goto fail;
goto fail;
goto fail;
goto fail;
goto fail;
goto fail;
if ((r = manager_setup_signals(m)) < 0)
goto fail;
if ((r = manager_setup_cgroup(m)) < 0)
goto fail;
if ((r = manager_setup_notify(m)) < 0)
goto fail;
/* Try to connect to the busses, if possible. */
if ((r = bus_init_system(m)) < 0 ||
(r = bus_init_api(m)) < 0)
goto fail;
*_m = m;
return 0;
fail:
manager_free(m);
return r;
}
static unsigned manager_dispatch_cleanup_queue(Manager *m) {
unsigned n = 0;
assert(m);
while ((meta = m->cleanup_queue)) {
n++;
}
return n;
}
enum {
GC_OFFSET_IN_PATH, /* This one is on the path we were travelling */
GC_OFFSET_UNSURE, /* No clue */
GC_OFFSET_GOOD, /* We still need this unit */
GC_OFFSET_BAD, /* We don't need this unit anymore */
};
Iterator i;
bool is_bad;
assert(u);
return;
if (u->meta.in_cleanup_queue)
goto bad;
if (unit_check_gc(u))
goto good;
is_bad = true;
goto good;
is_bad = false;
}
if (is_bad)
goto bad;
/* We were unable to find anything out about this entry, so
* let's investigate it later */
return;
bad:
/* We definitely know that this one is not useful anymore, so
* let's mark it for deletion */
return;
good:
}
static unsigned manager_dispatch_gc_queue(Manager *m) {
unsigned n = 0;
unsigned gc_marker;
assert(m);
if ((m->n_in_gc_queue < GC_QUEUE_ENTRIES_MAX) &&
(m->gc_queue_timestamp <= 0 ||
return 0;
log_debug("Running GC...");
m->gc_marker += _GC_OFFSET_MAX;
m->gc_marker = 1;
meta->in_gc_queue = false;
n++;
}
}
m->n_in_gc_queue = 0;
m->gc_queue_timestamp = 0;
return n;
}
static void manager_clear_jobs_and_units(Manager *m) {
Job *j;
Unit *u;
assert(m);
while ((j = hashmap_first(m->transaction_jobs)))
job_free(j);
while ((u = hashmap_first(m->units)))
unit_free(u);
assert(!m->load_queue);
assert(!m->dbus_unit_queue);
assert(!m->dbus_job_queue);
assert(!m->cleanup_queue);
}
void manager_free(Manager *m) {
UnitType c;
assert(m);
for (c = 0; c < _UNIT_TYPE_MAX; c++)
if (unit_vtable[c]->shutdown)
unit_vtable[c]->shutdown(m);
/* If we reexecute ourselves, we keep the root cgroup
* around */
bus_done_api(m);
bus_done_system(m);
hashmap_free(m->units);
hashmap_free(m->jobs);
hashmap_free(m->watch_pids);
hashmap_free(m->watch_bus);
if (m->epoll_fd >= 0)
if (m->signal_watch.fd >= 0)
if (m->notify_watch.fd >= 0)
strv_free(m->environment);
free(m->cgroup_controller);
free(m->cgroup_hierarchy);
free(m);
}
int manager_enumerate(Manager *m) {
int r = 0, q;
UnitType c;
assert(m);
* that it might know */
for (c = 0; c < _UNIT_TYPE_MAX; c++)
if (unit_vtable[c]->enumerate)
if ((q = unit_vtable[c]->enumerate(m)) < 0)
r = q;
return r;
}
int manager_coldplug(Manager *m) {
int r = 0, q;
Iterator i;
Unit *u;
char *k;
assert(m);
/* Then, let's set up their initial state. */
HASHMAP_FOREACH_KEY(u, k, m->units, i) {
/* ignore aliases */
continue;
if ((q = unit_coldplug(u)) < 0)
r = q;
}
return r;
}
int r, q;
assert(m);
/* First, enumerate what we can from all config files */
r = manager_enumerate(m);
/* Second, deserialize if there is something to deserialize */
if (serialization)
r = q;
/* Third, fire things up! */
if ((q = manager_coldplug(m)) < 0)
r = q;
/* Now that the initial devices are available, let's see if we
* can write the utmp file */
return r;
}
assert(m);
assert(j);
/* Deletes one job from the transaction */
if (!j->installed)
job_free(j);
}
Job *j;
/* Deletes all jobs associated with a certain unit from the
* transaction */
while ((j = hashmap_get(m->transaction_jobs, u)))
transaction_delete_job(m, j, true);
}
static void transaction_clean_dependencies(Manager *m) {
Iterator i;
Job *j;
assert(m);
/* Drops all dependencies of all installed jobs */
HASHMAP_FOREACH(j, m->jobs, i) {
while (j->subject_list)
while (j->object_list)
}
assert(!m->transaction_anchor);
}
static void transaction_abort(Manager *m) {
Job *j;
assert(m);
while ((j = hashmap_first(m->transaction_jobs)))
if (j->installed)
transaction_delete_job(m, j, true);
else
job_free(j);
}
JobDependency *l;
assert(m);
/* A recursive sweep through the graph that marks all units
* that matter to the anchor job, i.e. are directly or
* indirectly a dependency of the anchor job via paths that
* are fully marked as mattering. */
if (j)
l = j->subject_list;
else
l = m->transaction_anchor;
LIST_FOREACH(subject, l, l) {
/* This link does not matter */
if (!l->matters)
continue;
/* This unit has already been marked */
continue;
l->object->matters_to_anchor = true;
}
}
JobDependency *l, *last;
assert(j);
/* Merges 'other' into 'j' and then deletes j. */
j->type = t;
j->state = JOB_WAITING;
/* Patch us in as new owner of the JobDependency objects */
l->subject = j;
last = l;
}
/* Merge both lists */
if (last) {
if (j->subject_list)
}
/* Patch us in as new owner of the JobDependency objects */
l->object = j;
last = l;
}
/* Merge both lists */
if (last) {
if (j->object_list)
}
/* Kill the other job */
transaction_delete_job(m, other, true);
}
Job *k;
assert(j);
/* Tries to delete one item in the linked list
* j->transaction_next->transaction_next->... that conflicts
* whith another one, in an attempt to make an inconsistent
* transaction work. */
/* We rely here on the fact that if a merged with b does not
* merge with c, either a or b merge with c neither */
LIST_FOREACH(transaction, j, j)
Job *d;
/* Is this one mergeable? Then skip it */
continue;
/* Ok, we found two that conflict, let's see if we can
* drop one of them */
if (!j->matters_to_anchor)
d = j;
else if (!k->matters_to_anchor)
d = k;
else
return -ENOEXEC;
/* Ok, we can drop one, so let's do so. */
log_debug("Trying to fix job merging by deleting job %s/%s", d->unit->meta.id, job_type_to_string(d->type));
transaction_delete_job(m, d, true);
return 0;
}
return -EINVAL;
}
static int transaction_merge_jobs(Manager *m) {
Job *j;
Iterator i;
int r;
assert(m);
/* First step, check whether any of the jobs for one specific
* task conflict. If so, try to drop one of them. */
HASHMAP_FOREACH(j, m->transaction_jobs, i) {
JobType t;
Job *k;
t = j->type;
if ((r = job_type_merge(&t, k->type)) >= 0)
continue;
/* OK, we could not merge all jobs for this
* action. Let's see if we can get rid of one
* of them */
if ((r = delete_one_unmergeable_job(m, j)) >= 0)
/* Ok, we managed to drop one, now
* let's ask our callers to call us
* again after garbage collecting */
return -EAGAIN;
/* We couldn't merge anything. Failure */
return r;
}
}
/* Second step, merge the jobs. */
HASHMAP_FOREACH(j, m->transaction_jobs, i) {
Job *k;
/* Merge all transactions */
/* If an active job is mergeable, merge it too */
while ((k = j->transaction_next)) {
if (j->installed) {
transaction_merge_and_delete_job(m, k, j, t);
j = k;
} else
transaction_merge_and_delete_job(m, j, k, t);
}
assert(!j->transaction_next);
assert(!j->transaction_prev);
}
return 0;
}
static void transaction_drop_redundant(Manager *m) {
bool again;
assert(m);
/* Goes through the transaction and removes all jobs that are
* a noop */
do {
Job *j;
Iterator i;
again = false;
HASHMAP_FOREACH(j, m->transaction_jobs, i) {
bool changes_something = false;
Job *k;
LIST_FOREACH(transaction, k, j) {
if (!job_is_anchor(k) &&
continue;
changes_something = true;
break;
}
if (changes_something)
continue;
transaction_delete_job(m, j, false);
again = true;
break;
}
} while (again);
}
assert(u);
assert(!j->transaction_prev);
/* Checks whether at least one of the jobs for this unit
* matters to the anchor. */
LIST_FOREACH(transaction, j, j)
if (j->matters_to_anchor)
return true;
return false;
}
Iterator i;
Unit *u;
int r;
assert(m);
assert(j);
assert(!j->transaction_prev);
/* Does a recursive sweep through the ordering graph, looking
* for a cycle. If we find cycle we try to break it. */
/* Have we seen this before? */
if (j->generation == generation) {
Job *k;
/* If the marker is NULL we have been here already and
* decided the job was loop-free from here. Hence
* shortcut things and return right-away. */
if (!j->marker)
return 0;
/* So, the marker is not NULL and we already have been
* here. We have a cycle. Let's try to break it. We go
* backwards in our path and try to find a suitable
* job to remove. We use the marker to find our way
* back, since smart how we are we stored our way back
* in there. */
if (!k->installed &&
!unit_matters_to_anchor(k->unit, k)) {
/* Ok, we can drop this one, so let's
* do so. */
log_debug("Breaking order cycle by deleting job %s/%s", k->unit->meta.id, job_type_to_string(k->type));
transaction_delete_unit(m, k->unit);
return -EAGAIN;
}
/* Check if this in fact was the beginning of
* the cycle */
if (k == j)
break;
}
log_debug("Unable to break cycle");
return -ENOEXEC;
}
/* Make the marker point to where we come from, so that we can
* find our way backwards if we want to break a cycle. We use
* a special marker for the beginning: we point to
* ourselves. */
j->generation = generation;
/* We assume that the the dependencies are bidirectional, and
* hence can ignore UNIT_AFTER */
Job *o;
/* Is there a job for this unit? */
if (!(o = hashmap_get(m->transaction_jobs, u)))
/* Ok, there is no job for this in the
* transaction, but maybe there is already one
* running? */
continue;
if ((r = transaction_verify_order_one(m, o, j, generation)) < 0)
return r;
}
/* Ok, let's backtrack, and remember that this entry is not on
* our path anymore. */
return 0;
}
Job *j;
int r;
Iterator i;
unsigned g;
assert(m);
/* Check if the ordering graph is cyclic. If it is, try to fix
* that up by dropping one of the jobs. */
g = (*generation)++;
HASHMAP_FOREACH(j, m->transaction_jobs, i)
if ((r = transaction_verify_order_one(m, j, NULL, g)) < 0)
return r;
return 0;
}
static void transaction_collect_garbage(Manager *m) {
bool again;
assert(m);
/* Drop jobs that are not required by any other job */
do {
Iterator i;
Job *j;
again = false;
HASHMAP_FOREACH(j, m->transaction_jobs, i) {
if (j->object_list)
continue;
transaction_delete_job(m, j, true);
again = true;
break;
}
} while (again);
}
static int transaction_is_destructive(Manager *m) {
Iterator i;
Job *j;
assert(m);
/* Checks whether applying this transaction means that
* existing jobs would be replaced */
HASHMAP_FOREACH(j, m->transaction_jobs, i) {
/* Assume merged */
assert(!j->transaction_prev);
assert(!j->transaction_next);
return -EEXIST;
}
return 0;
}
static void transaction_minimize_impact(Manager *m) {
bool again;
assert(m);
/* Drops all unnecessary jobs that reverse already active jobs
* or that stop a running service. */
do {
Job *j;
Iterator i;
again = false;
HASHMAP_FOREACH(j, m->transaction_jobs, i) {
LIST_FOREACH(transaction, j, j) {
/* If it matters, we shouldn't drop it */
if (j->matters_to_anchor)
continue;
/* Would this stop a running service?
* Would this change an existing job?
* If so, let's drop this entry */
if (!stops_running_service && !changes_existing_job)
continue;
if (changes_existing_job)
/* Ok, let's get rid of this */
transaction_delete_job(m, j, true);
again = true;
break;
}
if (again)
break;
}
} while (again);
}
static int transaction_apply(Manager *m) {
Iterator i;
Job *j;
int r;
/* Moves the transaction jobs to the set of active jobs */
HASHMAP_FOREACH(j, m->transaction_jobs, i) {
/* Assume merged */
assert(!j->transaction_prev);
assert(!j->transaction_next);
if (j->installed)
continue;
goto rollback;
}
while ((j = hashmap_steal_first(m->transaction_jobs))) {
if (j->installed)
continue;
j->installed = true;
/* We're fully installed. Now let's free data we don't
* need anymore. */
assert(!j->transaction_next);
assert(!j->transaction_prev);
}
/* As last step, kill all remaining job dependencies. */
return 0;
HASHMAP_FOREACH(j, m->transaction_jobs, i) {
if (j->installed)
continue;
}
return r;
}
int r;
unsigned generation = 1;
assert(m);
/* This applies the changes recorded in transaction_jobs to
* the actual list of jobs, if possible. */
/* First step: figure out which jobs matter */
/* Second step: Try not to stop any running services if
* we don't have to. Don't try to reverse running
* jobs if we don't have to. */
/* Third step: Drop redundant jobs */
for (;;) {
/* Fourth step: Let's remove unneeded jobs that might
* be lurking. */
/* Fifth step: verify order makes sense and correct
* cycles if necessary and possible */
if ((r = transaction_verify_order(m, &generation)) >= 0)
break;
if (r != -EAGAIN) {
log_debug("Requested transaction contains an unfixable cyclic ordering dependency: %s", strerror(-r));
goto rollback;
}
/* Let's see if the resulting transaction ordering
* graph is still cyclic... */
}
for (;;) {
/* Sixth step: let's drop unmergeable entries if
* necessary and possible, merge entries we can
* merge */
if ((r = transaction_merge_jobs(m)) >= 0)
break;
if (r != -EAGAIN) {
goto rollback;
}
/* Seventh step: an entry got dropped, let's garbage
* collect its dependencies. */
/* Let's see if the resulting transaction still has
* unmergeable entries ... */
}
/* Eights step: Drop redundant jobs again, if the merging now allows us to drop more. */
/* Ninth step: check whether we can actually apply this */
if ((r = transaction_is_destructive(m)) < 0) {
goto rollback;
}
/* Tenth step: apply changes */
if ((r = transaction_apply(m)) < 0) {
goto rollback;
}
assert(!m->transaction_anchor);
return 0;
return r;
}
static Job* transaction_add_one_job(Manager *m, JobType type, Unit *unit, bool override, bool *is_new) {
Job *j, *f;
int r;
assert(m);
/* Looks for an axisting prospective job and returns that. If
* it doesn't exist it is created and added to the prospective
* jobs list. */
LIST_FOREACH(transaction, j, f) {
if (is_new)
*is_new = false;
return j;
}
}
return NULL;
j->generation = 0;
j->matters_to_anchor = false;
job_free(j);
return NULL;
}
if (is_new)
*is_new = true;
return j;
}
assert(m);
assert(j);
if (j->transaction_prev)
else if (j->transaction_next)
else
if (j->transaction_next)
while (j->subject_list)
while (j->object_list) {
if (other && delete_dependencies) {
log_debug("Deleting job %s/%s as dependency of job %s/%s",
}
}
}
static int transaction_add_job_and_dependencies(
Manager *m,
bool matters,
bool override,
Iterator i;
int r;
bool is_new;
assert(m);
return -EINVAL;
return -EBADR;
/* First add the job. */
return -ENOMEM;
/* Then, add a link to the job. */
return -ENOMEM;
if (is_new) {
/* Finally, recursively add in all dependencies. */
if ((r = transaction_add_job_and_dependencies(m, JOB_START, dep, ret, true, override, NULL)) < 0 && r != -EBADR)
goto fail;
if ((r = transaction_add_job_and_dependencies(m, JOB_START, dep, ret, !override, override, NULL)) < 0 && r != -EBADR)
if ((r = transaction_add_job_and_dependencies(m, JOB_VERIFY_ACTIVE, dep, ret, true, override, NULL)) < 0 && r != -EBADR)
goto fail;
if ((r = transaction_add_job_and_dependencies(m, JOB_VERIFY_ACTIVE, dep, ret, !override, override, NULL)) < 0 && r != -EBADR)
if ((r = transaction_add_job_and_dependencies(m, JOB_STOP, dep, ret, true, override, NULL)) < 0 && r != -EBADR)
goto fail;
if ((r = transaction_add_job_and_dependencies(m, type, dep, ret, true, override, NULL)) < 0 && r != -EBADR)
goto fail;
}
/* JOB_VERIFY_STARTED, JOB_RELOAD require no dependency handling */
}
if (_ret)
return 0;
fail:
return r;
}
static int transaction_add_isolate_jobs(Manager *m) {
Iterator i;
Unit *u;
char *k;
int r;
assert(m);
HASHMAP_FOREACH_KEY(u, k, m->units, i) {
/* ignore aliases */
continue;
if (UNIT_VTABLE(u)->no_isolate)
continue;
/* No need to stop inactive jobs */
if (unit_active_state(u) == UNIT_INACTIVE)
continue;
/* Is there already something listed for this? */
if (hashmap_get(m->transaction_jobs, u))
continue;
}
return 0;
}
int manager_add_job(Manager *m, JobType type, Unit *unit, JobMode mode, bool override, Job **_ret) {
int r;
assert(m);
return -EINVAL;
return r;
}
if (mode == JOB_ISOLATE)
if ((r = transaction_add_isolate_jobs(m)) < 0) {
return r;
}
if ((r = transaction_activate(m, mode)) < 0)
return r;
if (_ret)
return 0;
}
int manager_add_job_by_name(Manager *m, JobType type, const char *name, JobMode mode, bool override, Job **_ret) {
int r;
assert(m);
return r;
}
assert(m);
}
assert(m);
}
unsigned manager_dispatch_load_queue(Manager *m) {
unsigned n = 0;
assert(m);
/* Make sure we are not run recursively */
if (m->dispatching_load_queue)
return 0;
m->dispatching_load_queue = true;
/* Dispatches the load queue. Takes a unit from the queue and
* tries to load its data until the queue is empty */
while ((meta = m->load_queue)) {
n++;
}
m->dispatching_load_queue = false;
return n;
}
int r;
assert(m);
/* This will prepare the unit for loading, but not actually
* load anything from disk. */
return -EINVAL;
if (!name)
if (!unit_name_is_valid(name))
return -EINVAL;
return 1;
}
return -ENOMEM;
if (path)
return -ENOMEM;
}
return r;
}
if (_ret)
return 0;
}
int r;
assert(m);
/* This will load the service information files, but not actually
* start any services or anything. */
return r;
if (_ret)
return 0;
}
Iterator i;
Job *j;
assert(s);
assert(f);
HASHMAP_FOREACH(j, s->jobs, i)
}
Iterator i;
Unit *u;
const char *t;
assert(s);
assert(f);
HASHMAP_FOREACH_KEY(u, t, s->units, i)
}
void manager_clear_jobs(Manager *m) {
Job *j;
assert(m);
while ((j = hashmap_first(m->jobs)))
job_free(j);
}
unsigned manager_dispatch_run_queue(Manager *m) {
Job *j;
unsigned n = 0;
if (m->dispatching_run_queue)
return 0;
m->dispatching_run_queue = true;
while ((j = m->run_queue)) {
assert(j->in_run_queue);
n++;
}
m->dispatching_run_queue = false;
return n;
}
unsigned manager_dispatch_dbus_queue(Manager *m) {
Job *j;
unsigned n = 0;
assert(m);
if (m->dispatching_dbus_queue)
return 0;
m->dispatching_dbus_queue = true;
while ((meta = m->dbus_unit_queue)) {
n++;
}
while ((j = m->dbus_job_queue)) {
assert(j->in_dbus_queue);
n++;
}
m->dispatching_dbus_queue = false;
return n;
}
static int manager_process_notify_fd(Manager *m) {
ssize_t n;
assert(m);
for (;;) {
char buf[4096];
union {
} control;
Unit *u;
char **tags;
if (n >= 0)
return -EIO;
break;
return -errno;
}
log_warning("Received notify message without credentials. Ignoring.");
continue;
}
continue;
}
return -ENOMEM;
if (UNIT_VTABLE(u)->notify_message)
}
return 0;
}
static int manager_dispatch_sigchld(Manager *m) {
assert(m);
for (;;) {
Unit *u;
int r;
/* First we call waitd() for a PID and do not reap the
* zombie. That way we can still access /proc/$PID for
* it while it is a zombie. */
break;
continue;
return -errno;
}
break;
}
/* Let's flush any message the dying child might still
* have queued for us. This ensures that the process
* still exists in /proc so that we can figure out
* which cgroup and hence unit it belongs to. */
if ((r = manager_process_notify_fd(m)) < 0)
return r;
/* And now figure out the unit this belongs to */
/* And now, we actually reap the zombie. */
continue;
return -errno;
}
continue;
log_debug("Child %llu died (code=%s, status=%i/%s)",
if (!u)
continue;
}
return 0;
}
int r;
return r;
}
static int manager_process_signal_fd(Manager *m) {
ssize_t n;
struct signalfd_siginfo sfsi;
bool sigchld = false;
assert(m);
for (;;) {
if (n >= 0)
return -EIO;
break;
return -errno;
}
case SIGCHLD:
sigchld = true;
break;
case SIGTERM:
if (m->running_as == MANAGER_INIT) {
/* This is for compatibility with the
* original sysvinit */
m->exit_code = MANAGER_REEXECUTE;
break;
}
/* Fall through */
case SIGINT:
if (m->running_as == MANAGER_INIT) {
break;
}
/* Run the exit target if there is one, if not, just exit. */
if (manager_start_target(m, SPECIAL_EXIT_SERVICE) < 0) {
m->exit_code = MANAGER_EXIT;
return 0;
}
break;
case SIGWINCH:
if (m->running_as == MANAGER_INIT)
/* This is a nop on non-init */
break;
case SIGPWR:
if (m->running_as == MANAGER_INIT)
/* This is a nop on non-init */
break;
case SIGUSR1: {
Unit *u;
u = manager_get_unit(m, SPECIAL_DBUS_SERVICE);
if (!u || UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u))) {
log_info("Trying to reconnect to bus...");
bus_init_system(m);
bus_init_api(m);
}
if (!u || !UNIT_IS_ACTIVE_OR_ACTIVATING(unit_active_state(u))) {
log_info("Loading D-Bus service...");
}
break;
}
case SIGUSR2: {
FILE *f;
log_warning("Failed to allocate memory stream.");
break;
}
manager_dump_units(m, f, "\t");
manager_dump_jobs(m, f, "\t");
if (ferror(f)) {
fclose(f);
log_warning("Failed to write status stream");
break;
}
fclose(f);
break;
}
case SIGHUP:
m->exit_code = MANAGER_RELOAD;
break;
default:
}
}
if (sigchld)
return manager_dispatch_sigchld(m);
return 0;
}
int r;
Watch *w;
assert(m);
switch (w->type) {
case WATCH_SIGNAL:
/* An incoming signal? */
return -EINVAL;
if ((r = manager_process_signal_fd(m)) < 0)
return r;
break;
case WATCH_NOTIFY:
/* An incoming daemon notification event? */
return -EINVAL;
if ((r = manager_process_notify_fd(m)) < 0)
return r;
break;
case WATCH_FD:
/* Some fd event, to be dispatched to the units */
break;
case WATCH_TIMER: {
uint64_t v;
ssize_t k;
/* Some timer event, to be dispatched to the units */
break;
}
break;
}
case WATCH_MOUNT:
/* Some mount table change, intended for the mount subsystem */
break;
case WATCH_UDEV:
/* Some notification from udev, intended for the device subsystem */
break;
case WATCH_DBUS_WATCH:
break;
case WATCH_DBUS_TIMEOUT:
break;
default:
assert_not_reached("Unknown epoll event type.");
}
return 0;
}
int manager_loop(Manager *m) {
int r;
assert(m);
m->exit_code = MANAGER_RUNNING;
/* There might still be some zombies hanging around from
* before we were exec()'ed. Leat's reap them */
if ((r = manager_dispatch_sigchld(m)) < 0)
return r;
while (m->exit_code == MANAGER_RUNNING) {
struct epoll_event event;
int n;
if (!ratelimit_test(&rl)) {
/* Yay, something is going seriously wrong, pause a little */
log_warning("Looping too fast. Throttling execution a little.");
sleep(1);
}
if (manager_dispatch_load_queue(m) > 0)
continue;
if (manager_dispatch_run_queue(m) > 0)
continue;
if (bus_dispatch(m) > 0)
continue;
if (manager_dispatch_cleanup_queue(m) > 0)
continue;
if (manager_dispatch_gc_queue(m) > 0)
continue;
if (manager_dispatch_dbus_queue(m) > 0)
continue;
continue;
return -errno;
}
assert(n == 1);
if ((r = process_event(m, &event)) < 0)
return r;
}
return m->exit_code;
}
char *n;
Unit *u;
assert(m);
assert(s);
if (!startswith(s, "/org/freedesktop/systemd1/unit/"))
return -EINVAL;
if (!(n = bus_path_unescape(s+31)))
return -ENOMEM;
u = manager_get_unit(m, n);
free(n);
if (!u)
return -ENOENT;
*_u = u;
return 0;
}
Job *j;
unsigned id;
int r;
assert(m);
assert(s);
if (!startswith(s, "/org/freedesktop/systemd1/job/"))
return -EINVAL;
return r;
if (!(j = manager_get_job(m, id)))
return -ENOENT;
*_j = j;
return 0;
}
static bool manager_utmp_good(Manager *m) {
int r;
assert(m);
if ((r = mount_path_is_mounted(m, _PATH_UTMPX)) <= 0) {
if (r < 0)
return false;
}
return true;
}
void manager_write_utmp_reboot(Manager *m) {
int r;
assert(m);
if (m->utmp_reboot_written)
return;
if (m->running_as != MANAGER_INIT)
return;
if (!manager_utmp_good(m))
return;
return;
}
m->utmp_reboot_written = true;
}
int runlevel, r;
assert(m);
assert(u);
return;
if (m->running_as != MANAGER_INIT)
return;
if (!manager_utmp_good(m))
return;
return;
if ((r = utmp_put_runlevel(0, runlevel, 0)) < 0) {
}
}
Manager *m,
const char *name,
const char* old_owner,
const char *new_owner) {
Unit *u;
assert(m);
return;
}
Manager *m,
const char *name,
Unit *u;
assert(m);
return;
}
char *path;
int fd;
FILE *f;
return -ENOMEM;
if (fd < 0) {
return -errno;
}
return -errno;
*_f = f;
return 0;
}
Iterator i;
Unit *u;
const char *t;
int r;
assert(m);
assert(f);
HASHMAP_FOREACH_KEY(u, t, m->units, i) {
continue;
if (!unit_can_serialize(u))
continue;
/* Start marker */
fputc('\n', f);
if ((r = unit_serialize(u, f, fds)) < 0)
return r;
}
if (ferror(f))
return -EIO;
return 0;
}
int r = 0;
assert(m);
assert(f);
log_debug("Deserializing state...");
for (;;) {
Unit *u;
/* Start marker */
if (feof(f))
break;
return -errno;
}
return r;
if ((r = unit_deserialize(u, f, fds)) < 0)
return r;
}
if (ferror(f))
return -EIO;
return 0;
}
int manager_reload(Manager *m) {
int r, q;
FILE *f;
assert(m);
if ((r = manager_open_serialization(&f)) < 0)
return r;
r = -ENOMEM;
goto finish;
}
if ((r = manager_serialize(m, f, fds)) < 0)
goto finish;
r = -errno;
goto finish;
}
/* From here on there is no way back. */
/* Find new unit paths */
r = q;
/* First, enumerate what we can from all config files */
if ((q = manager_enumerate(m)) < 0)
r = q;
/* Second, deserialize our stored data */
if ((q = manager_deserialize(m, f, fds)) < 0)
r = q;
fclose(f);
f = NULL;
/* Third, fire things up! */
if ((q = manager_coldplug(m)) < 0)
r = q;
if (f)
fclose(f);
if (fds)
return r;
}
static const char* const manager_running_as_table[_MANAGER_RUNNING_AS_MAX] = {
[MANAGER_INIT] = "init",
[MANAGER_SYSTEM] = "system",
[MANAGER_SESSION] = "session"
};