service.c revision ce359e98f87c7fbe5aa1d275e43cf088ce46c2b0
/*-*- Mode: C; c-basic-offset: 8; indent-tabs-mode: nil -*-*/
/***
This file is part of systemd.
Copyright 2010 Lennart Poettering
under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
systemd is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with systemd; If not, see <http://www.gnu.org/licenses/>.
***/
#include <errno.h>
#include <signal.h>
#include <unistd.h>
#include "alloc-util.h"
#include "async.h"
#include "bus-error.h"
#include "bus-kernel.h"
#include "bus-util.h"
#include "dbus-service.h"
#include "def.h"
#include "env-util.h"
#include "escape.h"
#include "exit-status.h"
#include "fd-util.h"
#include "fileio.h"
#include "formats-util.h"
#include "fs-util.h"
#include "load-dropin.h"
#include "load-fragment.h"
#include "log.h"
#include "manager.h"
#include "parse-util.h"
#include "path-util.h"
#include "process-util.h"
#include "service.h"
#include "signal-util.h"
#include "special.h"
#include "string-table.h"
#include "string-util.h"
#include "strv.h"
#include "unit-name.h"
#include "unit-printf.h"
#include "unit.h"
#include "utf8.h"
#include "util.h"
};
/* For Type=idle we never want to delay any other jobs, hence we
* consider idle jobs active as soon as we start working on them */
[SERVICE_START] = UNIT_ACTIVE,
};
static void service_enter_reload_by_notify(Service *s);
static void service_init(Unit *u) {
assert(u);
s->type = _SERVICE_TYPE_INVALID;
s->socket_fd = -1;
s->bus_endpoint_fd = -1;
s->guess_main_pid = true;
RATELIMIT_INIT(s->start_limit, u->manager->default_start_limit_interval, u->manager->default_start_limit_burst);
}
static void service_unwatch_control_pid(Service *s) {
assert(s);
if (s->control_pid <= 0)
return;
s->control_pid = 0;
}
static void service_unwatch_main_pid(Service *s) {
assert(s);
if (s->main_pid <= 0)
return;
s->main_pid = 0;
}
static void service_unwatch_pid_file(Service *s) {
if (!s->pid_file_pathspec)
return;
}
assert(s);
if (pid <= 1)
return -EINVAL;
return -EINVAL;
return 0;
}
s->main_pid_known = true;
log_unit_warning(UNIT(s), "Supervising process "PID_FMT" which is not our child. We'll most likely not notice when it exits.", pid);
s->main_pid_alien = true;
} else
s->main_pid_alien = false;
return 0;
}
static void service_close_socket_fd(Service *s) {
assert(s);
}
static void service_connection_unref(Service *s) {
assert(s);
if (!UNIT_ISSET(s->accept_socket))
return;
unit_ref_unset(&s->accept_socket);
}
static void service_stop_watchdog(Service *s) {
assert(s);
}
static void service_start_watchdog(Service *s) {
int r;
assert(s);
if (s->watchdog_usec <= 0)
return;
if (s->watchdog_event_source) {
r = sd_event_source_set_time(s->watchdog_event_source, usec_add(s->watchdog_timestamp.monotonic, s->watchdog_usec));
if (r < 0) {
return;
}
} else {
r = sd_event_add_time(
if (r < 0) {
return;
}
/* Let's process everything else which might be a sign
* of living before we consider a service died. */
}
if (r < 0)
}
static void service_reset_watchdog(Service *s) {
assert(s);
}
if (!fs)
return;
}
if (fs->event_source) {
}
}
static void service_release_resources(Unit *u) {
assert(s);
return;
log_unit_debug(u, "Releasing all resources.");
while (s->fd_store)
assert(s->n_fd_store == 0);
}
static void service_done(Unit *u) {
assert(s);
s->control_command = NULL;
s->main_command = NULL;
/* This will leak a process, but at least no memory or any of
* our resources */
if (s->bus_name) {
unit_unwatch_bus_name(u, s->bus_name);
}
unit_ref_unset(&s->accept_socket);
}
assert(e);
/* If we get either EPOLLHUP or EPOLLERR, it's time to remove this entry from the fd store */
return 0;
}
int r;
assert(s);
if (s->n_fd_store >= s->n_fd_store_max)
return 0;
if (r < 0)
return r;
if (r > 0) {
/* Already included */
safe_close(fd);
return 1;
}
}
if (!fs)
return -ENOMEM;
return -ENOMEM;
}
if (r < 0) {
return r;
}
s->n_fd_store++;
return 1;
}
int r;
assert(s);
if (fdset_size(fds) <= 0)
return 0;
while (s->n_fd_store < s->n_fd_store_max) {
if (fd < 0)
break;
if (r < 0)
if (r > 0) {
fd = -1;
}
}
if (fdset_size(fds) > 0)
log_unit_warning(UNIT(s), "Tried to store more fds than FileDescriptorStoreMax=%u allows, closing remaining.", s->n_fd_store_max);
return 0;
}
int r;
assert(s);
if (s->timer_event_source) {
if (r < 0)
return r;
}
if (usec == USEC_INFINITY)
return 0;
r = sd_event_add_time(
&s->timer_event_source,
usec, 0,
if (r < 0)
return r;
return 0;
}
static int service_verify(Service *s) {
assert(s);
return 0;
return -EINVAL;
}
log_unit_error(UNIT(s), "Service has no ExecStart= setting, which is only allowed for Type=oneshot services. Refusing.");
return -EINVAL;
}
log_unit_error(UNIT(s), "Service has no ExecStart= setting, which is only allowed for RemainAfterExit=yes services. Refusing.");
return -EINVAL;
}
log_unit_error(UNIT(s), "Service has more than one ExecStart= setting, which is only allowed for Type=oneshot services. Refusing.");
return -EINVAL;
}
log_unit_error(UNIT(s), "Service has Restart= setting other than no, which isn't allowed for Type=oneshot services. Refusing.");
return -EINVAL;
}
log_unit_error(UNIT(s), "Service has RestartForceStatus= set, which isn't allowed for Type=oneshot services. Refusing.");
return -EINVAL;
}
log_unit_error(UNIT(s), "Service is of type D-Bus but no D-Bus service name has been specified. Refusing.");
return -EINVAL;
}
log_unit_warning(UNIT(s), "Service has a D-Bus service name specified, but is not of type dbus. Ignoring.");
if (s->exec_context.pam_name && !(s->kill_context.kill_mode == KILL_CONTROL_GROUP || s->kill_context.kill_mode == KILL_MIXED)) {
log_unit_error(UNIT(s), "Service has PAM enabled. Kill mode must be set to 'control-group' or 'mixed'. Refusing.");
return -EINVAL;
}
if (s->usb_function_descriptors && !s->usb_function_strings)
log_unit_warning(UNIT(s), "Service has USBFunctionDescriptors= setting, but no USBFunctionStrings=. Ignoring.");
if (!s->usb_function_descriptors && s->usb_function_strings)
log_unit_warning(UNIT(s), "Service has USBFunctionStrings= setting, but no USBFunctionDescriptors=. Ignoring.");
log_unit_warning(UNIT(s), "MaxRuntimeSec= has no effect in combination with Type=oneshot. Ignoring.");
return 0;
}
static int service_add_default_dependencies(Service *s) {
int r;
assert(s);
if (!UNIT(s)->default_dependencies)
return 0;
/* Add a number of automatic dependencies useful for the
* majority of services. */
/* First, pull in the really early boot stuff, and
* require it, so that we fail if we can't acquire
* it. */
r = unit_add_two_dependencies_by_name(UNIT(s), UNIT_AFTER, UNIT_REQUIRES, SPECIAL_SYSINIT_TARGET, NULL, true);
if (r < 0)
return r;
} else {
/* In the --user instance there's no sysinit.target,
* in that case require basic.target instead. */
if (r < 0)
return r;
}
/* Second, if the rest of the base system is in the same
* transaction, order us after it, but do not pull it in or
* even require it. */
if (r < 0)
return r;
/* Third, add us in for normal shutdown. */
return unit_add_two_dependencies_by_name(UNIT(s), UNIT_BEFORE, UNIT_CONFLICTS, SPECIAL_SHUTDOWN_TARGET, NULL, true);
}
static void service_fix_output(Service *s) {
assert(s);
/* If nothing has been explicitly configured, patch default
* since in that case we want output to default to the same
* place as we read input from. */
}
static int service_setup_bus_name(Service *s) {
int r;
assert(s);
if (!s->bus_name)
return 0;
if (is_kdbus_available()) {
const char *n;
if (r < 0)
} else {
/* If kdbus is not available, we know the dbus socket is required, hence pull it in, and require it */
if (r < 0)
}
/* Regardless if kdbus is used or not, we always want to be ordered against dbus.socket if both are in the transaction. */
if (r < 0)
if (r == -EEXIST)
return log_unit_error_errno(UNIT(s), r, "Two services allocated for the same bus name %s, refusing operation.", s->bus_name);
if (r < 0)
return 0;
}
static int service_add_extras(Service *s) {
int r;
assert(s);
if (s->type == _SERVICE_TYPE_INVALID) {
/* Figure out a type automatically */
if (s->bus_name)
s->type = SERVICE_DBUS;
else if (s->exec_command[SERVICE_EXEC_START])
s->type = SERVICE_SIMPLE;
else
s->type = SERVICE_ONESHOT;
}
/* Oneshot services have disabled start timeout by default */
r = unit_patch_contexts(UNIT(s));
if (r < 0)
return r;
if (r < 0)
return r;
r = unit_set_default_slice(UNIT(s));
if (r < 0)
return r;
s->notify_access = NOTIFY_MAIN;
s->notify_access = NOTIFY_MAIN;
r = service_add_default_dependencies(s);
if (r < 0)
return r;
r = service_setup_bus_name(s);
if (r < 0)
return r;
return 0;
}
static int service_load(Unit *u) {
int r;
assert(s);
/* Load a .service file */
r = unit_load_fragment(u);
if (r < 0)
return r;
/* Still nothing found? Then let's give up */
if (u->load_state == UNIT_STUB)
return -ENOENT;
/* This is a new unit? Then let's add in some extras */
if (u->load_state == UNIT_LOADED) {
/* We were able to load something, then let's add in
* the dropin directories. */
r = unit_load_dropin(u);
if (r < 0)
return r;
/* This is a new unit? Then let's add in some
* extras */
r = service_add_extras(s);
if (r < 0)
return r;
}
return service_verify(s);
}
const char *prefix2;
assert(s);
fprintf(f,
"%sService State: %s\n"
"%sResult: %s\n"
"%sReload Result: %s\n"
"%sPermissionsStartOnly: %s\n"
"%sRootDirectoryStartOnly: %s\n"
"%sRemainAfterExit: %s\n"
"%sGuessMainPID: %s\n"
"%sType: %s\n"
"%sRestart: %s\n"
"%sNotifyAccess: %s\n"
"%sNotifyState: %s\n",
if (s->control_pid > 0)
fprintf(f,
prefix, s->control_pid);
if (s->main_pid > 0)
fprintf(f,
"%sMain PID Known: %s\n"
"%sMain PID Alien: %s\n",
if (s->pid_file)
fprintf(f,
"%sPIDFile: %s\n",
if (s->bus_name)
fprintf(f,
"%sBusName: %s\n"
"%sBus Name Good: %s\n",
for (c = 0; c < _SERVICE_EXEC_COMMAND_MAX; c++) {
if (!s->exec_command[c])
continue;
fprintf(f, "%s-> %s:\n",
}
if (s->status_text)
fprintf(f, "%sStatus Text: %s\n",
prefix, s->status_text);
if (s->n_fd_store_max > 0)
fprintf(f,
"%sFile Descriptor Store Max: %u\n"
"%sFile Descriptor Store Current: %u\n",
prefix, s->n_fd_store_max,
prefix, s->n_fd_store);
}
_cleanup_free_ char *k = NULL;
int r;
assert(s);
if (!s->pid_file)
return -ENOENT;
r = read_one_line_file(s->pid_file, &k);
if (r < 0) {
if (may_warn)
log_unit_info_errno(UNIT(s), r, "PID file %s not readable (yet?) after %s: %m", s->pid_file, service_state_to_string(s->state));
return r;
}
if (r < 0) {
if (may_warn)
return r;
}
if (!pid_is_alive(pid)) {
if (may_warn)
log_unit_info(UNIT(s), "PID "PID_FMT" read from file %s does not exist or is a zombie.", pid, s->pid_file);
return -ESRCH;
}
if (s->main_pid_known) {
return 0;
s->main_pid_known = false;
} else
r = service_set_main_pid(s, pid);
if (r < 0)
return r;
if (r < 0) {
/* FIXME: we need to do something here */
return r;
}
return 0;
}
static int service_search_main_pid(Service *s) {
int r;
assert(s);
/* If we know it anyway, don't ever fallback to unreliable
* heuristics */
if (s->main_pid_known)
return 0;
if (!s->guess_main_pid)
return 0;
if (r < 0)
return r;
r = service_set_main_pid(s, pid);
if (r < 0)
return r;
if (r < 0) {
/* FIXME: we need to do something here */
return r;
}
return 0;
}
const UnitActiveState *table;
assert(s);
s->main_command = NULL;
}
s->control_command = NULL;
}
}
/* For the inactive states unit_notify() will trim the cgroup,
* but for exit we have to do that ourselves... */
unit_prune_cgroup(UNIT(s));
/* For remain_after_exit services, let's see if we can "release" the
* hold on the console, since unit_notify() only does that in case of
* change of state */
if (state == SERVICE_EXITED &&
s->remain_after_exit &&
m->n_on_console --;
if (m->n_on_console == 0)
/* unset no_console_output flag, since the console is free */
m->no_console_output = false;
}
}
log_unit_debug(UNIT(s), "Changed %s -> %s", service_state_to_string(old_state), service_state_to_string(state));
}
assert(s);
switch (s->deserialized_state) {
case SERVICE_START_PRE:
case SERVICE_START:
case SERVICE_START_POST:
case SERVICE_RELOAD:
case SERVICE_RUNNING:
case SERVICE_STOP:
case SERVICE_STOP_SIGABRT:
case SERVICE_STOP_SIGTERM:
case SERVICE_STOP_SIGKILL:
case SERVICE_STOP_POST:
case SERVICE_FINAL_SIGTERM:
case SERVICE_FINAL_SIGKILL:
case SERVICE_AUTO_RESTART:
default:
return USEC_INFINITY;
}
}
static int service_coldplug(Unit *u) {
int r;
assert(s);
if (s->deserialized_state == s->state)
return 0;
r = service_arm_timer(s, service_coldplug_timeout(s));
if (r < 0)
return r;
if (s->main_pid > 0 &&
pid_is_unwaited(s->main_pid) &&
((s->deserialized_state == SERVICE_START && IN_SET(s->type, SERVICE_FORKING, SERVICE_DBUS, SERVICE_ONESHOT, SERVICE_NOTIFY)) ||
if (r < 0)
return r;
}
if (s->control_pid > 0 &&
pid_is_unwaited(s->control_pid) &&
if (r < 0)
return r;
}
unit_watch_all_pids(UNIT(s));
service_set_state(s, s->deserialized_state);
return 0;
}
int rn_fds = 0, r;
assert(s);
if (s->socket_fd >= 0) {
/* Pass the per-connection socket */
if (!rfds)
return -ENOMEM;
if (!rfd_names)
return -ENOMEM;
rn_fds = 1;
} else {
Iterator i;
Unit *u;
/* Pass all our configured sockets for singleton services */
int cn_fds;
if (u->type != UNIT_SOCKET)
continue;
if (cn_fds < 0)
return cn_fds;
if (cn_fds <= 0)
continue;
if (!rfds) {
} else {
int *t;
if (!t)
return -ENOMEM;
rfds = t;
}
if (r < 0)
return r;
}
}
if (s->n_fd_store > 0) {
char **nl;
int *t;
if (!t)
return -ENOMEM;
rfds = t;
if (!nl)
return -ENOMEM;
return -ENOMEM;
rn_fds++;
}
}
return rn_fds;
}
static int service_spawn(
Service *s,
ExecCommand *c,
bool pass_fds,
bool apply_permissions,
bool apply_chroot,
bool apply_tty_stdin,
bool is_control,
const char *path;
.bus_endpoint_fd = -1,
.stdin_fd = -1,
.stdout_fd = -1,
.stderr_fd = -1,
};
int r;
assert(s);
assert(c);
(void) unit_realize_cgroup(UNIT(s));
if (s->reset_cpu_usage) {
(void) unit_reset_cpu_usage(UNIT(s));
s->reset_cpu_usage = false;
}
r = unit_setup_exec_runtime(UNIT(s));
if (r < 0)
return r;
if (pass_fds ||
if (r < 0)
return r;
n_fds = r;
}
if (r < 0)
return r;
if (r < 0)
return r;
if (!our_env)
return -ENOMEM;
return -ENOMEM;
if (s->main_pid > 0)
return -ENOMEM;
return -ENOMEM;
if (s->socket_fd >= 0) {
union sockaddr_union sa;
if (r < 0)
return -errno;
char *t;
int port;
if (r < 0)
return r;
if (!t)
return -ENOMEM;
if (port < 0)
return port;
return -ENOMEM;
}
}
if (!final_env)
return -ENOMEM;
} else
if (s->exec_context.bus_endpoint) {
if (r < 0)
return r;
/* Pass the fd to the exec_params so that the child process can upload the policy.
* Keep a reference to the fd in the service, so the endpoint is kept alive as long
* as the service is running. */
}
if (s->type == SERVICE_IDLE)
r = exec_spawn(UNIT(s),
c,
&s->exec_context,
s->exec_runtime,
&pid);
if (r < 0)
return r;
if (r < 0)
/* FIXME: we need to do something here */
return r;
return 0;
}
static int main_pid_good(Service *s) {
assert(s);
/* Returns 0 if the pid is dead, 1 if it is good, -1 if we
* don't know */
/* If we know the pid file, then let's just check if it is
* still valid */
if (s->main_pid_known) {
/* If it's an alien child let's check if it is still
* alive ... */
if (s->main_pid_alien && s->main_pid > 0)
return pid_is_alive(s->main_pid);
/* .. otherwise assume we'll get a SIGCHLD for it,
* which we really should wait for to collect exit
* status and code */
return s->main_pid > 0;
}
/* We don't know the pid */
return -EAGAIN;
}
assert(s);
return s->control_pid > 0;
}
static int cgroup_good(Service *s) {
int r;
assert(s);
if (!UNIT(s)->cgroup_path)
return 0;
if (r < 0)
return r;
return !r;
}
static bool service_shall_restart(Service *s) {
assert(s);
/* Don't restart after manual stops */
if (s->forbid_restart)
return false;
/* Never restart if this is configured as special exception */
if (exit_status_set_test(&s->restart_prevent_status, s->main_exec_status.code, s->main_exec_status.status))
return false;
if (exit_status_set_test(&s->restart_force_status, s->main_exec_status.code, s->main_exec_status.status))
return true;
switch (s->restart) {
case SERVICE_RESTART_NO:
return false;
case SERVICE_RESTART_ALWAYS:
return true;
return s->result == SERVICE_SUCCESS;
return s->result != SERVICE_SUCCESS;
return s->result == SERVICE_FAILURE_WATCHDOG;
case SERVICE_RESTART_ON_ABORT:
default:
assert_not_reached("unknown restart setting");
}
}
int r;
assert(s);
if (f != SERVICE_SUCCESS)
s->result = f;
if (s->result != SERVICE_SUCCESS) {
}
if (allow_restart && service_shall_restart(s)) {
if (r < 0)
goto fail;
}
/* The next restart might not be a manual stop, hence reset the flag indicating manual stops */
s->forbid_restart = false;
/* We want fresh tmpdirs in case service is started again immediately */
/* Also, remove the runtime directory in */
exec_context_destroy_runtime_directory(&s->exec_context, manager_get_runtime_prefix(UNIT(s)->manager));
/* Try to delete the pid file. At this point it will be
* out-of-date, and some software might be confused by it, so
* let's remove it. */
if (s->pid_file)
return;
fail:
service_enter_dead(s, SERVICE_FAILURE_RESOURCES, false);
}
int r;
assert(s);
if (f != SERVICE_SUCCESS)
s->result = f;
unit_watch_all_pids(UNIT(s));
if (s->control_command) {
r = service_spawn(s,
s->control_command,
false,
true,
true,
&s->control_pid);
if (r < 0)
goto fail;
} else
return;
fail:
}
switch (state) {
case SERVICE_STOP_SIGABRT:
return KILL_ABORT;
case SERVICE_STOP_SIGTERM:
case SERVICE_FINAL_SIGTERM:
return KILL_TERMINATE;
case SERVICE_STOP_SIGKILL:
case SERVICE_FINAL_SIGKILL:
return KILL_KILL;
default:
return _KILL_OPERATION_INVALID;
}
}
int r;
assert(s);
if (f != SERVICE_SUCCESS)
s->result = f;
unit_watch_all_pids(UNIT(s));
r = unit_kill_context(
UNIT(s),
&s->kill_context,
s->main_pid,
s->control_pid,
s->main_pid_alien);
if (r < 0)
goto fail;
if (r > 0) {
if (r < 0)
goto fail;
service_set_state(s, state);
} else if (IN_SET(state, SERVICE_STOP_SIGABRT, SERVICE_STOP_SIGTERM) && s->kill_context.send_sigkill)
else
service_enter_dead(s, SERVICE_SUCCESS, true);
return;
fail:
else
service_enter_dead(s, SERVICE_FAILURE_RESOURCES, true);
}
static void service_enter_stop_by_notify(Service *s) {
assert(s);
unit_watch_all_pids(UNIT(s));
/* The service told us it's stopping, so it's as if we SIGTERM'd it. */
}
int r;
assert(s);
if (f != SERVICE_SUCCESS)
s->result = f;
unit_watch_all_pids(UNIT(s));
if (s->control_command) {
r = service_spawn(s,
s->control_command,
false,
false,
true,
&s->control_pid);
if (r < 0)
goto fail;
} else
return;
fail:
}
static bool service_good(Service *s) {
int main_pid_ok;
assert(s);
return false;
main_pid_ok = main_pid_good(s);
if (main_pid_ok > 0) /* It's alive */
return true;
if (main_pid_ok == 0) /* It's dead */
return false;
/* OK, we don't know anything about the main PID, maybe
* because there is none. Let's check the control group
* instead. */
return cgroup_good(s) != 0;
}
assert(s);
if (f != SERVICE_SUCCESS)
s->result = f;
if (service_good(s)) {
/* If there are any queued up sd_notify()
* notifications, process them now */
if (s->notify_state == NOTIFY_RELOADING)
else if (s->notify_state == NOTIFY_STOPPING)
else {
}
} else if (s->remain_after_exit)
else
}
static void service_enter_start_post(Service *s) {
int r;
assert(s);
if (s->control_command) {
r = service_spawn(s,
s->control_command,
false,
false,
true,
&s->control_pid);
if (r < 0)
goto fail;
} else
return;
fail:
}
static void service_kill_control_processes(Service *s) {
char *p;
if (!UNIT(s)->cgroup_path)
return;
}
static void service_enter_start(Service *s) {
ExecCommand *c;
int r;
assert(s);
/* We want to ensure that nobody leaks processes from
* START_PRE here, so let's go on a killing spree, People
* should not spawn long running processes from START_PRE. */
if (s->type == SERVICE_FORKING) {
s->main_command = NULL;
} else {
s->control_command = NULL;
}
if (!c) {
return;
}
/* For simple + idle this is the main process. We don't apply any timeout here, but
* service_enter_running() will later apply the .runtime_max_usec timeout. */
else
timeout = s->timeout_start_usec;
r = service_spawn(s,
c,
true,
true,
true,
true,
false,
&pid);
if (r < 0)
goto fail;
/* For simple services we immediately start
* the START_POST binaries. */
service_set_main_pid(s, pid);
} else if (s->type == SERVICE_FORKING) {
/* For forking services we wait until the start
* process exited. */
s->control_pid = pid;
/* For oneshot services we wait until the start
* process exited, too, but it is our main process. */
/* For D-Bus services we know the main pid right away,
* but wait for the bus name to appear on the
* bus. Notify services are similar. */
service_set_main_pid(s, pid);
} else
assert_not_reached("Unknown service type");
return;
fail:
}
static void service_enter_start_pre(Service *s) {
int r;
assert(s);
if (s->control_command) {
/* Before we start anything, let's clear up what might
* be left from previous runs. */
r = service_spawn(s,
s->control_command,
false,
true,
true,
&s->control_pid);
if (r < 0)
goto fail;
} else
return;
fail:
service_enter_dead(s, SERVICE_FAILURE_RESOURCES, true);
}
static void service_enter_restart(Service *s) {
int r;
assert(s);
/* Don't restart things if we are going down anyway */
if (r < 0)
goto fail;
return;
}
/* Any units that are bound to this service must also be
* restarted. We use JOB_RESTART (instead of the more obvious
* JOB_START) here so that those dependency jobs will be added
* as well. */
if (r < 0)
goto fail;
/* Note that we stay in the SERVICE_AUTO_RESTART state here,
* it will be canceled as part of the service_stop() call that
* is executed as part of JOB_RESTART. */
return;
fail:
service_enter_dead(s, SERVICE_FAILURE_RESOURCES, false);
}
static void service_enter_reload_by_notify(Service *s) {
assert(s);
}
static void service_enter_reload(Service *s) {
int r;
assert(s);
s->reload_result = SERVICE_SUCCESS;
if (s->control_command) {
r = service_spawn(s,
s->control_command,
false,
false,
true,
&s->control_pid);
if (r < 0)
goto fail;
} else
return;
fail:
}
static void service_run_next_control(Service *s) {
int r;
assert(s);
assert(s->control_command);
if (IN_SET(s->state, SERVICE_START_PRE, SERVICE_START, SERVICE_START_POST, SERVICE_RUNNING, SERVICE_RELOAD))
timeout = s->timeout_start_usec;
else
timeout = s->timeout_stop_usec;
r = service_spawn(s,
s->control_command,
false,
s->control_command_id == SERVICE_EXEC_START_PRE ||
true,
&s->control_pid);
if (r < 0)
goto fail;
return;
fail:
if (s->state == SERVICE_START_PRE)
else if (s->state == SERVICE_STOP)
else if (s->state == SERVICE_STOP_POST)
service_enter_dead(s, SERVICE_FAILURE_RESOURCES, true);
else if (s->state == SERVICE_RELOAD) {
} else
}
static void service_run_next_main(Service *s) {
int r;
assert(s);
assert(s->main_command);
r = service_spawn(s,
s->main_command,
true,
true,
true,
true,
false,
&pid);
if (r < 0)
goto fail;
service_set_main_pid(s, pid);
return;
fail:
}
static int service_start_limit_test(Service *s) {
assert(s);
if (ratelimit_test(&s->start_limit))
return 0;
}
static int service_start(Unit *u) {
int r;
assert(s);
/* We cannot fulfill this request right now, try again later
* please! */
return -EAGAIN;
/* Already on it! */
return 0;
/* A service that will be restarted must be stopped first to
* does not want to wait for the holdoff time to elapse, the
* service should be manually restarted, not started. We
* simply return EAGAIN here, so that any start jobs stay
* queued, and assume that the auto restart timer will
* eventually trigger the restart. */
if (s->state == SERVICE_AUTO_RESTART)
return -EAGAIN;
/* Make sure we don't enter a busy loop of some kind. */
r = service_start_limit_test(s);
if (r < 0) {
service_enter_dead(s, SERVICE_FAILURE_START_LIMIT, false);
return r;
}
s->result = SERVICE_SUCCESS;
s->reload_result = SERVICE_SUCCESS;
s->main_pid_known = false;
s->main_pid_alien = false;
s->forbid_restart = false;
s->reset_cpu_usage = true;
s->status_errno = 0;
s->notify_state = NOTIFY_UNKNOWN;
return 1;
}
static int service_stop(Unit *u) {
assert(s);
/* Don't create restart jobs from manual stops. */
s->forbid_restart = true;
/* Already on it */
return 0;
/* A restart will be scheduled or is in progress. */
if (s->state == SERVICE_AUTO_RESTART) {
return 0;
}
/* If there's already something running we go directly into
* kill mode. */
return 0;
}
return 1;
}
static int service_reload(Unit *u) {
assert(s);
return 1;
}
assert(s);
return !!s->exec_command[SERVICE_EXEC_RELOAD];
}
int r;
assert(u);
assert(f);
if (s->control_pid > 0)
if (s->main_pid_known && s->main_pid > 0)
if (r < 0)
return r;
/* FIXME: There's a minor uncleanliness here: if there are
* multiple commands attached here, we will start from the
* first one again */
if (s->control_command_id >= 0)
unit_serialize_item(u, f, "control-command", service_exec_command_to_string(s->control_command_id));
if (r < 0)
return r;
if (r < 0)
return r;
if (r < 0)
return r;
if (r < 0)
return r;
if (r < 0)
return r;
_cleanup_free_ char *c = NULL;
int copy;
if (copy < 0)
return copy;
}
if (s->main_exec_status.pid > 0) {
}
}
if (dual_timestamp_is_set(&s->watchdog_timestamp))
return 0;
}
int r;
assert(u);
if (state < 0)
else
s->deserialized_state = state;
if (f < 0)
else if (f != SERVICE_SUCCESS)
s->result = f;
if (f < 0)
else if (f != SERVICE_SUCCESS)
s->reload_result = f;
else
s->control_pid = pid;
else {
service_set_main_pid(s, pid);
}
int b;
b = parse_boolean(value);
if (b < 0)
else
s->main_pid_known = b;
int b;
b = parse_boolean(value);
if (b < 0)
else
s->bus_name_good = b;
if (r < 0)
char *t;
if (r < 0)
else {
free(s->status_text);
s->status_text = t;
}
if (id < 0)
else {
s->control_command_id = id;
}
int fd;
else {
}
int fd;
else {
}
const char *fdv;
int fd;
else {
_cleanup_free_ char *t = NULL;
const char *fdn;
r = service_add_fd_store(s, fd, t);
if (r < 0)
log_unit_error_errno(u, r, "Failed to add fd to store: %m");
else if (r > 0)
}
else
int i;
else
s->main_exec_status.code = i;
int i;
else
s->main_exec_status.status = i;
int b;
b = parse_boolean(value);
if (b < 0)
else
s->forbid_restart = b;
int fd;
else {
s->exec_context.stdio_as_fds = true;
}
int fd;
else {
s->exec_context.stdio_as_fds = true;
}
int fd;
else {
s->exec_context.stdio_as_fds = true;
}
} else
return 0;
}
const UnitActiveState *table;
assert(u);
}
static const char *service_sub_state_to_string(Unit *u) {
assert(u);
}
static bool service_check_gc(Unit *u) {
assert(s);
/* Never clean up services that still have a process around,
* even if the service is formally dead. */
if (cgroup_good(s) > 0 ||
main_pid_good(s) > 0 ||
control_pid_good(s) > 0)
return true;
return false;
}
static int service_retry_pid_file(Service *s) {
int r;
r = service_load_pid_file(s, false);
if (r < 0)
return r;
return 0;
}
static int service_watch_pid_file(Service *s) {
int r;
if (r < 0)
goto fail;
/* the pidfile might have appeared just before we set the watch */
log_unit_debug(UNIT(s), "Trying to read PID file %s in case it changed", s->pid_file_pathspec->path);
return 0;
fail:
log_unit_error_errno(UNIT(s), r, "Failed to set a watch for PID file %s: %m", s->pid_file_pathspec->path);
return r;
}
static int service_demand_pid_file(Service *s) {
assert(!s->pid_file_pathspec);
if (!ps)
return -ENOMEM;
return -ENOMEM;
}
/* PATH_CHANGED would not be enough. There are daemons (sendmail) that
* keep their PID file open all the time. */
s->pid_file_pathspec = ps;
return service_watch_pid_file(s);
}
Service *s;
assert(p);
assert(s);
assert(s->pid_file_pathspec);
if (path_spec_fd_event(p, events) < 0)
goto fail;
if (service_retry_pid_file(s) == 0)
return 0;
if (service_watch_pid_file(s) < 0)
goto fail;
return 0;
fail:
return 0;
}
static void service_notify_cgroup_empty_event(Unit *u) {
assert(u);
log_unit_debug(u, "cgroup is empty");
switch (s->state) {
/* Waiting for SIGCHLD is usually more interesting,
* why we ignore the cgroup events for most cases,
* except when we don't know pid which to expect the
* SIGCHLD for. */
case SERVICE_START:
case SERVICE_START_POST:
/* If we were hoping for the daemon to write its PID file,
* we can give up now. */
if (s->pid_file_pathspec) {
log_unit_warning(u, "Daemon never wrote its PID file. Failing.");
if (s->state == SERVICE_START)
else
}
break;
case SERVICE_RUNNING:
/* service_enter_running() will figure out what to do */
break;
case SERVICE_STOP_SIGABRT:
case SERVICE_STOP_SIGTERM:
case SERVICE_STOP_SIGKILL:
if (main_pid_good(s) <= 0 && !control_pid_good(s))
break;
case SERVICE_STOP_POST:
case SERVICE_FINAL_SIGTERM:
case SERVICE_FINAL_SIGKILL:
if (main_pid_good(s) <= 0 && !control_pid_good(s))
service_enter_dead(s, SERVICE_SUCCESS, true);
break;
default:
;
}
}
assert(s);
f = SERVICE_SUCCESS;
else if (code == CLD_EXITED)
else if (code == CLD_KILLED)
else if (code == CLD_DUMPED)
else
assert_not_reached("Unknown code");
/* Forking services may occasionally move to a new PID.
* As long as they update the PID file before exiting the old
* PID, they're fine. */
if (service_load_pid_file(s, false) == 0)
return;
s->main_pid = 0;
if (s->main_command) {
/* If this is not a forking service than the
* main process got started and hence we copy
* the exit status so that it is recorded both
* as main and as control process exit
* status */
if (s->main_command->ignore)
f = SERVICE_SUCCESS;
} else if (s->exec_command[SERVICE_EXEC_START]) {
/* If this is a forked process, then we should
* ignore the return value if this was
* configured for the starter process */
f = SERVICE_SUCCESS;
}
LOG_UNIT_ID(u),
LOG_UNIT_MESSAGE(u, "Main process exited, code=%s, status=%i/%s",
: signal_to_string(status))),
"EXIT_STATUS=%i", status,
NULL);
if (f != SERVICE_SUCCESS)
s->result = f;
if (s->main_command &&
s->main_command->command_next &&
f == SERVICE_SUCCESS) {
/* There is another command to *
* execute, so let's do that. */
} else {
/* The service exited, so the service is officially
* gone. */
s->main_command = NULL;
switch (s->state) {
case SERVICE_START_POST:
case SERVICE_RELOAD:
case SERVICE_STOP:
/* Need to wait until the operation is
* done */
break;
case SERVICE_START:
if (s->type == SERVICE_ONESHOT) {
/* This was our main goal, so let's go on */
if (f == SERVICE_SUCCESS)
else
break;
}
/* Fall through */
case SERVICE_RUNNING:
service_enter_running(s, f);
break;
case SERVICE_STOP_SIGABRT:
case SERVICE_STOP_SIGTERM:
case SERVICE_STOP_SIGKILL:
if (!control_pid_good(s))
service_enter_stop_post(s, f);
/* If there is still a control process, wait for that first */
break;
case SERVICE_STOP_POST:
case SERVICE_FINAL_SIGTERM:
case SERVICE_FINAL_SIGKILL:
if (!control_pid_good(s))
service_enter_dead(s, f, true);
break;
default:
assert_not_reached("Uh, main process died at wrong time.");
}
}
} else if (s->control_pid == pid) {
s->control_pid = 0;
if (s->control_command) {
if (s->control_command->ignore)
f = SERVICE_SUCCESS;
}
"Control process exited, code=%s status=%i",
if (f != SERVICE_SUCCESS)
s->result = f;
/* Immediately get rid of the cgroup, so that the
* kernel doesn't delay the cgroup empty messages for
* the service cgroup any longer than necessary */
if (s->control_command &&
s->control_command->command_next &&
f == SERVICE_SUCCESS) {
/* There is another command to *
* execute, so let's do that. */
} else {
/* No further commands for this step, so let's
* figure out what to do next */
s->control_command = NULL;
switch (s->state) {
case SERVICE_START_PRE:
if (f == SERVICE_SUCCESS)
else
break;
case SERVICE_START:
if (s->type != SERVICE_FORKING)
/* Maybe spurious event due to a reload that changed the type? */
break;
if (f != SERVICE_SUCCESS) {
break;
}
if (s->pid_file) {
bool has_start_post;
int r;
/* Let's try to load the pid file here if we can.
* The PID file might actually be created by a START_POST
* script. In that case don't worry if the loading fails. */
r = service_load_pid_file(s, !has_start_post);
if (!has_start_post && r < 0) {
r = service_demand_pid_file(s);
if (r < 0 || !cgroup_good(s))
break;
}
} else
(void) service_search_main_pid(s);
break;
case SERVICE_START_POST:
if (f != SERVICE_SUCCESS) {
break;
}
if (s->pid_file) {
int r;
r = service_load_pid_file(s, true);
if (r < 0) {
r = service_demand_pid_file(s);
if (r < 0 || !cgroup_good(s))
break;
}
} else
(void) service_search_main_pid(s);
break;
case SERVICE_RELOAD:
if (f == SERVICE_SUCCESS) {
service_load_pid_file(s, true);
(void) service_search_main_pid(s);
}
s->reload_result = f;
break;
case SERVICE_STOP:
break;
case SERVICE_STOP_SIGABRT:
case SERVICE_STOP_SIGTERM:
case SERVICE_STOP_SIGKILL:
if (main_pid_good(s) <= 0)
service_enter_stop_post(s, f);
/* If there is still a service
* process around, wait until
* that one quit, too */
break;
case SERVICE_STOP_POST:
case SERVICE_FINAL_SIGTERM:
case SERVICE_FINAL_SIGKILL:
if (main_pid_good(s) <= 0)
service_enter_dead(s, f, true);
break;
default:
assert_not_reached("Uh, control process died at wrong time.");
}
}
}
/* Notify clients about changed exit status */
/* We got one SIGCHLD for the service, let's watch all
* processes that are now running of the service, and watch
* that. Among the PIDs we then watch will be children
* reassigned to us, which hopefully allows us to identify
* when all children are gone */
/* If the PID set is empty now, then let's finish this off */
if (set_isempty(u->pids))
}
assert(s);
switch (s->state) {
case SERVICE_START_PRE:
case SERVICE_START:
log_unit_warning(UNIT(s), "%s operation timed out. Terminating.", s->state == SERVICE_START ? "Start" : "Start-pre");
break;
case SERVICE_START_POST:
break;
case SERVICE_RUNNING:
break;
case SERVICE_RELOAD:
break;
case SERVICE_STOP:
break;
case SERVICE_STOP_SIGABRT:
break;
case SERVICE_STOP_SIGTERM:
if (s->kill_context.send_sigkill) {
} else {
}
break;
case SERVICE_STOP_SIGKILL:
/* Uh, we sent a SIGKILL and it is still not gone?
* Must be something we cannot kill, so let's just be
* weirded out and continue */
break;
case SERVICE_STOP_POST:
break;
case SERVICE_FINAL_SIGTERM:
if (s->kill_context.send_sigkill) {
} else {
log_unit_warning(UNIT(s), "State 'stop-final-sigterm' timed out. Skipping SIGKILL. Entering failed mode.");
service_enter_dead(s, SERVICE_FAILURE_TIMEOUT, false);
}
break;
case SERVICE_FINAL_SIGKILL:
service_enter_dead(s, SERVICE_FAILURE_TIMEOUT, true);
break;
case SERVICE_AUTO_RESTART:
log_unit_info(UNIT(s),
s->restart_usec > 0 ?
"Service hold-off time over, scheduling restart." :
"Service has no hold-off time, scheduling restart.");
break;
default:
assert_not_reached("Timeout at wrong time.");
}
return 0;
}
char t[FORMAT_TIMESPAN_MAX];
assert(s);
return 0;
}
bool notify_dbus = false;
const char *e;
assert(u);
if (s->notify_access == NOTIFY_NONE) {
log_unit_warning(u, "Got notification message from PID "PID_FMT", but reception is disabled.", pid);
return;
if (s->main_pid != 0)
log_unit_warning(u, "Got notification message from PID "PID_FMT", but reception only permitted for main PID "PID_FMT, pid, s->main_pid);
else
log_unit_debug(u, "Got notification message from PID "PID_FMT", but reception only permitted for main PID which is currently not known", pid);
return;
} else
log_unit_debug(u, "Got notification message from PID "PID_FMT" (%s)", pid, isempty(cc) ? "n/a" : cc);
/* Interpret MAINPID= */
log_unit_warning(u, "Failed to parse MAINPID= field in notification message: %s", e);
else {
service_set_main_pid(s, pid);
notify_dbus = true;
}
}
/* Interpret RELOADING= */
s->notify_state = NOTIFY_RELOADING;
if (s->state == SERVICE_RUNNING)
notify_dbus = true;
}
/* Interpret READY= */
s->notify_state = NOTIFY_READY;
/* Type=notify services inform us about completed
* initialization with READY=1 */
/* Sending READY=1 while we are reloading informs us
* that the reloading is complete */
notify_dbus = true;
}
/* Interpret STOPPING= */
s->notify_state = NOTIFY_STOPPING;
if (s->state == SERVICE_RUNNING)
notify_dbus = true;
}
/* Interpret STATUS= */
if (e) {
_cleanup_free_ char *t = NULL;
if (!isempty(e)) {
if (!utf8_is_valid(e))
log_unit_warning(u, "Status message in notification message is not UTF-8 clean.");
else {
t = strdup(e);
if (!t)
log_oom();
}
}
if (!streq_ptr(s->status_text, t)) {
free(s->status_text);
s->status_text = t;
t = NULL;
notify_dbus = true;
}
}
/* Interpret ERRNO= */
if (e) {
int status_errno;
log_unit_warning(u, "Failed to parse ERRNO= field in notification message: %s", e);
else {
if (s->status_errno != status_errno) {
s->status_errno = status_errno;
notify_dbus = true;
}
}
}
/* Interpret WATCHDOG= */
const char *name;
log_unit_warning(u, "Passed FDNAME= name is invalid, ignoring.");
}
}
/* Notify clients about changed status or main pid */
if (notify_dbus)
}
int r;
if (!s->timer_event_source)
return 0;
if (r < 0)
return r;
return 1;
}
static void service_bus_name_owner_change(
Unit *u,
const char *name,
const char *old_owner,
const char *new_owner) {
int r;
assert(s);
else if (old_owner)
else
s->bus_name_good = !!new_owner;
/* Track the current owner, so we can reconstruct changes after a daemon reload */
if (r < 0) {
return;
}
if (s->type == SERVICE_DBUS) {
/* service_enter_running() will figure out what to
* do */
if (s->state == SERVICE_RUNNING)
} else if (new_owner &&
s->main_pid <= 0 &&
(s->state == SERVICE_START ||
s->state == SERVICE_START_POST ||
s->state == SERVICE_RUNNING ||
s->state == SERVICE_RELOAD)) {
/* Try to acquire PID from bus service */
if (r >= 0)
if (r >= 0) {
service_set_main_pid(s, pid);
}
}
}
int r;
assert(s);
/* This is called by the socket code when instantiating a new
* service for a stream socket and the socket needs to be
* configured. */
return -EINVAL;
if (s->socket_fd >= 0)
return -EBUSY;
if (s->state != SERVICE_DEAD)
return -EAGAIN;
if (UNIT(s)->description) {
_cleanup_free_ char *a;
if (!a)
return -ENOMEM;
r = unit_set_description(UNIT(s), a);
} else
if (r < 0)
return r;
}
}
static void service_reset_failed(Unit *u) {
assert(s);
if (s->state == SERVICE_FAILED)
s->result = SERVICE_SUCCESS;
s->reload_result = SERVICE_SUCCESS;
}
}
static const char* const service_restart_table[_SERVICE_RESTART_MAX] = {
[SERVICE_RESTART_NO] = "no",
[SERVICE_RESTART_ON_SUCCESS] = "on-success",
[SERVICE_RESTART_ON_FAILURE] = "on-failure",
[SERVICE_RESTART_ON_ABNORMAL] = "on-abnormal",
[SERVICE_RESTART_ON_WATCHDOG] = "on-watchdog",
[SERVICE_RESTART_ON_ABORT] = "on-abort",
[SERVICE_RESTART_ALWAYS] = "always",
};
static const char* const service_type_table[_SERVICE_TYPE_MAX] = {
[SERVICE_SIMPLE] = "simple",
[SERVICE_FORKING] = "forking",
[SERVICE_ONESHOT] = "oneshot",
[SERVICE_DBUS] = "dbus",
[SERVICE_NOTIFY] = "notify",
[SERVICE_IDLE] = "idle"
};
static const char* const service_exec_command_table[_SERVICE_EXEC_COMMAND_MAX] = {
[SERVICE_EXEC_START_PRE] = "ExecStartPre",
[SERVICE_EXEC_START] = "ExecStart",
[SERVICE_EXEC_START_POST] = "ExecStartPost",
[SERVICE_EXEC_RELOAD] = "ExecReload",
[SERVICE_EXEC_STOP] = "ExecStop",
[SERVICE_EXEC_STOP_POST] = "ExecStopPost",
};
static const char* const notify_access_table[_NOTIFY_ACCESS_MAX] = {
[NOTIFY_NONE] = "none",
[NOTIFY_MAIN] = "main",
[NOTIFY_ALL] = "all"
};
static const char* const notify_state_table[_NOTIFY_STATE_MAX] = {
[NOTIFY_UNKNOWN] = "unknown",
[NOTIFY_READY] = "ready",
[NOTIFY_RELOADING] = "reloading",
[NOTIFY_STOPPING] = "stopping",
};
static const char* const service_result_table[_SERVICE_RESULT_MAX] = {
[SERVICE_SUCCESS] = "success",
[SERVICE_FAILURE_RESOURCES] = "resources",
[SERVICE_FAILURE_TIMEOUT] = "timeout",
[SERVICE_FAILURE_EXIT_CODE] = "exit-code",
[SERVICE_FAILURE_SIGNAL] = "signal",
[SERVICE_FAILURE_CORE_DUMP] = "core-dump",
[SERVICE_FAILURE_WATCHDOG] = "watchdog",
[SERVICE_FAILURE_START_LIMIT] = "start-limit"
};
const UnitVTable service_vtable = {
.object_size = sizeof(Service),
.sections =
"Unit\0"
"Service\0"
"Install\0",
.private_section = "Service",
.init = service_init,
.done = service_done,
.load = service_load,
.dump = service_dump,
.start = service_start,
.stop = service_stop,
.reload = service_reload,
.kill = service_kill,
.can_transient = true,
.starting_stopping = {
[0] = "Starting %s...",
[1] = "Stopping %s...",
},
.finished_start_job = {
[JOB_DONE] = "Started %s.",
[JOB_FAILED] = "Failed to start %s.",
},
.finished_stop_job = {
[JOB_DONE] = "Stopped %s.",
[JOB_FAILED] = "Stopped (with error) %s.",
},
},
};