util.c revision ebd2db737485d334cd54316e05f848f3ccfd2fee
/*
Authors:
Simo Sorce <ssorce@redhat.com>
Copyright (C) 2009 Red Hat
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <ctype.h>
#include <netdb.h>
#include <poll.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <talloc.h>
#include <dhash.h>
#include "util/util.h"
#include "util/sss_utf8.h"
int split_on_separator(TALLOC_CTX *mem_ctx, const char *str,
const char sep, bool trim, bool skip_empty,
char ***_list, int *size)
{
int ret;
const char *substr_end = str;
const char *substr_begin = str;
const char *sep_pos = NULL;
size_t substr_len;
char **list = NULL;
int num_strings = 0;
TALLOC_CTX *tmp_ctx = NULL;
if (str == NULL || *str == '\0' || _list == NULL) {
return EINVAL;
}
tmp_ctx = talloc_new(NULL);
if (tmp_ctx == NULL) {
return ENOMEM;
}
do {
substr_len = 0;
/* If this is not the first substring, then move from the separator. */
if (sep_pos != NULL) {
substr_end = sep_pos + 1;
substr_begin = sep_pos + 1;
}
/* Find end of the first substring */
while (*substr_end != sep && *substr_end != '\0') {
substr_end++;
substr_len++;
}
sep_pos = substr_end;
if (trim) {
/* Trim leading whitespace */
while (isspace(*substr_begin) && substr_begin < substr_end) {
substr_begin++;
substr_len--;
}
/* Trim trailing whitespace */
while (substr_end - 1 > substr_begin && isspace(*(substr_end-1))) {
substr_end--;
substr_len--;
}
}
/* Copy the substring to the output list of strings */
if (skip_empty == false || substr_len > 0) {
list = talloc_realloc(tmp_ctx, list, char*, num_strings + 2);
if (list == NULL) {
ret = ENOMEM;
goto done;
}
/* empty string is stored for substr_len == 0 */
list[num_strings] = talloc_strndup(list, substr_begin, substr_len);
if (list[num_strings] == NULL) {
ret = ENOMEM;
goto done;
}
num_strings++;
}
} while (*sep_pos != '\0');
if (list == NULL) {
/* No allocations were done, make space for the NULL */
list = talloc(tmp_ctx, char *);
if (list == NULL) {
ret = ENOMEM;
goto done;
}
}
list[num_strings] = NULL;
if (size) {
*size = num_strings;
}
*_list = talloc_steal(mem_ctx, list);
ret = EOK;
done:
talloc_free(tmp_ctx);
return ret;
}
static void free_args(char **args)
{
int i;
if (args) {
for (i = 0; args[i]; i++) free(args[i]);
free(args);
}
}
/* parse a string into arguments.
* arguments are separated by a space
* '\' is an escape character and can be used only to escape
* itself or the white space.
*/
char **parse_args(const char *str)
{
const char *p;
char **ret, **r;
char *tmp;
int num;
int i;
bool e, w;
tmp = malloc(strlen(str) + 1);
if (!tmp) return NULL;
ret = NULL;
num = 0;
i = 0;
e = false;
w = false;
p = str;
while (*p) {
if (*p == '\\') {
w = false;
if (e) {
/* if we were already escaping, add a '\' literal */
tmp[i] = '\\';
i++;
e = false;
} else {
/* otherwise just start escaping */
e = true;
}
} else if (isspace(*p)) {
if (e) {
/* Add escaped whitespace literally */
tmp[i] = *p;
i++;
e = false;
} else if (w == false) {
/* If previous character was non-whitespace, arg break */
tmp[i] = '\0';
i++;
w = true;
}
/* previous char was whitespace as well, skip it */
} else {
w = false;
if (e) {
/* Prepend escaped chars with a literal \ */
tmp[i] = '\\';
i++;
e = false;
}
/* Copy character from the source string */
tmp[i] = *p;
i++;
}
p++;
/* check if this was the last char */
if (*p == '\0') {
if (e) {
tmp[i] = '\\';
i++;
e = false;
}
tmp[i] = '\0';
i++;
}
if (tmp[i-1] != '\0' || strlen(tmp) == 0) {
/* check next char and skip multiple spaces */
continue;
}
r = realloc(ret, (num + 2) * sizeof(char *));
if (!r) goto fail;
ret = r;
ret[num+1] = NULL;
ret[num] = strdup(tmp);
if (!ret[num]) goto fail;
num++;
i = 0;
}
free(tmp);
return ret;
fail:
free(tmp);
free_args(ret);
return NULL;
}
char **dup_string_list(TALLOC_CTX *memctx, const char **str_list)
{
int i = 0;
int j = 0;
char **dup_list;
if (!str_list) {
return NULL;
}
/* Find the size of the list */
while (str_list[i]) i++;
dup_list = talloc_array(memctx, char *, i+1);
if (!dup_list) {
return NULL;
}
/* Copy the elements */
for (j = 0; j < i; j++) {
dup_list[j] = talloc_strdup(dup_list, str_list[j]);
if (!dup_list[j]) {
talloc_free(dup_list);
return NULL;
}
}
/* NULL-terminate the list */
dup_list[i] = NULL;
return dup_list;
}
/* Take two string lists (terminated on a NULL char*)
* and return up to three arrays of strings based on
* shared ownership.
*
* Pass NULL to any return type you don't care about
*/
errno_t diff_string_lists(TALLOC_CTX *memctx,
char **_list1,
char **_list2,
char ***_list1_only,
char ***_list2_only,
char ***_both_lists)
{
int error;
errno_t ret;
int i;
int i2 = 0;
int i12 = 0;
hash_table_t *table;
hash_key_t key;
hash_value_t value;
char **list1 = NULL;
char **list2 = NULL;
char **list1_only = NULL;
char **list2_only = NULL;
char **both_lists = NULL;
unsigned long count;
hash_key_t *keys;
TALLOC_CTX *tmp_ctx = talloc_new(memctx);
if (!tmp_ctx) {
return ENOMEM;
}
if (!_list1) {
list1 = talloc_array(tmp_ctx, char *, 1);
if (!list1) {
talloc_free(tmp_ctx);
return ENOMEM;
}
list1[0] = NULL;
}
else {
list1 = _list1;
}
if (!_list2) {
list2 = talloc_array(tmp_ctx, char *, 1);
if (!list2) {
talloc_free(tmp_ctx);
return ENOMEM;
}
list2[0] = NULL;
}
else {
list2 = _list2;
}
error = hash_create(10, &table, NULL, NULL);
if (error != HASH_SUCCESS) {
talloc_free(tmp_ctx);
return EIO;
}
key.type = HASH_KEY_STRING;
value.type = HASH_VALUE_UNDEF;
/* Add all entries from list 1 into a hash table */
i = 0;
while (list1[i]) {
key.str = talloc_strdup(tmp_ctx, list1[i]);
error = hash_enter(table, &key, &value);
if (error != HASH_SUCCESS) {
ret = EIO;
goto done;
}
i++;
}
/* Iterate through list 2 and remove matching items */
i = 0;
while (list2[i]) {
key.str = talloc_strdup(tmp_ctx, list2[i]);
error = hash_delete(table, &key);
if (error == HASH_SUCCESS) {
if (_both_lists) {
/* String was present in both lists */
i12++;
both_lists = talloc_realloc(tmp_ctx, both_lists, char *, i12+1);
if (!both_lists) {
ret = ENOMEM;
goto done;
}
both_lists[i12-1] = talloc_strdup(both_lists, list2[i]);
if (!both_lists[i12-1]) {
ret = ENOMEM;
goto done;
}
both_lists[i12] = NULL;
}
}
else if (error == HASH_ERROR_KEY_NOT_FOUND) {
if (_list2_only) {
/* String was present only in list2 */
i2++;
list2_only = talloc_realloc(tmp_ctx, list2_only,
char *, i2+1);
if (!list2_only) {
ret = ENOMEM;
goto done;
}
list2_only[i2-1] = talloc_strdup(list2_only, list2[i]);
if (!list2_only[i2-1]) {
ret = ENOMEM;
goto done;
}
list2_only[i2] = NULL;
}
}
else {
/* An error occurred */
ret = EIO;
goto done;
}
i++;
}
/* Get the leftover entries in the hash table */
if (_list1_only) {
error = hash_keys(table, &count, &keys);
if (error != HASH_SUCCESS) {
ret = EIO;
goto done;
}
list1_only = talloc_array(tmp_ctx, char *, count+1);
if (!list1_only) {
ret = ENOMEM;
goto done;
}
for (i = 0; i < count; i++) {
list1_only[i] = talloc_strdup(list1_only, keys[i].str);
if (!list1_only[i]) {
ret = ENOMEM;
goto done;
}
}
list1_only[count] = NULL;
free(keys);
*_list1_only = talloc_steal(memctx, list1_only);
}
if (_list2_only) {
if (list2_only) {
*_list2_only = talloc_steal(memctx, list2_only);
}
else {
*_list2_only = talloc_array(memctx, char *, 1);
if (!(*_list2_only)) {
ret = ENOMEM;
goto done;
}
*_list2_only[0] = NULL;
}
}
if (_both_lists) {
if (both_lists) {
*_both_lists = talloc_steal(memctx, both_lists);
}
else {
*_both_lists = talloc_array(memctx, char *, 1);
if (!(*_both_lists)) {
ret = ENOMEM;
goto done;
}
*_both_lists[0] = NULL;
}
}
ret = EOK;
done:
hash_destroy(table);
talloc_free(tmp_ctx);
return ret;
}
static void *hash_talloc(const size_t size, void *pvt)
{
return talloc_size(pvt, size);
}
static void hash_talloc_free(void *ptr, void *pvt)
{
talloc_free(ptr);
}
errno_t sss_hash_create_ex(TALLOC_CTX *mem_ctx,
unsigned long count,
hash_table_t **tbl,
unsigned int directory_bits,
unsigned int segment_bits,
unsigned long min_load_factor,
unsigned long max_load_factor,
hash_delete_callback *delete_callback,
void *delete_private_data)
{
errno_t ret;
hash_table_t *table;
int hret;
TALLOC_CTX *internal_ctx;
internal_ctx = talloc_new(NULL);
if (!internal_ctx) {
return ENOMEM;
}
hret = hash_create_ex(count, &table, directory_bits, segment_bits,
min_load_factor, max_load_factor,
hash_talloc, hash_talloc_free, internal_ctx,
delete_callback, delete_private_data);
switch (hret) {
case HASH_SUCCESS:
/* Steal the table pointer onto the mem_ctx,
* then make the internal_ctx a child of
* table.
*
* This way, we can clean up the values when
* we talloc_free() the table
*/
*tbl = talloc_steal(mem_ctx, table);
talloc_steal(table, internal_ctx);
return EOK;
case HASH_ERROR_NO_MEMORY:
ret = ENOMEM;
break;
default:
ret = EIO;
}
DEBUG(SSSDBG_FATAL_FAILURE, "Could not create hash table: [%d][%s]\n",
hret, hash_error_string(hret));
talloc_free(internal_ctx);
return ret;
}
errno_t sss_hash_create(TALLOC_CTX *mem_ctx, unsigned long count,
hash_table_t **tbl)
{
return sss_hash_create_ex(mem_ctx, count, tbl, 0, 0, 0, 0, NULL, NULL);
}
errno_t sss_filter_sanitize(TALLOC_CTX *mem_ctx,
const char *input,
char **sanitized)
{
char *output;
size_t i = 0;
size_t j = 0;
/* Assume the worst-case. We'll resize it later, once */
output = talloc_array(mem_ctx, char, strlen(input) * 3 + 1);
if (!output) {
return ENOMEM;
}
while (input[i]) {
switch(input[i]) {
case '\t':
output[j++] = '\\';
output[j++] = '0';
output[j++] = '9';
break;
case ' ':
output[j++] = '\\';
output[j++] = '2';
output[j++] = '0';
break;
case '*':
output[j++] = '\\';
output[j++] = '2';
output[j++] = 'a';
break;
case '(':
output[j++] = '\\';
output[j++] = '2';
output[j++] = '8';
break;
case ')':
output[j++] = '\\';
output[j++] = '2';
output[j++] = '9';
break;
case '\\':
output[j++] = '\\';
output[j++] = '5';
output[j++] = 'c';
break;
default:
output[j++] = input[i];
}
i++;
}
output[j] = '\0';
*sanitized = talloc_realloc(mem_ctx, output, char, j+1);
if (!*sanitized) {
talloc_free(output);
return ENOMEM;
}
return EOK;
}
char *
sss_escape_ip_address(TALLOC_CTX *mem_ctx, int family, const char *addr)
{
return family == AF_INET6 ? talloc_asprintf(mem_ctx, "[%s]", addr) :
talloc_strdup(mem_ctx, addr);
}
/* out->len includes terminating '\0' */
void to_sized_string(struct sized_string *out, const char *in)
{
out->str = in;
if (out->str) {
out->len = strlen(out->str) + 1;
} else {
out->len = 0;
}
}
/* This function only removes first and last
* character if the first character was '['.
*
* NOTE: This means, that ipv6addr must NOT be followed
* by port number.
*/
errno_t
remove_ipv6_brackets(char *ipv6addr)
{
size_t len;
if (ipv6addr && ipv6addr[0] == '[') {
len = strlen(ipv6addr);
if (len < 3) {
return EINVAL;
}
memmove(ipv6addr, &ipv6addr[1], len - 2);
ipv6addr[len -2] = '\0';
}
return EOK;
}
errno_t add_string_to_list(TALLOC_CTX *mem_ctx, const char *string,
char ***list_p)
{
size_t c;
char **old_list = NULL;
char **new_list = NULL;
if (string == NULL || list_p == NULL) {
DEBUG(SSSDBG_OP_FAILURE, "Missing string or list.\n");
return EINVAL;
}
old_list = *list_p;
if (old_list == NULL) {
/* If the input is a NULL list a new one is created with the new
* string and the terminating NULL element. */
c = 0;
new_list = talloc_array(mem_ctx, char *, 2);
} else {
for (c = 0; old_list[c] != NULL; c++);
/* Allocate one extra space for the new service and one for
* the terminating NULL
*/
new_list = talloc_realloc(mem_ctx, old_list, char *, c + 2);
}
if (new_list == NULL) {
DEBUG(SSSDBG_OP_FAILURE, "talloc_array/talloc_realloc failed.\n");
return ENOMEM;
}
new_list[c] = talloc_strdup(new_list, string);
if (new_list[c] == NULL) {
DEBUG(SSSDBG_OP_FAILURE, "talloc_strdup failed.\n");
talloc_free(new_list);
return ENOMEM;
}
new_list[c + 1] = NULL;
*list_p = new_list;
return EOK;
}
bool string_in_list(const char *string, char **list, bool case_sensitive)
{
size_t c;
int(*compare)(const char *s1, const char *s2);
if (string == NULL || list == NULL || *list == NULL) {
return false;
}
compare = case_sensitive ? strcmp : strcasecmp;
for (c = 0; list[c] != NULL; c++) {
if (compare(string, list[c]) == 0) {
return true;
}
}
return false;
}
void safezero(void *data, size_t size)
{
volatile uint8_t *p = data;
while (size--) {
*p++ = 0;
}
}
int domain_to_basedn(TALLOC_CTX *memctx, const char *domain, char **basedn)
{
const char *s;
char *dn;
char *p;
int l;
if (!domain || !basedn) {
return EINVAL;
}
s = domain;
dn = talloc_strdup(memctx, "dc=");
while ((p = strchr(s, '.'))) {
l = p - s;
dn = talloc_asprintf_append_buffer(dn, "%.*s,dc=", l, s);
if (!dn) {
return ENOMEM;
}
s = p + 1;
}
dn = talloc_strdup_append_buffer(dn, s);
if (!dn) {
return ENOMEM;
}
for (p=dn; *p; ++p) {
*p = tolower(*p);
}
*basedn = dn;
return EOK;
}
bool is_host_in_domain(const char *host, const char *domain)
{
int diff = strlen(host) - strlen(domain);
if (diff == 0 && strcmp(host, domain) == 0) {
return true;
}
if (diff > 0 && strcmp(host + diff, domain) == 0 && host[diff - 1] == '.') {
return true;
}
return false;
}
/* addr is in network order for both IPv4 and IPv6 versions */
bool check_ipv4_addr(struct in_addr *addr, uint8_t flags)
{
char straddr[INET_ADDRSTRLEN];
if (inet_ntop(AF_INET, addr, straddr, INET_ADDRSTRLEN) == NULL) {
DEBUG(SSSDBG_MINOR_FAILURE,
"inet_ntop failed, won't log IP addresses\n");
snprintf(straddr, INET_ADDRSTRLEN, "unknown");
}
if ((flags & SSS_NO_MULTICAST) && IN_MULTICAST(ntohl(addr->s_addr))) {
DEBUG(SSSDBG_FUNC_DATA, "Multicast IPv4 address %s\n", straddr);
return false;
} else if ((flags & SSS_NO_LOOPBACK)
&& inet_netof(*addr) == IN_LOOPBACKNET) {
DEBUG(SSSDBG_FUNC_DATA, "Loopback IPv4 address %s\n", straddr);
return false;
} else if ((flags & SSS_NO_LINKLOCAL)
&& (addr->s_addr & htonl(0xffff0000)) == htonl(0xa9fe0000)) {
/* 169.254.0.0/16 */
DEBUG(SSSDBG_FUNC_DATA, "Link-local IPv4 address %s\n", straddr);
return false;
} else if ((flags & SSS_NO_BROADCAST)
&& addr->s_addr == htonl(INADDR_BROADCAST)) {
DEBUG(SSSDBG_FUNC_DATA, "Broadcast IPv4 address %s\n", straddr);
return false;
}
return true;
}
bool check_ipv6_addr(struct in6_addr *addr, uint8_t flags)
{
char straddr[INET6_ADDRSTRLEN];
if (inet_ntop(AF_INET6, addr, straddr, INET6_ADDRSTRLEN) == NULL) {
DEBUG(SSSDBG_MINOR_FAILURE,
"inet_ntop failed, won't log IP addresses\n");
snprintf(straddr, INET6_ADDRSTRLEN, "unknown");
}
if ((flags & SSS_NO_LINKLOCAL) && IN6_IS_ADDR_LINKLOCAL(addr)) {
DEBUG(SSSDBG_FUNC_DATA, "Link local IPv6 address %s\n", straddr);
return false;
} else if ((flags & SSS_NO_LOOPBACK) && IN6_IS_ADDR_LOOPBACK(addr)) {
DEBUG(SSSDBG_FUNC_DATA, "Loopback IPv6 address %s\n", straddr);
return false;
} else if ((flags & SSS_NO_MULTICAST) && IN6_IS_ADDR_MULTICAST(addr)) {
DEBUG(SSSDBG_FUNC_DATA, "Multicast IPv6 address %s\n", straddr);
return false;
}
return true;
}
const char * const * get_known_services(void)
{
static const char *svc[] = {"nss", "pam", "sudo", "autofs",
"ssh", "pac", "ifp", NULL };
return svc;
}