1450N/A/*
1450N/A * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
1450N/A */
1450N/A
1450N/A/*
1450N/A * Copyright (c) 2008-2010, 2013, Intel Corporation
1450N/A *
1450N/A * Permission is hereby granted, free of charge, to any person obtaining a
1450N/A * copy of this software and associated documentation files (the "Software"),
1450N/A * to deal in the Software without restriction, including without limitation
1450N/A * the rights to use, copy, modify, merge, publish, distribute, sublicense,
1450N/A * and/or sell copies of the Software, and to permit persons to whom the
1450N/A * Software is furnished to do so, subject to the following conditions:
1450N/A *
1450N/A * The above copyright notice and this permission notice (including the next
1450N/A * paragraph) shall be included in all copies or substantial portions of the
1450N/A * Software.
1450N/A *
1450N/A * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
1450N/A * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
1450N/A * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
1450N/A * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
1450N/A * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
1450N/A * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
1450N/A * IN THE SOFTWARE.
1450N/A *
1450N/A * Authors:
1450N/A * Eric Anholt <eric@anholt.net>
1450N/A * Zou Nan hai <nanhai.zou@intel.com>
1450N/A * Xiang Hai hao<haihao.xiang@intel.com>
1450N/A *
1450N/A */
1450N/A
1450N/A#include "drmP.h"
1450N/A#include "drm.h"
1450N/A#include "i915_drv.h"
1450N/A#include "i915_drm.h"
1450N/A#include "intel_drv.h"
1450N/A
1450N/A/*
1450N/A * 965+ support PIPE_CONTROL commands, which provide finer grained control
1450N/A * over cache flushing.
1450N/A */
1450N/Astruct pipe_control {
1450N/A struct drm_i915_gem_object *obj;
1450N/A volatile u32 *cpu_page;
1450N/A u32 gtt_offset;
1450N/A};
1450N/A
1450N/Astatic inline int ring_space(struct intel_ring_buffer *ring)
1450N/A{
1450N/A int space = (ring->head & HEAD_ADDR) - (ring->tail + I915_RING_FREE_SPACE);
1450N/A if (space < 0)
1450N/A space += ring->size;
1450N/A return space;
1450N/A}
1450N/A
1450N/Astatic int
1450N/Agen2_render_ring_flush(struct intel_ring_buffer *ring,
1450N/A u32 invalidate_domains,
1450N/A u32 flush_domains)
1450N/A{
1450N/A u32 cmd;
1450N/A int ret;
1450N/A
1450N/A cmd = MI_FLUSH;
1450N/A if (((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER) == 0)
1450N/A cmd |= MI_NO_WRITE_FLUSH;
1450N/A
1450N/A if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1450N/A cmd |= MI_READ_FLUSH;
1450N/A
1450N/A ret = intel_ring_begin(ring, 2);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A intel_ring_emit(ring, cmd);
1450N/A intel_ring_emit(ring, MI_NOOP);
1450N/A intel_ring_advance(ring);
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/Astatic int
1450N/Agen4_render_ring_flush(struct intel_ring_buffer *ring,
1450N/A u32 invalidate_domains,
1450N/A u32 flush_domains)
1450N/A{
1450N/A struct drm_device *dev = ring->dev;
1450N/A u32 cmd;
1450N/A int ret;
1450N/A
1450N/A /*
1450N/A * read/write caches:
1450N/A *
1450N/A * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1450N/A * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1450N/A * also flushed at 2d versus 3d pipeline switches.
1450N/A *
1450N/A * read-only caches:
1450N/A *
1450N/A * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1450N/A * MI_READ_FLUSH is set, and is always flushed on 965.
1450N/A *
1450N/A * I915_GEM_DOMAIN_COMMAND may not exist?
1450N/A *
1450N/A * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1450N/A * invalidated when MI_EXE_FLUSH is set.
1450N/A *
1450N/A * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1450N/A * invalidated with every MI_FLUSH.
1450N/A *
1450N/A * TLBs:
1450N/A *
1450N/A * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1450N/A * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1450N/A * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1450N/A * are flushed at any MI_FLUSH.
1450N/A */
1450N/A
1450N/A cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1450N/A if ((invalidate_domains|flush_domains) & I915_GEM_DOMAIN_RENDER)
1450N/A cmd &= ~MI_NO_WRITE_FLUSH;
1450N/A if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1450N/A cmd |= MI_EXE_FLUSH;
1450N/A
1450N/A if (invalidate_domains & I915_GEM_DOMAIN_COMMAND &&
1450N/A (IS_GEN4(dev) || IS_GEN5(dev)))
1450N/A cmd |= MI_INVALIDATE_ISP;
1450N/A
1450N/A ret = intel_ring_begin(ring, 2);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A intel_ring_emit(ring, cmd);
1450N/A intel_ring_emit(ring, MI_NOOP);
1450N/A intel_ring_advance(ring);
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/A/**
1450N/A * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
1450N/A * implementing two workarounds on gen6. From section 1.4.7.1
1450N/A * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
1450N/A *
1450N/A * [DevSNB-C+{W/A}] Before any depth stall flush (including those
1450N/A * produced by non-pipelined state commands), software needs to first
1450N/A * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
1450N/A * 0.
1450N/A *
1450N/A * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
1450N/A * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
1450N/A *
1450N/A * And the workaround for these two requires this workaround first:
1450N/A *
1450N/A * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
1450N/A * BEFORE the pipe-control with a post-sync op and no write-cache
1450N/A * flushes.
1450N/A *
1450N/A * And this last workaround is tricky because of the requirements on
1450N/A * that bit. From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
1450N/A * volume 2 part 1:
1450N/A *
1450N/A * "1 of the following must also be set:
1450N/A * - Render Target Cache Flush Enable ([12] of DW1)
1450N/A * - Depth Cache Flush Enable ([0] of DW1)
1450N/A * - Stall at Pixel Scoreboard ([1] of DW1)
1450N/A * - Depth Stall ([13] of DW1)
1450N/A * - Post-Sync Operation ([13] of DW1)
1450N/A * - Notify Enable ([8] of DW1)"
1450N/A *
1450N/A * The cache flushes require the workaround flush that triggered this
1450N/A * one, so we can't use it. Depth stall would trigger the same.
1450N/A * Post-sync nonzero is what triggered this second workaround, so we
1450N/A * can't use that one either. Notify enable is IRQs, which aren't
1450N/A * really our business. That leaves only stall at scoreboard.
1450N/A */
1450N/Astatic int
1450N/Aintel_emit_post_sync_nonzero_flush(struct intel_ring_buffer *ring)
1450N/A{
1450N/A struct pipe_control *pc = ring->private;
1450N/A u32 scratch_addr = pc->gtt_offset + 128;
1450N/A int ret;
1450N/A
1450N/A
1450N/A ret = intel_ring_begin(ring, 6);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
1450N/A intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
1450N/A PIPE_CONTROL_STALL_AT_SCOREBOARD);
1450N/A intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
1450N/A intel_ring_emit(ring, 0); /* low dword */
1450N/A intel_ring_emit(ring, 0); /* high dword */
1450N/A intel_ring_emit(ring, MI_NOOP);
1450N/A intel_ring_advance(ring);
1450N/A
1450N/A ret = intel_ring_begin(ring, 6);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(5));
1450N/A intel_ring_emit(ring, PIPE_CONTROL_QW_WRITE);
1450N/A intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT); /* address */
1450N/A intel_ring_emit(ring, 0);
1450N/A intel_ring_emit(ring, 0);
1450N/A intel_ring_emit(ring, MI_NOOP);
1450N/A intel_ring_advance(ring);
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/Astatic int
1450N/Agen6_render_ring_flush(struct intel_ring_buffer *ring,
1450N/A u32 invalidate_domains, u32 flush_domains)
1450N/A{
1450N/A u32 flags = 0;
1450N/A struct pipe_control *pc = ring->private;
1450N/A u32 scratch_addr = pc->gtt_offset + 128;
1450N/A int ret;
1450N/A
1450N/A /* Force SNB workarounds for PIPE_CONTROL flushes */
1450N/A ret = intel_emit_post_sync_nonzero_flush(ring);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A /* Just flush everything. Experiments have shown that reducing the
1450N/A * number of bits based on the write domains has little performance
1450N/A * impact.
1450N/A */
1450N/A if (flush_domains) {
1450N/A flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1450N/A flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1450N/A /*
1450N/A * Ensure that any following seqno writes only happen
1450N/A * when the render cache is indeed flushed.
1450N/A */
1450N/A flags |= PIPE_CONTROL_CS_STALL;
1450N/A }
1450N/A if (invalidate_domains) {
1450N/A flags |= PIPE_CONTROL_TLB_INVALIDATE;
1450N/A flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1450N/A flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1450N/A flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1450N/A flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1450N/A flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1450N/A /*
1450N/A * TLB invalidate requires a post-sync write.
1450N/A */
1450N/A flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
1450N/A }
1450N/A
1450N/A ret = intel_ring_begin(ring, 4);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
1450N/A intel_ring_emit(ring, flags);
1450N/A intel_ring_emit(ring, scratch_addr | PIPE_CONTROL_GLOBAL_GTT);
1450N/A intel_ring_emit(ring, 0); /* lower dword */
1450N/A intel_ring_advance(ring);
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/Astatic int
1450N/Agen7_render_ring_cs_stall_wa(struct intel_ring_buffer *ring)
1450N/A{
1450N/A int ret;
1450N/A
1450N/A ret = intel_ring_begin(ring, 4);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
1450N/A intel_ring_emit(ring, PIPE_CONTROL_CS_STALL |
1450N/A PIPE_CONTROL_STALL_AT_SCOREBOARD);
1450N/A intel_ring_emit(ring, 0);
1450N/A intel_ring_emit(ring, 0);
1450N/A intel_ring_advance(ring);
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/Astatic int gen7_ring_fbc_flush(struct intel_ring_buffer *ring, u32 value)
1450N/A{
1450N/A int ret;
1450N/A
1450N/A if (!ring->fbc_dirty)
1450N/A return 0;
1450N/A
1450N/A ret = intel_ring_begin(ring, 4);
1450N/A if (ret)
1450N/A return ret;
1450N/A intel_ring_emit(ring, MI_NOOP);
1450N/A /* WaFbcNukeOn3DBlt:ivb/hsw */
1450N/A intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1450N/A intel_ring_emit(ring, MSG_FBC_REND_STATE);
1450N/A intel_ring_emit(ring, value);
1450N/A intel_ring_advance(ring);
1450N/A
1450N/A ring->fbc_dirty = false;
1450N/A return 0;
1450N/A}
1450N/A
1450N/Astatic int
1450N/Agen7_render_ring_flush(struct intel_ring_buffer *ring,
1450N/A u32 invalidate_domains, u32 flush_domains)
1450N/A{
1450N/A u32 flags = 0;
1450N/A struct pipe_control *pc = ring->private;
1450N/A u32 scratch_addr = pc->gtt_offset + 128;
1450N/A int ret;
1450N/A
1450N/A /*
1450N/A * Ensure that any following seqno writes only happen when the render
1450N/A * cache is indeed flushed.
1450N/A *
1450N/A * Workaround: 4th PIPE_CONTROL command (except the ones with only
1450N/A * read-cache invalidate bits set) must have the CS_STALL bit set. We
1450N/A * don't try to be clever and just set it unconditionally.
1450N/A */
1450N/A flags |= PIPE_CONTROL_CS_STALL;
1450N/A
1450N/A /* Just flush everything. Experiments have shown that reducing the
1450N/A * number of bits based on the write domains has little performance
1450N/A * impact.
1450N/A */
1450N/A if (flush_domains) {
1450N/A flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1450N/A flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1450N/A }
1450N/A if (invalidate_domains) {
1450N/A flags |= PIPE_CONTROL_TLB_INVALIDATE;
1450N/A flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1450N/A flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1450N/A flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1450N/A flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1450N/A flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1450N/A /*
1450N/A * TLB invalidate requires a post-sync write.
1450N/A */
1450N/A flags |= PIPE_CONTROL_QW_WRITE;
1450N/A flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1450N/A
1450N/A /* Workaround: we must issue a pipe_control with CS-stall bit
1450N/A * set before a pipe_control command that has the state cache
1450N/A * invalidate bit set. */
1450N/A gen7_render_ring_cs_stall_wa(ring);
1450N/A }
1450N/A
1450N/A ret = intel_ring_begin(ring, 4);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4));
1450N/A intel_ring_emit(ring, flags);
1450N/A intel_ring_emit(ring, scratch_addr);
1450N/A intel_ring_emit(ring, 0);
1450N/A intel_ring_advance(ring);
1450N/A
1450N/A if (flush_domains)
1450N/A return gen7_ring_fbc_flush(ring, FBC_REND_NUKE);
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/Astatic void ring_write_tail(struct intel_ring_buffer *ring,
1450N/A u32 value)
1450N/A{
1450N/A drm_i915_private_t *dev_priv = ring->dev->dev_private;
1450N/A I915_WRITE_TAIL(ring, value);
1450N/A}
1450N/A
1450N/Au32 intel_ring_get_active_head(struct intel_ring_buffer *ring)
1450N/A{
1450N/A drm_i915_private_t *dev_priv = ring->dev->dev_private;
1450N/A u32 acthd_reg = INTEL_INFO(ring->dev)->gen >= 4 ?
1450N/A RING_ACTHD(ring->mmio_base) : ACTHD;
1450N/A
1450N/A return I915_READ(acthd_reg);
1450N/A}
1450N/A
1450N/Astatic void ring_setup_phys_status_page(struct intel_ring_buffer *ring)
1450N/A{
1450N/A struct drm_i915_private *dev_priv = ring->dev->dev_private;
1450N/A u32 addr;
1450N/A
1450N/A addr = dev_priv->status_page_dmah->paddr;
1450N/A if (INTEL_INFO(ring->dev)->gen >= 4)
1450N/A addr |= (dev_priv->status_page_dmah->paddr >> 28) & 0xf0;
1450N/A I915_WRITE(HWS_PGA, addr);
1450N/A}
1450N/A
1450N/Astatic int init_ring_common(struct intel_ring_buffer *ring)
1450N/A{
1450N/A struct drm_device *dev = ring->dev;
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A struct drm_i915_gem_object *obj = ring->obj;
1450N/A int ret = 0;
1450N/A u32 head;
1450N/A
1450N/A if (HAS_FORCE_WAKE(dev))
1450N/A gen6_gt_force_wake_get(dev_priv);
1450N/A
1450N/A if (I915_NEED_GFX_HWS(dev))
1450N/A intel_ring_setup_status_page(ring);
1450N/A else
1450N/A ring_setup_phys_status_page(ring);
1450N/A
1450N/A /* Stop the ring if it's running. */
1450N/A I915_WRITE_CTL(ring, 0);
1450N/A I915_WRITE_HEAD(ring, 0);
1450N/A ring->write_tail(ring, 0);
1450N/A
1450N/A head = I915_READ_HEAD(ring) & HEAD_ADDR;
1450N/A
1450N/A /* G45 ring initialization fails to reset head to zero */
1450N/A if (head != 0) {
1450N/A DRM_DEBUG_KMS("%s head not reset to zero "
1450N/A "ctl %08x head %08x tail %08x start %08x\n",
1450N/A ring->name,
1450N/A I915_READ_CTL(ring),
1450N/A I915_READ_HEAD(ring),
1450N/A I915_READ_TAIL(ring),
1450N/A I915_READ_START(ring));
1450N/A
1450N/A I915_WRITE_HEAD(ring, 0);
1450N/A
1450N/A if (I915_READ_HEAD(ring) & HEAD_ADDR) {
1450N/A DRM_ERROR("failed to set %s head to zero "
1450N/A "ctl %08x head %08x tail %08x start %08x\n",
1450N/A ring->name,
1450N/A I915_READ_CTL(ring),
1450N/A I915_READ_HEAD(ring),
1450N/A I915_READ_TAIL(ring),
1450N/A I915_READ_START(ring));
1450N/A }
1450N/A }
1450N/A
1450N/A /* Initialize the ring. This must happen _after_ we've cleared the ring
1450N/A * registers with the above sequence (the readback of the HEAD registers
1450N/A * also enforces ordering), otherwise the hw might lose the new ring
1450N/A * register values. */
1450N/A I915_WRITE_START(ring, obj->gtt_offset);
1450N/A I915_WRITE_CTL(ring,
1450N/A ((ring->size - PAGE_SIZE) & RING_NR_PAGES)
1450N/A | RING_VALID);
1450N/A
1450N/A /* If the head is still not zero, the ring is dead */
1450N/A if (wait_for((I915_READ_CTL(ring) & RING_VALID) != 0 &&
1450N/A I915_READ_START(ring) == obj->gtt_offset &&
1450N/A (I915_READ_HEAD(ring) & HEAD_ADDR) == 0, 50)) {
1450N/A DRM_ERROR("%s initialization failed "
1450N/A "ctl %08x head %08x tail %08x start %08x\n",
1450N/A ring->name,
1450N/A I915_READ_CTL(ring),
1450N/A I915_READ_HEAD(ring),
1450N/A I915_READ_TAIL(ring),
1450N/A I915_READ_START(ring));
1450N/A ret = -EIO;
1450N/A goto out;
1450N/A }
1450N/A
1450N/A if (!drm_core_check_feature(ring->dev, DRIVER_MODESET))
1450N/A i915_kernel_lost_context(ring->dev);
1450N/A else {
1450N/A ring->head = I915_READ_HEAD(ring);
1450N/A ring->tail = I915_READ_TAIL(ring) & TAIL_ADDR;
1450N/A ring->space = ring_space(ring);
1450N/A ring->last_retired_head = 0xffffffff;
1450N/A }
1450N/A
1450N/A (void)memset(&ring->hangcheck, 0, sizeof(ring->hangcheck));
1450N/A
1450N/Aout:
1450N/A if (HAS_FORCE_WAKE(dev))
1450N/A gen6_gt_force_wake_put(dev_priv);
1450N/A
1450N/A return ret;
1450N/A}
1450N/A
1450N/Astatic int
1450N/Ainit_pipe_control(struct intel_ring_buffer *ring)
1450N/A{
1450N/A struct pipe_control *pc;
1450N/A struct drm_i915_gem_object *obj;
1450N/A int ret;
1450N/A
1450N/A if (ring->private)
1450N/A return 0;
1450N/A
1450N/A pc = kmalloc(sizeof(*pc), GFP_KERNEL);
1450N/A if (!pc)
1450N/A return -ENOMEM;
1450N/A
1450N/A obj = i915_gem_alloc_object(ring->dev, 4096);
1450N/A if (obj == NULL) {
1450N/A DRM_ERROR("Failed to allocate seqno page\n");
1450N/A ret = -ENOMEM;
1450N/A goto err;
1450N/A }
1450N/A
1450N/A i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
1450N/A
1450N/A ret = i915_gem_object_pin(obj, 4096, true, false);
1450N/A if (ret)
1450N/A goto err_unref;
1450N/A
1450N/A pc->gtt_offset = obj->gtt_offset;
1450N/A /*LINTED E_BAD_PTR_CAST_ALIGN*/
1450N/A pc->cpu_page = (u32*) obj->page_list[0];
1450N/A if (pc->cpu_page == NULL)
1450N/A goto err_unpin;
1450N/A
1450N/A DRM_DEBUG_DRIVER("%s pipe control offset: 0x%08x\n",
1450N/A ring->name, pc->gtt_offset);
1450N/A
1450N/A pc->obj = obj;
1450N/A ring->private = pc;
1450N/A return 0;
1450N/A
1450N/Aerr_unpin:
1450N/A i915_gem_object_unpin(obj);
1450N/Aerr_unref:
1450N/A drm_gem_object_unreference(&obj->base);
1450N/Aerr:
1450N/A kfree(pc, sizeof(*pc));
1450N/A return ret;
1450N/A}
1450N/A
1450N/Astatic void
1450N/Acleanup_pipe_control(struct intel_ring_buffer *ring)
1450N/A{
1450N/A struct pipe_control *pc = ring->private;
1450N/A struct drm_i915_gem_object *obj;
1450N/A
1450N/A obj = pc->obj;
1450N/A i915_gem_object_unpin(obj);
1450N/A drm_gem_object_unreference(&obj->base);
1450N/A
1450N/A kfree(pc, sizeof(*pc));
1450N/A}
1450N/A
1450N/Astatic int init_render_ring(struct intel_ring_buffer *ring)
1450N/A{
1450N/A struct drm_device *dev = ring->dev;
1450N/A struct drm_i915_private *dev_priv = dev->dev_private;
1450N/A int ret = init_ring_common(ring);
1450N/A
1450N/A if (INTEL_INFO(dev)->gen > 3)
1450N/A I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
1450N/A
1450N/A /* We need to disable the AsyncFlip performance optimisations in order
1450N/A * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1450N/A * programmed to '1' on all products.
1450N/A *
1450N/A * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
1450N/A */
1450N/A if (INTEL_INFO(dev)->gen >= 6)
1450N/A I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1450N/A
1450N/A /* Required for the hardware to program scanline values for waiting */
1450N/A if (INTEL_INFO(dev)->gen == 6)
1450N/A I915_WRITE(GFX_MODE,
1450N/A _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_ALWAYS));
1450N/A
1450N/A if (IS_GEN7(dev))
1450N/A I915_WRITE(GFX_MODE_GEN7,
1450N/A _MASKED_BIT_DISABLE(GFX_TLB_INVALIDATE_ALWAYS) |
1450N/A _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
1450N/A
1450N/A if (INTEL_INFO(dev)->gen >= 5) {
1450N/A ret = init_pipe_control(ring);
1450N/A if (ret)
1450N/A return ret;
1450N/A }
1450N/A
1450N/A if (IS_GEN6(dev)) {
1450N/A /* From the Sandybridge PRM, volume 1 part 3, page 24:
1450N/A * "If this bit is set, STCunit will have LRA as replacement
1450N/A * policy. [...] This bit must be reset. LRA replacement
1450N/A * policy is not supported."
1450N/A */
1450N/A I915_WRITE(CACHE_MODE_0,
1450N/A _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
1450N/A
1450N/A /* This is not explicitly set for GEN6, so read the register.
1450N/A * see intel_ring_mi_set_context() for why we care.
1450N/A * TODO: consider explicitly setting the bit for GEN5
1450N/A */
1450N/A ring->itlb_before_ctx_switch =
1450N/A !!(I915_READ(GFX_MODE) & GFX_TLB_INVALIDATE_ALWAYS);
1450N/A }
1450N/A
1450N/A if (INTEL_INFO(dev)->gen >= 6)
1450N/A I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1450N/A
1450N/A if (HAS_L3_GPU_CACHE(dev))
1450N/A I915_WRITE_IMR(ring, ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1450N/A
1450N/A return ret;
1450N/A}
1450N/A
1450N/Astatic void render_ring_cleanup(struct intel_ring_buffer *ring)
1450N/A{
1450N/A struct drm_device *dev = ring->dev;
1450N/A
1450N/A if (!ring->private)
1450N/A return;
1450N/A
1450N/A if (HAS_BROKEN_CS_TLB(dev))
1450N/A drm_gem_object_unreference(to_gem_object(ring->private));
1450N/A
1450N/A if (INTEL_INFO(dev)->gen >= 5)
1450N/A cleanup_pipe_control(ring);
1450N/A
1450N/A ring->private = NULL;
1450N/A}
1450N/A
1450N/Astatic void
1450N/Aupdate_mboxes(struct intel_ring_buffer *ring,
1450N/A u32 mmio_offset)
1450N/A{
1450N/A/* NB: In order to be able to do semaphore MBOX updates for varying number
1450N/A * of rings, it's easiest if we round up each individual update to a
1450N/A * multiple of 2 (since ring updates must always be a multiple of 2)
1450N/A * even though the actual update only requires 3 dwords.
1450N/A */
1450N/A#define MBOX_UPDATE_DWORDS 4
1450N/A intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1450N/A intel_ring_emit(ring, mmio_offset);
1450N/A intel_ring_emit(ring, ring->outstanding_lazy_request);
1450N/A intel_ring_emit(ring, MI_NOOP);
1450N/A}
1450N/A
1450N/A/**
1450N/A * gen6_add_request - Update the semaphore mailbox registers
1450N/A *
1450N/A * @ring - ring that is adding a request
1450N/A * @seqno - return seqno stuck into the ring
1450N/A *
1450N/A * Update the mailbox registers in the *other* rings with the current seqno.
1450N/A * This acts like a signal in the canonical semaphore.
1450N/A */
1450N/Astatic int
1450N/Agen6_add_request(struct intel_ring_buffer *ring)
1450N/A{
1450N/A struct drm_device *dev = ring->dev;
1450N/A struct drm_i915_private *dev_priv = dev->dev_private;
1450N/A struct intel_ring_buffer *useless;
1450N/A int i, ret;
1450N/A
1450N/A ret = intel_ring_begin(ring, ((I915_NUM_RINGS-1) *
1450N/A MBOX_UPDATE_DWORDS) +
1450N/A 4);
1450N/A if (ret)
1450N/A return ret;
1450N/A#undef MBOX_UPDATE_DWORDS
1450N/A
1450N/A for_each_ring(useless, dev_priv, i) {
1450N/A u32 mbox_reg = ring->signal_mbox[i];
1450N/A if (mbox_reg != GEN6_NOSYNC)
1450N/A update_mboxes(ring, mbox_reg);
1450N/A }
1450N/A
1450N/A intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1450N/A intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1450N/A intel_ring_emit(ring, ring->outstanding_lazy_request);
1450N/A intel_ring_emit(ring, MI_USER_INTERRUPT);
1450N/A intel_ring_advance(ring);
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/Astatic inline bool i915_gem_has_seqno_wrapped(struct drm_device *dev,
1450N/A u32 seqno)
1450N/A{
1450N/A struct drm_i915_private *dev_priv = dev->dev_private;
1450N/A return dev_priv->last_seqno < seqno;
1450N/A}
1450N/A
1450N/A/**
1450N/A * intel_ring_sync - sync the waiter to the signaller on seqno
1450N/A *
1450N/A * @waiter - ring that is waiting
1450N/A * @signaller - ring which has, or will signal
1450N/A * @seqno - seqno which the waiter will block on
1450N/A */
1450N/Astatic int
1450N/Agen6_ring_sync(struct intel_ring_buffer *waiter,
1450N/A struct intel_ring_buffer *signaller,
1450N/A u32 seqno)
1450N/A{
1450N/A int ret;
1450N/A u32 dw1 = MI_SEMAPHORE_MBOX |
1450N/A MI_SEMAPHORE_COMPARE |
1450N/A MI_SEMAPHORE_REGISTER;
1450N/A
1450N/A /* Throughout all of the GEM code, seqno passed implies our current
1450N/A * seqno is >= the last seqno executed. However for hardware the
1450N/A * comparison is strictly greater than.
1450N/A */
1450N/A seqno -= 1;
1450N/A
1450N/A WARN_ON(signaller->semaphore_register[waiter->id] ==
1450N/A MI_SEMAPHORE_SYNC_INVALID);
1450N/A
1450N/A ret = intel_ring_begin(waiter, 4);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A /* If seqno wrap happened, omit the wait with no-ops */
1450N/A if (!i915_gem_has_seqno_wrapped(waiter->dev, seqno)) {
1450N/A intel_ring_emit(waiter,
1450N/A dw1 |
1450N/A signaller->semaphore_register[waiter->id]);
1450N/A intel_ring_emit(waiter, seqno);
1450N/A intel_ring_emit(waiter, 0);
1450N/A intel_ring_emit(waiter, MI_NOOP);
1450N/A } else {
1450N/A intel_ring_emit(waiter, MI_NOOP);
1450N/A intel_ring_emit(waiter, MI_NOOP);
1450N/A intel_ring_emit(waiter, MI_NOOP);
1450N/A intel_ring_emit(waiter, MI_NOOP);
1450N/A }
1450N/A intel_ring_advance(waiter);
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/A#define PIPE_CONTROL_FLUSH(ring__, addr__) \
1450N/Ado { \
1450N/A intel_ring_emit(ring__, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE | \
1450N/A PIPE_CONTROL_DEPTH_STALL); \
1450N/A intel_ring_emit(ring__, (addr__) | PIPE_CONTROL_GLOBAL_GTT); \
1450N/A intel_ring_emit(ring__, 0); \
1450N/A intel_ring_emit(ring__, 0); \
1450N/A} while (0)
1450N/A
1450N/Astatic int
1450N/Apc_render_add_request(struct intel_ring_buffer *ring)
1450N/A{
1450N/A struct pipe_control *pc = ring->private;
1450N/A u32 scratch_addr = pc->gtt_offset + 128;
1450N/A int ret;
1450N/A
1450N/A /* For Ironlake, MI_USER_INTERRUPT was deprecated and apparently
1450N/A * incoherent with writes to memory, i.e. completely fubar,
1450N/A * so we need to use PIPE_NOTIFY instead.
1450N/A *
1450N/A * However, we also need to workaround the qword write
1450N/A * incoherence by flushing the 6 PIPE_NOTIFY buffers out to
1450N/A * memory before requesting an interrupt.
1450N/A */
1450N/A ret = intel_ring_begin(ring, 32);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1450N/A PIPE_CONTROL_WRITE_FLUSH |
1450N/A PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE);
1450N/A intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1450N/A intel_ring_emit(ring, ring->outstanding_lazy_request);
1450N/A intel_ring_emit(ring, 0);
1450N/A PIPE_CONTROL_FLUSH(ring, scratch_addr);
1450N/A scratch_addr += 128; /* write to separate cachelines */
1450N/A PIPE_CONTROL_FLUSH(ring, scratch_addr);
1450N/A scratch_addr += 128;
1450N/A PIPE_CONTROL_FLUSH(ring, scratch_addr);
1450N/A scratch_addr += 128;
1450N/A PIPE_CONTROL_FLUSH(ring, scratch_addr);
1450N/A scratch_addr += 128;
1450N/A PIPE_CONTROL_FLUSH(ring, scratch_addr);
1450N/A scratch_addr += 128;
1450N/A PIPE_CONTROL_FLUSH(ring, scratch_addr);
1450N/A
1450N/A intel_ring_emit(ring, GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE |
1450N/A PIPE_CONTROL_WRITE_FLUSH |
1450N/A PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE |
1450N/A PIPE_CONTROL_NOTIFY);
1450N/A intel_ring_emit(ring, pc->gtt_offset | PIPE_CONTROL_GLOBAL_GTT);
1450N/A intel_ring_emit(ring, ring->outstanding_lazy_request);
1450N/A intel_ring_emit(ring, 0);
1450N/A intel_ring_advance(ring);
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/Astatic u32
1450N/Agen6_ring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
1450N/A{
1450N/A /* Workaround to force correct ordering between irq and seqno writes on
1450N/A * ivb (and maybe also on snb) by reading from a CS register (like
1450N/A * ACTHD) before reading the status page. */
1450N/A if (!lazy_coherency)
1450N/A (void) intel_ring_get_active_head(ring);
1450N/A return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1450N/A}
1450N/A
1450N/Astatic u32
1450N/Aring_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
1450N/A{
1450N/A return intel_read_status_page(ring, I915_GEM_HWS_INDEX);
1450N/A}
1450N/A
1450N/Astatic void
1450N/Aring_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
1450N/A{
1450N/A intel_write_status_page(ring, I915_GEM_HWS_INDEX, seqno);
1450N/A}
1450N/A
1450N/Astatic u32
1450N/Apc_render_get_seqno(struct intel_ring_buffer *ring, bool lazy_coherency)
1450N/A{
1450N/A struct pipe_control *pc = ring->private;
1450N/A return pc->cpu_page[0];
1450N/A}
1450N/A
1450N/Astatic void
1450N/Apc_render_set_seqno(struct intel_ring_buffer *ring, u32 seqno)
1450N/A{
1450N/A struct pipe_control *pc = ring->private;
1450N/A pc->cpu_page[0] = seqno;
1450N/A}
1450N/A
1450N/Astatic bool
1450N/Agen5_ring_get_irq(struct intel_ring_buffer *ring)
1450N/A{
1450N/A struct drm_device *dev = ring->dev;
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A unsigned long flags;
1450N/A
1450N/A if (!dev->irq_enabled)
1450N/A return false;
1450N/A
1450N/A spin_lock_irqsave(&dev_priv->irq_lock, flags);
1450N/A if (ring->irq_refcount.gt++ == 0) {
1450N/A dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
1450N/A I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1450N/A POSTING_READ(GTIMR);
1450N/A }
1450N/A spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1450N/A
1450N/A return true;
1450N/A}
1450N/A
1450N/Astatic void
1450N/Agen5_ring_put_irq(struct intel_ring_buffer *ring)
1450N/A{
1450N/A struct drm_device *dev = ring->dev;
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A unsigned long flags;
1450N/A
1450N/A spin_lock_irqsave(&dev_priv->irq_lock, flags);
1450N/A if (--ring->irq_refcount.gt == 0) {
1450N/A dev_priv->gt_irq_mask |= ring->irq_enable_mask;
1450N/A I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1450N/A POSTING_READ(GTIMR);
1450N/A }
1450N/A spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1450N/A}
1450N/A
1450N/Astatic bool
1450N/Ai9xx_ring_get_irq(struct intel_ring_buffer *ring)
1450N/A{
1450N/A struct drm_device *dev = ring->dev;
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A unsigned long flags;
1450N/A
1450N/A if (!dev->irq_enabled)
1450N/A return false;
1450N/A
1450N/A spin_lock_irqsave(&dev_priv->irq_lock, flags);
1450N/A if (ring->irq_refcount.gt++ == 0) {
1450N/A dev_priv->irq_mask &= ~ring->irq_enable_mask;
1450N/A I915_WRITE(IMR, dev_priv->irq_mask);
1450N/A POSTING_READ(IMR);
1450N/A }
1450N/A spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1450N/A
1450N/A return true;
1450N/A}
1450N/A
1450N/Astatic void
1450N/Ai9xx_ring_put_irq(struct intel_ring_buffer *ring)
1450N/A{
1450N/A struct drm_device *dev = ring->dev;
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A unsigned long flags;
1450N/A
1450N/A spin_lock_irqsave(&dev_priv->irq_lock, flags);
1450N/A if (--ring->irq_refcount.gt == 0) {
1450N/A dev_priv->irq_mask |= ring->irq_enable_mask;
1450N/A I915_WRITE(IMR, dev_priv->irq_mask);
1450N/A POSTING_READ(IMR);
1450N/A }
1450N/A spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1450N/A}
1450N/A
1450N/Astatic bool
1450N/Ai8xx_ring_get_irq(struct intel_ring_buffer *ring)
1450N/A{
1450N/A struct drm_device *dev = ring->dev;
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A unsigned long flags;
1450N/A
1450N/A if (!dev->irq_enabled)
1450N/A return false;
1450N/A
1450N/A spin_lock_irqsave(&dev_priv->irq_lock, flags);
1450N/A if (ring->irq_refcount.gt++ == 0) {
1450N/A dev_priv->irq_mask &= ~ring->irq_enable_mask;
1450N/A I915_WRITE16(IMR, dev_priv->irq_mask);
1450N/A POSTING_READ16(IMR);
1450N/A }
1450N/A spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1450N/A
1450N/A return true;
1450N/A}
1450N/A
1450N/Astatic void
1450N/Ai8xx_ring_put_irq(struct intel_ring_buffer *ring)
1450N/A{
1450N/A struct drm_device *dev = ring->dev;
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A unsigned long flags;
1450N/A
1450N/A spin_lock_irqsave(&dev_priv->irq_lock, flags);
1450N/A if (--ring->irq_refcount.gt == 0) {
1450N/A dev_priv->irq_mask |= ring->irq_enable_mask;
1450N/A I915_WRITE16(IMR, dev_priv->irq_mask);
1450N/A POSTING_READ16(IMR);
1450N/A }
1450N/A spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1450N/A}
1450N/A
1450N/Avoid intel_ring_setup_status_page(struct intel_ring_buffer *ring)
1450N/A{
1450N/A struct drm_device *dev = ring->dev;
1450N/A drm_i915_private_t *dev_priv = ring->dev->dev_private;
1450N/A u32 mmio = 0;
1450N/A
1450N/A /* The ring status page addresses are no longer next to the rest of
1450N/A * the ring registers as of gen7.
1450N/A */
1450N/A if (IS_GEN7(dev)) {
1450N/A switch (ring->id) {
1450N/A case RCS:
1450N/A mmio = RENDER_HWS_PGA_GEN7;
1450N/A break;
1450N/A case BCS:
1450N/A mmio = BLT_HWS_PGA_GEN7;
1450N/A break;
1450N/A case VCS:
1450N/A mmio = BSD_HWS_PGA_GEN7;
1450N/A break;
1450N/A case VECS:
1450N/A mmio = VEBOX_HWS_PGA_GEN7;
1450N/A break;
1450N/A }
1450N/A } else if (IS_GEN6(ring->dev)) {
1450N/A mmio = RING_HWS_PGA_GEN6(ring->mmio_base);
1450N/A } else {
1450N/A mmio = RING_HWS_PGA(ring->mmio_base);
1450N/A }
1450N/A
1450N/A I915_WRITE(mmio, (u32)ring->status_page.gfx_addr);
1450N/A POSTING_READ(mmio);
1450N/A
1450N/A /* Flush the TLB for this page */
1450N/A if (INTEL_INFO(dev)->gen >= 6) {
1450N/A u32 reg = RING_INSTPM(ring->mmio_base);
1450N/A I915_WRITE(reg,
1450N/A _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
1450N/A INSTPM_SYNC_FLUSH));
1450N/A if (wait_for((I915_READ(reg) & INSTPM_SYNC_FLUSH) == 0,
1450N/A 1000))
1450N/A DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
1450N/A ring->name);
1450N/A }
1450N/A
1450N/A}
1450N/A
1450N/Astatic int
1450N/Absd_ring_flush(struct intel_ring_buffer *ring,
1450N/A u32 invalidate_domains,
1450N/A u32 flush_domains)
1450N/A{
1450N/A int ret;
1450N/A
1450N/A ret = intel_ring_begin(ring, 2);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A intel_ring_emit(ring, MI_FLUSH);
1450N/A intel_ring_emit(ring, MI_NOOP);
1450N/A intel_ring_advance(ring);
1450N/A return 0;
1450N/A}
1450N/A
1450N/Astatic int
1450N/Ai9xx_add_request(struct intel_ring_buffer *ring)
1450N/A{
1450N/A int ret;
1450N/A
1450N/A ret = intel_ring_begin(ring, 4);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A intel_ring_emit(ring, MI_STORE_DWORD_INDEX);
1450N/A intel_ring_emit(ring, I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1450N/A intel_ring_emit(ring, ring->outstanding_lazy_request);
1450N/A intel_ring_emit(ring, MI_USER_INTERRUPT);
1450N/A intel_ring_advance(ring);
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/Astatic bool
1450N/Agen6_ring_get_irq(struct intel_ring_buffer *ring)
1450N/A{
1450N/A struct drm_device *dev = ring->dev;
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A unsigned long flags;
1450N/A
1450N/A if (!dev->irq_enabled)
1450N/A return false;
1450N/A
1450N/A /* It looks like we need to prevent the gt from suspending while waiting
1450N/A * for an notifiy irq, otherwise irqs seem to get lost on at least the
1450N/A * blt/bsd rings on ivb. */
1450N/A gen6_gt_force_wake_get(dev_priv);
1450N/A
1450N/A spin_lock_irqsave(&dev_priv->irq_lock, flags);
1450N/A if (ring->irq_refcount.gt++ == 0) {
1450N/A if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
1450N/A I915_WRITE_IMR(ring,
1450N/A ~(ring->irq_enable_mask |
1450N/A GT_RENDER_L3_PARITY_ERROR_INTERRUPT));
1450N/A else
1450N/A I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1450N/A dev_priv->gt_irq_mask &= ~ring->irq_enable_mask;
1450N/A I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1450N/A POSTING_READ(GTIMR);
1450N/A }
1450N/A spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1450N/A
1450N/A return true;
1450N/A}
1450N/A
1450N/Astatic void
1450N/Agen6_ring_put_irq(struct intel_ring_buffer *ring)
1450N/A{
1450N/A struct drm_device *dev = ring->dev;
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A unsigned long flags;
1450N/A
1450N/A spin_lock_irqsave(&dev_priv->irq_lock, flags);
1450N/A if (--ring->irq_refcount.gt == 0) {
1450N/A if (HAS_L3_GPU_CACHE(dev) && ring->id == RCS)
1450N/A I915_WRITE_IMR(ring,
1450N/A ~GT_RENDER_L3_PARITY_ERROR_INTERRUPT);
1450N/A else
1450N/A I915_WRITE_IMR(ring, ~0);
1450N/A dev_priv->gt_irq_mask |= ring->irq_enable_mask;
1450N/A I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
1450N/A POSTING_READ(GTIMR);
1450N/A }
1450N/A spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1450N/A
1450N/A gen6_gt_force_wake_put(dev_priv);
1450N/A}
1450N/A
1450N/Astatic bool
1450N/Ahsw_vebox_get_irq(struct intel_ring_buffer *ring)
1450N/A{
1450N/A struct drm_device *dev = ring->dev;
1450N/A struct drm_i915_private *dev_priv = dev->dev_private;
1450N/A unsigned long flags;
1450N/A
1450N/A if (!dev->irq_enabled)
1450N/A return false;
1450N/A
1450N/A spin_lock_irqsave(&dev_priv->rps.lock, flags);
1450N/A if (ring->irq_refcount.pm++ == 0) {
1450N/A u32 pm_imr = I915_READ(GEN6_PMIMR);
1450N/A I915_WRITE_IMR(ring, ~ring->irq_enable_mask);
1450N/A I915_WRITE(GEN6_PMIMR, pm_imr & ~ring->irq_enable_mask);
1450N/A POSTING_READ(GEN6_PMIMR);
1450N/A }
1450N/A spin_unlock_irqrestore(&dev_priv->rps.lock, flags);
1450N/A
1450N/A return true;
1450N/A}
1450N/A
1450N/Astatic void
1450N/Ahsw_vebox_put_irq(struct intel_ring_buffer *ring)
1450N/A{
1450N/A struct drm_device *dev = ring->dev;
1450N/A struct drm_i915_private *dev_priv = dev->dev_private;
1450N/A unsigned long flags;
1450N/A
1450N/A if (!dev->irq_enabled)
1450N/A return;
1450N/A
1450N/A spin_lock_irqsave(&dev_priv->rps.lock, flags);
1450N/A if (--ring->irq_refcount.pm == 0) {
1450N/A u32 pm_imr = I915_READ(GEN6_PMIMR);
1450N/A I915_WRITE_IMR(ring, ~0);
1450N/A I915_WRITE(GEN6_PMIMR, pm_imr | ring->irq_enable_mask);
1450N/A POSTING_READ(GEN6_PMIMR);
1450N/A }
1450N/A spin_unlock_irqrestore(&dev_priv->rps.lock, flags);
1450N/A}
1450N/A
1450N/Astatic int
1450N/Ai965_dispatch_execbuffer(struct intel_ring_buffer *ring,
1450N/A u32 offset, u32 length,
1450N/A unsigned flags)
1450N/A{
1450N/A int ret;
1450N/A
1450N/A ret = intel_ring_begin(ring, 2);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A intel_ring_emit(ring,
1450N/A MI_BATCH_BUFFER_START |
1450N/A MI_BATCH_GTT |
1450N/A (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1450N/A intel_ring_emit(ring, offset);
1450N/A intel_ring_advance(ring);
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/A/* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1450N/A#define I830_BATCH_LIMIT (256*1024)
1450N/Astatic int
1450N/Ai830_dispatch_execbuffer(struct intel_ring_buffer *ring,
1450N/A u32 offset, u32 len,
1450N/A unsigned flags)
1450N/A{
1450N/A int ret;
1450N/A
1450N/A if (flags & I915_DISPATCH_PINNED) {
1450N/A ret = intel_ring_begin(ring, 4);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A intel_ring_emit(ring, MI_BATCH_BUFFER);
1450N/A intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1450N/A intel_ring_emit(ring, offset + len - 8);
1450N/A intel_ring_emit(ring, MI_NOOP);
1450N/A intel_ring_advance(ring);
1450N/A } else {
1450N/A struct drm_i915_gem_object *obj = ring->private;
1450N/A u32 cs_offset = obj->gtt_offset;
1450N/A
1450N/A if (len > I830_BATCH_LIMIT)
1450N/A return -ENOSPC;
1450N/A
1450N/A ret = intel_ring_begin(ring, 9+3);
1450N/A if (ret)
1450N/A return ret;
1450N/A /* Blit the batch (which has now all relocs applied) to the stable batch
1450N/A * scratch bo area (so that the CS never stumbles over its tlb
1450N/A * invalidation bug) ... */
1450N/A intel_ring_emit(ring, XY_SRC_COPY_BLT_CMD |
1450N/A XY_SRC_COPY_BLT_WRITE_ALPHA |
1450N/A XY_SRC_COPY_BLT_WRITE_RGB);
1450N/A intel_ring_emit(ring, BLT_DEPTH_32 | BLT_ROP_GXCOPY | 4096);
1450N/A intel_ring_emit(ring, 0);
1450N/A intel_ring_emit(ring, (DIV_ROUND_UP(len, 4096) << 16) | 1024);
1450N/A intel_ring_emit(ring, cs_offset);
1450N/A intel_ring_emit(ring, 0);
1450N/A intel_ring_emit(ring, 4096);
1450N/A intel_ring_emit(ring, offset);
1450N/A intel_ring_emit(ring, MI_FLUSH);
1450N/A
1450N/A /* ... and execute it. */
1450N/A intel_ring_emit(ring, MI_BATCH_BUFFER);
1450N/A intel_ring_emit(ring, cs_offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1450N/A intel_ring_emit(ring, cs_offset + len - 8);
1450N/A intel_ring_advance(ring);
1450N/A }
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/Astatic int
1450N/Ai915_dispatch_execbuffer(struct intel_ring_buffer *ring,
1450N/A u32 offset, u32 len,
1450N/A unsigned flags)
1450N/A{
1450N/A int ret;
1450N/A
1450N/A ret = intel_ring_begin(ring, 2);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A intel_ring_emit(ring, MI_BATCH_BUFFER_START | MI_BATCH_GTT);
1450N/A intel_ring_emit(ring, offset | (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE));
1450N/A intel_ring_advance(ring);
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/Astatic void cleanup_status_page(struct intel_ring_buffer *ring)
1450N/A{
1450N/A struct drm_i915_gem_object *obj;
1450N/A
1450N/A obj = ring->status_page.obj;
1450N/A if (obj == NULL)
1450N/A return;
1450N/A
1450N/A i915_gem_object_unpin(obj);
1450N/A drm_gem_object_unreference(&obj->base);
1450N/A ring->status_page.obj = NULL;
1450N/A}
1450N/A
1450N/Astatic int init_status_page(struct intel_ring_buffer *ring)
1450N/A{
1450N/A struct drm_device *dev = ring->dev;
1450N/A struct drm_i915_gem_object *obj;
1450N/A int ret;
1450N/A
1450N/A obj = i915_gem_alloc_object(dev, 4096);
1450N/A if (obj == NULL) {
1450N/A DRM_ERROR("Failed to allocate status page\n");
1450N/A ret = -ENOMEM;
1450N/A goto err;
1450N/A }
1450N/A
1450N/A if (ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC))
1450N/A goto err_unref;
1450N/A
1450N/A ret = i915_gem_object_pin(obj, 4096, true, false);
1450N/A if (ret != 0) {
1450N/A goto err_unref;
1450N/A }
1450N/A
1450N/A ring->status_page.gfx_addr = obj->gtt_offset;
1450N/A ring->status_page.page_addr = obj->page_list[0];
1450N/A if (ring->status_page.page_addr == NULL) {
1450N/A ret = -ENOMEM;
1450N/A goto err_unpin;
1450N/A }
1450N/A ring->status_page.obj = obj;
1450N/A (void) memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1450N/A
1450N/A DRM_DEBUG_DRIVER("%s hws offset: 0x%08x\n",
1450N/A ring->name, ring->status_page.gfx_addr);
1450N/A
1450N/A return 0;
1450N/A
1450N/Aerr_unpin:
1450N/A i915_gem_object_unpin(obj);
1450N/Aerr_unref:
1450N/A drm_gem_object_unreference(&obj->base);
1450N/Aerr:
1450N/A return ret;
1450N/A}
1450N/A
1450N/Astatic int init_phys_status_page(struct intel_ring_buffer *ring)
1450N/A{
1450N/A struct drm_i915_private *dev_priv = ring->dev->dev_private;
1450N/A
1450N/A if (!dev_priv->status_page_dmah) {
1450N/A dev_priv->status_page_dmah =
1450N/A drm_pci_alloc(ring->dev, PAGE_SIZE, PAGE_SIZE, 0xffffffff, 1);
1450N/A if (!dev_priv->status_page_dmah)
1450N/A return -ENOMEM;
1450N/A }
1450N/A
1450N/A ring->status_page.page_addr = (void *) dev_priv->status_page_dmah->vaddr;
1450N/A memset(ring->status_page.page_addr, 0, PAGE_SIZE);
1450N/A
1450N/A return 0;
1450N/A}
1450N/Astatic int intel_init_ring_buffer(struct drm_device *dev,
1450N/A struct intel_ring_buffer *ring)
1450N/A{
1450N/A struct drm_i915_gem_object *obj;
1450N/A int ret;
1450N/A
1450N/A ring->dev = dev;
1450N/A INIT_LIST_HEAD(&ring->active_list);
1450N/A INIT_LIST_HEAD(&ring->request_list);
1450N/A ring->size = 32 * PAGE_SIZE;
1450N/A memset(ring->sync_seqno, 0, sizeof(ring->sync_seqno));
1450N/A
1450N/A DRM_INIT_WAITQUEUE(&ring->irq_queue, DRM_INTR_PRI(dev));
1450N/A
1450N/A if (I915_NEED_GFX_HWS(dev)) {
1450N/A ret = init_status_page(ring);
1450N/A if (ret)
1450N/A return ret;
1450N/A } else {
1450N/A BUG_ON(ring->id != RCS);
1450N/A ret = init_phys_status_page(ring);
1450N/A if (ret)
1450N/A return ret;
1450N/A }
1450N/A
1450N/A obj = NULL;
1450N/A if (!HAS_LLC(dev))
1450N/A obj = i915_gem_object_create_stolen(dev, ring->size);
1450N/A if (obj == NULL)
1450N/A obj = i915_gem_alloc_object(dev, ring->size);
1450N/A if (obj == NULL) {
1450N/A DRM_ERROR("Failed to allocate ringbuffer\n");
1450N/A ret = -ENOMEM;
1450N/A goto err_hws;
1450N/A }
1450N/A
1450N/A ring->obj = obj;
1450N/A
1450N/A ret = i915_gem_object_pin(obj, PAGE_SIZE, true, false);
1450N/A if (ret)
1450N/A goto err_unref;
1450N/A
1450N/A ret = i915_gem_object_set_to_gtt_domain(obj, true);
1450N/A if (ret)
1450N/A goto err_unpin;
1450N/A ring->map.size = ring->size;
1450N/A ring->map.offset = dev->agp_aperbase + obj->gtt_offset;
1450N/A ring->map.type = 0;
1450N/A ring->map.flags = 0;
1450N/A ring->map.mtrr = 0;
1450N/A
1450N/A drm_core_ioremap(&ring->map, dev);
1450N/A if (ring->map.handle == NULL) {
1450N/A DRM_ERROR("Failed to map ringbuffer.\n");
1450N/A ret = -EINVAL;
1450N/A goto err_unpin;
1450N/A }
1450N/A
1450N/A ring->virtual_start = ring->map.handle;
1450N/A ret = ring->init(ring);
1450N/A if (ret)
1450N/A goto err_unmap;
1450N/A
1450N/A /* Workaround an erratum on the i830 which causes a hang if
1450N/A * the TAIL pointer points to within the last 2 cachelines
1450N/A * of the buffer.
1450N/A */
1450N/A ring->effective_size = ring->size;
1450N/A if (IS_I830(ring->dev) || IS_845G(ring->dev))
1450N/A ring->effective_size -= 128;
1450N/A
1450N/A return 0;
1450N/A
1450N/Aerr_unmap:
1450N/A drm_core_ioremapfree(&ring->map, dev);
1450N/Aerr_unpin:
1450N/A i915_gem_object_unpin(obj);
1450N/Aerr_unref:
1450N/A drm_gem_object_unreference(&obj->base);
1450N/A ring->obj = NULL;
1450N/Aerr_hws:
1450N/A cleanup_status_page(ring);
1450N/A return ret;
1450N/A}
1450N/A
1450N/Avoid intel_cleanup_ring_buffer(struct intel_ring_buffer *ring)
1450N/A{
1450N/A struct drm_i915_private *dev_priv;
1450N/A int ret;
1450N/A
1450N/A if (ring->obj == NULL)
1450N/A return;
1450N/A
1450N/A /* Disable the ring buffer. The ring must be idle at this point */
1450N/A dev_priv = ring->dev->dev_private;
1450N/A ret = intel_ring_idle(ring);
1450N/A if (ret)
1450N/A DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
1450N/A ring->name, ret);
1450N/A
1450N/A I915_WRITE_CTL(ring, 0);
1450N/A
1450N/A drm_core_ioremapfree(&ring->map, ring->dev);
1450N/A
1450N/A i915_gem_object_unpin(ring->obj);
1450N/A drm_gem_object_unreference(&ring->obj->base);
1450N/A ring->obj = NULL;
1450N/A
1450N/A if (ring->cleanup)
1450N/A ring->cleanup(ring);
1450N/A
1450N/A cleanup_status_page(ring);
1450N/A}
1450N/A
1450N/Astatic int intel_ring_wait_seqno(struct intel_ring_buffer *ring, u32 seqno)
1450N/A{
1450N/A int ret;
1450N/A
1450N/A ret = i915_wait_seqno(ring, seqno);
1450N/A if (!ret)
1450N/A i915_gem_retire_requests_ring(ring);
1450N/A
1450N/A return ret;
1450N/A}
1450N/A
1450N/Astatic int intel_ring_wait_request(struct intel_ring_buffer *ring, int n)
1450N/A{
1450N/A struct drm_i915_gem_request *request;
1450N/A u32 seqno = 0;
1450N/A int ret;
1450N/A
1450N/A i915_gem_retire_requests_ring(ring);
1450N/A
1450N/A if (ring->last_retired_head != 0xffffffff) {
1450N/A ring->head = ring->last_retired_head;
1450N/A ring->last_retired_head = 0xffffffff;
1450N/A ring->space = ring_space(ring);
1450N/A if (ring->space >= n)
1450N/A return 0;
1450N/A }
1450N/A
1450N/A list_for_each_entry(request, struct drm_i915_gem_request, &ring->request_list, list) {
1450N/A int space;
1450N/A
1450N/A if (request->tail == 0xffffffff)
1450N/A continue;
1450N/A
1450N/A space = request->tail - (ring->tail + I915_RING_FREE_SPACE);
1450N/A if (space < 0)
1450N/A space += ring->size;
1450N/A if (space >= n) {
1450N/A seqno = request->seqno;
1450N/A break;
1450N/A }
1450N/A
1450N/A /* Consume this request in case we need more space than
1450N/A * is available and so need to prevent a race between
1450N/A * updating last_retired_head and direct reads of
1450N/A * I915_RING_HEAD. It also provides a nice sanity check.
1450N/A */
1450N/A request->tail = 0xffffffff;
1450N/A }
1450N/A
1450N/A if (seqno == 0)
1450N/A return -ENOSPC;
1450N/A
1450N/A ret = intel_ring_wait_seqno(ring, seqno);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A if (ring->last_retired_head == 0xffffffff) {
1450N/A WARN_ON(ring->last_retired_head == 0xffffffff);
1450N/A return -ENOSPC;
1450N/A }
1450N/A
1450N/A ring->head = ring->last_retired_head;
1450N/A ring->last_retired_head = 0xffffffff;
1450N/A ring->space = ring_space(ring);
1450N/A if (ring->space < n) {
1450N/A WARN_ON(ring->space < n);
1450N/A return -ENOSPC;
1450N/A }
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/Astatic int ring_wait_for_space(struct intel_ring_buffer *ring, int n)
1450N/A{
1450N/A struct drm_device *dev = ring->dev;
1450N/A struct drm_i915_private *dev_priv = dev->dev_private;
1450N/A unsigned long end;
1450N/A int ret;
1450N/A
1450N/A ret = intel_ring_wait_request(ring, n);
1450N/A if (ret != -ENOSPC)
1450N/A return ret;
1450N/A
1450N/A /* With GEM the hangcheck timer should kick us out of the loop,
1450N/A * leaving it early runs the risk of corrupting GEM state (due
1450N/A * to running on almost untested codepaths). But on resume
1450N/A * timers don't work yet, so prevent a complete hang in that
1450N/A * case by choosing an insanely large timeout. */
1450N/A end = jiffies + 60 * DRM_HZ;
1450N/A
1450N/A do {
1450N/A ring->head = I915_READ_HEAD(ring);
1450N/A ring->space = ring_space(ring);
1450N/A if (ring->space >= n) {
1450N/A return 0;
1450N/A }
1450N/A
1450N/A if (dev->primary->master) {
1450N/A struct drm_i915_master_private *master_priv = dev->primary->master->driver_priv;
1450N/A if (master_priv->sarea_priv)
1450N/A master_priv->sarea_priv->perf_boxes |= I915_BOX_WAIT;
1450N/A }
1450N/A
1450N/A msleep(1);
1450N/A
1450N/A ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1450N/A dev_priv->mm.interruptible);
1450N/A if (ret)
1450N/A return ret;
1450N/A } while (!time_after(jiffies, end));
1450N/A return -EBUSY;
1450N/A}
1450N/A
1450N/Astatic int intel_wrap_ring_buffer(struct intel_ring_buffer *ring)
1450N/A{
1450N/A unsigned int *virt;
1450N/A int rem = ring->size - ring->tail;
1450N/A
1450N/A if (ring->space < rem) {
1450N/A int ret = ring_wait_for_space(ring, rem);
1450N/A if (ret)
1450N/A return ret;
1450N/A }
1450N/A
1450N/A virt = (unsigned int *)(uintptr_t)((caddr_t)ring->virtual_start + ring->tail);
1450N/A rem = (int)(rem / 4);
1450N/A while (rem--) {
1450N/A *virt++ = MI_NOOP;
1450N/A }
1450N/A
1450N/A ring->tail = 0;
1450N/A ring->space = ring_space(ring);
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/Aint intel_ring_idle(struct intel_ring_buffer *ring)
1450N/A{
1450N/A struct drm_i915_gem_request *idle_req;
1450N/A u32 seqno;
1450N/A int ret;
1450N/A
1450N/A /* We need to add any requests required to flush the objects and ring */
1450N/A if (ring->outstanding_lazy_request) {
1450N/A ret = i915_add_request(ring, NULL);
1450N/A if (ret)
1450N/A return ret;
1450N/A }
1450N/A
1450N/A /* Wait upon the last request to be completed */
1450N/A if (list_empty(&ring->request_list))
1450N/A return 0;
1450N/A
1450N/A idle_req = list_entry(ring->request_list.prev,
1450N/A struct drm_i915_gem_request,
1450N/A list);
1450N/A seqno = idle_req->seqno;
1450N/A
1450N/A return i915_wait_seqno(ring, seqno);
1450N/A}
1450N/A
1450N/Astatic int
1450N/Aintel_ring_alloc_seqno(struct intel_ring_buffer *ring)
1450N/A{
1450N/A if (ring->outstanding_lazy_request)
1450N/A return 0;
1450N/A
1450N/A return i915_gem_get_seqno(ring->dev, &ring->outstanding_lazy_request);
1450N/A}
1450N/A
1450N/Astatic int __intel_ring_begin(struct intel_ring_buffer *ring,
1450N/A int bytes)
1450N/A{
1450N/A int ret;
1450N/A
1450N/A if (ring->tail + bytes > ring->effective_size) {
1450N/A ret = intel_wrap_ring_buffer(ring);
1450N/A if (ret)
1450N/A return ret;
1450N/A }
1450N/A
1450N/A if (ring->space < bytes) {
1450N/A ret = ring_wait_for_space(ring, bytes);
1450N/A if (ret)
1450N/A return ret;
1450N/A }
1450N/A
1450N/A ring->space -= bytes;
1450N/A return 0;
1450N/A}
1450N/A
1450N/Aint intel_ring_begin(struct intel_ring_buffer *ring,
1450N/A int num_dwords)
1450N/A{
1450N/A struct drm_i915_private *dev_priv = ring->dev->dev_private;
1450N/A int ret;
1450N/A
1450N/A ret = i915_gem_check_wedge(&dev_priv->gpu_error,
1450N/A dev_priv->mm.interruptible);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A /* Preallocate the olr before touching the ring */
1450N/A ret = intel_ring_alloc_seqno(ring);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A return __intel_ring_begin(ring, num_dwords * sizeof(uint32_t));
1450N/A }
1450N/A
1450N/Avoid intel_ring_init_seqno(struct intel_ring_buffer *ring, u32 seqno)
1450N/A{
1450N/A struct drm_i915_private *dev_priv = ring->dev->dev_private;
1450N/A
1450N/A BUG_ON(ring->outstanding_lazy_request);
1450N/A
1450N/A if (INTEL_INFO(ring->dev)->gen >= 6) {
1450N/A I915_WRITE(RING_SYNC_0(ring->mmio_base), 0);
1450N/A I915_WRITE(RING_SYNC_1(ring->mmio_base), 0);
1450N/A }
1450N/A
1450N/A ring->set_seqno(ring, seqno);
1450N/A ring->hangcheck.seqno = seqno;
1450N/A}
1450N/A
1450N/Avoid intel_ring_advance(struct intel_ring_buffer *ring)
1450N/A{
1450N/A struct drm_i915_private *dev_priv = ring->dev->dev_private;
1450N/A ring->tail &= ring->size - 1;
1450N/A if (dev_priv->gpu_error.stop_rings & intel_ring_flag(ring))
1450N/A return;
1450N/A ring->write_tail(ring, ring->tail);
1450N/A}
1450N/A
1450N/A
1450N/Astatic void gen6_bsd_ring_write_tail(struct intel_ring_buffer *ring,
1450N/A u32 value)
1450N/A{
1450N/A drm_i915_private_t *dev_priv = ring->dev->dev_private;
1450N/A
1450N/A /* Every tail move must follow the sequence below */
1450N/A
1450N/A /* Disable notification that the ring is IDLE. The GT
1450N/A * will then assume that it is busy and bring it out of rc6.
1450N/A */
1450N/A I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1450N/A _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1450N/A
1450N/A /* Clear the context id. Here be magic! */
1450N/A I915_WRITE64(GEN6_BSD_RNCID, 0x0);
1450N/A
1450N/A /* Wait for the ring not to be idle, i.e. for it to wake up. */
1450N/A if (wait_for((I915_READ(GEN6_BSD_SLEEP_PSMI_CONTROL) &
1450N/A GEN6_BSD_SLEEP_INDICATOR) == 0,
1450N/A 50))
1450N/A DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
1450N/A
1450N/A /* Now that the ring is fully powered up, update the tail */
1450N/A I915_WRITE_TAIL(ring, value);
1450N/A POSTING_READ(RING_TAIL(ring->mmio_base));
1450N/A
1450N/A /* Let the ring send IDLE messages to the GT again,
1450N/A * and so let it sleep to conserve power when idle.
1450N/A */
1450N/A I915_WRITE(GEN6_BSD_SLEEP_PSMI_CONTROL,
1450N/A _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
1450N/A}
1450N/A
1450N/Astatic int gen6_bsd_ring_flush(struct intel_ring_buffer *ring,
1450N/A u32 invalidate, u32 flush)
1450N/A{
1450N/A uint32_t cmd;
1450N/A int ret;
1450N/A
1450N/A ret = intel_ring_begin(ring, 4);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A cmd = MI_FLUSH_DW;
1450N/A /*
1450N/A * Bspec vol 1c.5 - video engine command streamer:
1450N/A * "If ENABLED, all TLBs will be invalidated once the flush
1450N/A * operation is complete. This bit is only valid when the
1450N/A * Post-Sync Operation field is a value of 1h or 3h."
1450N/A */
1450N/A if (invalidate & I915_GEM_GPU_DOMAINS)
1450N/A cmd |= MI_INVALIDATE_TLB | MI_INVALIDATE_BSD |
1450N/A MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1450N/A intel_ring_emit(ring, cmd);
1450N/A intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1450N/A intel_ring_emit(ring, 0);
1450N/A intel_ring_emit(ring, MI_NOOP);
1450N/A intel_ring_advance(ring);
1450N/A return 0;
1450N/A}
1450N/A
1450N/Astatic int
1450N/Ahsw_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1450N/A u32 offset, u32 len,
1450N/A unsigned flags)
1450N/A{
1450N/A int ret;
1450N/A
1450N/A ret = intel_ring_begin(ring, 2);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A intel_ring_emit(ring,
1450N/A MI_BATCH_BUFFER_START | MI_BATCH_PPGTT_HSW |
1450N/A (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_HSW));
1450N/A /* bit0-7 is the length on GEN6+ */
1450N/A intel_ring_emit(ring, offset);
1450N/A intel_ring_advance(ring);
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/Astatic int
1450N/Agen6_ring_dispatch_execbuffer(struct intel_ring_buffer *ring,
1450N/A u32 offset, u32 len,
1450N/A unsigned flags)
1450N/A{
1450N/A int ret;
1450N/A
1450N/A ret = intel_ring_begin(ring, 2);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A intel_ring_emit(ring,
1450N/A MI_BATCH_BUFFER_START |
1450N/A (flags & I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965));
1450N/A /* bit0-7 is the length on GEN6+ */
1450N/A intel_ring_emit(ring, offset);
1450N/A intel_ring_advance(ring);
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/A/* Blitter support (SandyBridge+) */
1450N/A
1450N/Astatic int gen6_ring_flush(struct intel_ring_buffer *ring,
1450N/A u32 invalidate, u32 flush)
1450N/A{
1450N/A struct drm_device *dev = ring->dev;
1450N/A uint32_t cmd;
1450N/A int ret;
1450N/A
1450N/A ret = intel_ring_begin(ring, 4);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A cmd = MI_FLUSH_DW;
1450N/A /*
1450N/A * Bspec vol 1c.3 - blitter engine command streamer:
1450N/A * "If ENABLED, all TLBs will be invalidated once the flush
1450N/A * operation is complete. This bit is only valid when the
1450N/A * Post-Sync Operation field is a value of 1h or 3h."
1450N/A */
1450N/A if (invalidate & I915_GEM_DOMAIN_RENDER)
1450N/A cmd |= MI_INVALIDATE_TLB | MI_FLUSH_DW_STORE_INDEX |
1450N/A MI_FLUSH_DW_OP_STOREDW;
1450N/A intel_ring_emit(ring, cmd);
1450N/A intel_ring_emit(ring, I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT);
1450N/A intel_ring_emit(ring, 0);
1450N/A intel_ring_emit(ring, MI_NOOP);
1450N/A intel_ring_advance(ring);
1450N/A
1450N/A if (IS_GEN7(dev) && flush)
1450N/A return gen7_ring_fbc_flush(ring, FBC_REND_CACHE_CLEAN);
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/Aint intel_init_render_ring_buffer(struct drm_device *dev)
1450N/A{
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1450N/A
1450N/A ring->name = "render ring";
1450N/A ring->id = RCS;
1450N/A ring->mmio_base = RENDER_RING_BASE;
1450N/A
1450N/A if (INTEL_INFO(dev)->gen >= 6) {
1450N/A ring->add_request = gen6_add_request;
1450N/A ring->flush = gen7_render_ring_flush;
1450N/A if (INTEL_INFO(dev)->gen == 6)
1450N/A ring->flush = gen6_render_ring_flush;
1450N/A ring->irq_get = gen6_ring_get_irq;
1450N/A ring->irq_put = gen6_ring_put_irq;
1450N/A ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
1450N/A ring->get_seqno = gen6_ring_get_seqno;
1450N/A ring->set_seqno = ring_set_seqno;
1450N/A ring->sync_to = gen6_ring_sync;
1450N/A ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_INVALID;
1450N/A ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_RV;
1450N/A ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_RB;
1450N/A ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_RVE;
1450N/A ring->signal_mbox[RCS] = GEN6_NOSYNC;
1450N/A ring->signal_mbox[VCS] = GEN6_VRSYNC;
1450N/A ring->signal_mbox[BCS] = GEN6_BRSYNC;
1450N/A ring->signal_mbox[VECS] = GEN6_VERSYNC;
1450N/A } else if (IS_GEN5(dev)) {
1450N/A ring->add_request = pc_render_add_request;
1450N/A ring->flush = gen4_render_ring_flush;
1450N/A ring->get_seqno = pc_render_get_seqno;
1450N/A ring->set_seqno = pc_render_set_seqno;
1450N/A ring->irq_get = gen5_ring_get_irq;
1450N/A ring->irq_put = gen5_ring_put_irq;
1450N/A ring->irq_enable_mask = GT_RENDER_USER_INTERRUPT |
1450N/A GT_RENDER_PIPECTL_NOTIFY_INTERRUPT;
1450N/A } else {
1450N/A ring->add_request = i9xx_add_request;
1450N/A if (INTEL_INFO(dev)->gen < 4)
1450N/A ring->flush = gen2_render_ring_flush;
1450N/A else
1450N/A ring->flush = gen4_render_ring_flush;
1450N/A ring->get_seqno = ring_get_seqno;
1450N/A ring->set_seqno = ring_set_seqno;
1450N/A if (IS_GEN2(dev)) {
1450N/A ring->irq_get = i8xx_ring_get_irq;
1450N/A ring->irq_put = i8xx_ring_put_irq;
1450N/A } else {
1450N/A ring->irq_get = i9xx_ring_get_irq;
1450N/A ring->irq_put = i9xx_ring_put_irq;
1450N/A }
1450N/A ring->irq_enable_mask = I915_USER_INTERRUPT;
1450N/A }
1450N/A ring->write_tail = ring_write_tail;
1450N/A if (IS_HASWELL(dev))
1450N/A ring->dispatch_execbuffer = hsw_ring_dispatch_execbuffer;
1450N/A else if (INTEL_INFO(dev)->gen >= 6)
1450N/A ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1450N/A else if (INTEL_INFO(dev)->gen >= 4)
1450N/A ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1450N/A else if (IS_I830(dev) || IS_845G(dev))
1450N/A ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1450N/A else
1450N/A ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1450N/A ring->init = init_render_ring;
1450N/A ring->cleanup = render_ring_cleanup;
1450N/A
1450N/A /* Workaround batchbuffer to combat CS tlb bug. */
1450N/A if (HAS_BROKEN_CS_TLB(dev)) {
1450N/A struct drm_i915_gem_object *obj;
1450N/A int ret;
1450N/A
1450N/A obj = i915_gem_alloc_object(dev, I830_BATCH_LIMIT);
1450N/A if (obj == NULL) {
1450N/A DRM_ERROR("Failed to allocate batch bo\n");
1450N/A return -ENOMEM;
1450N/A }
1450N/A
1450N/A ret = i915_gem_object_pin(obj, 0, true, false);
1450N/A if (ret != 0) {
1450N/A drm_gem_object_unreference(&obj->base);
1450N/A DRM_ERROR("Failed to ping batch bo\n");
1450N/A return ret;
1450N/A }
1450N/A
1450N/A ring->private = obj;
1450N/A }
1450N/A
1450N/A return intel_init_ring_buffer(dev, ring);
1450N/A}
1450N/A
1450N/Aint intel_render_ring_init_dri(struct drm_device *dev, u64 start, u32 size)
1450N/A{
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
1450N/A int ret;
1450N/A
1450N/A ring->name = "render ring";
1450N/A ring->id = RCS;
1450N/A ring->mmio_base = RENDER_RING_BASE;
1450N/A
1450N/A if (INTEL_INFO(dev)->gen >= 6) {
1450N/A /* non-kms not supported on gen6+ */
1450N/A return -ENODEV;
1450N/A }
1450N/A
1450N/A /* Note: gem is not supported on gen5/ilk without kms (the corresponding
1450N/A * gem_init ioctl returns with -ENODEV). Hence we do not need to set up
1450N/A * the special gen5 functions. */
1450N/A ring->add_request = i9xx_add_request;
1450N/A if (INTEL_INFO(dev)->gen < 4)
1450N/A ring->flush = gen2_render_ring_flush;
1450N/A else
1450N/A ring->flush = gen4_render_ring_flush;
1450N/A ring->get_seqno = ring_get_seqno;
1450N/A ring->set_seqno = ring_set_seqno;
1450N/A if (IS_GEN2(dev)) {
1450N/A ring->irq_get = i8xx_ring_get_irq;
1450N/A ring->irq_put = i8xx_ring_put_irq;
1450N/A } else {
1450N/A ring->irq_get = i9xx_ring_get_irq;
1450N/A ring->irq_put = i9xx_ring_put_irq;
1450N/A }
1450N/A ring->irq_enable_mask = I915_USER_INTERRUPT;
1450N/A ring->write_tail = ring_write_tail;
1450N/A if (INTEL_INFO(dev)->gen >= 4)
1450N/A ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1450N/A else if (IS_I830(dev) || IS_845G(dev))
1450N/A ring->dispatch_execbuffer = i830_dispatch_execbuffer;
1450N/A else
1450N/A ring->dispatch_execbuffer = i915_dispatch_execbuffer;
1450N/A ring->init = init_render_ring;
1450N/A ring->cleanup = render_ring_cleanup;
1450N/A
1450N/A ring->dev = dev;
1450N/A INIT_LIST_HEAD(&ring->active_list);
1450N/A INIT_LIST_HEAD(&ring->request_list);
1450N/A
1450N/A ring->size = size;
1450N/A ring->effective_size = ring->size;
1450N/A if (IS_I830(ring->dev) || IS_845G(ring->dev))
1450N/A ring->effective_size -= 128;
1450N/A
1450N/A ring->map.offset = start;
1450N/A ring->map.size = size;
1450N/A ring->map.type = 0;
1450N/A ring->map.flags = 0;
1450N/A ring->map.mtrr = 0;
1450N/A
1450N/A drm_core_ioremap(&ring->map, dev);
1450N/A if (ring->map.handle == NULL) {
1450N/A DRM_ERROR("can not ioremap virtual address for"
1450N/A " ring buffer\n");
1450N/A return -ENOMEM;
1450N/A }
1450N/A
1450N/A ring->virtual_start = (void *)ring->map.handle;
1450N/A
1450N/A if (!I915_NEED_GFX_HWS(dev)) {
1450N/A ret = init_phys_status_page(ring);
1450N/A if (ret)
1450N/A return ret;
1450N/A }
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/Aint intel_init_bsd_ring_buffer(struct drm_device *dev)
1450N/A{
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A struct intel_ring_buffer *ring = &dev_priv->ring[VCS];
1450N/A
1450N/A ring->name = "bsd ring";
1450N/A ring->id = VCS;
1450N/A
1450N/A ring->write_tail = ring_write_tail;
1450N/A if (IS_GEN6(dev) || IS_GEN7(dev)) {
1450N/A ring->mmio_base = GEN6_BSD_RING_BASE;
1450N/A /* gen6 bsd needs a special wa for tail updates */
1450N/A if (IS_GEN6(dev))
1450N/A ring->write_tail = gen6_bsd_ring_write_tail;
1450N/A ring->flush = gen6_bsd_ring_flush;
1450N/A ring->add_request = gen6_add_request;
1450N/A ring->get_seqno = gen6_ring_get_seqno;
1450N/A ring->set_seqno = ring_set_seqno;
1450N/A ring->irq_enable_mask = GT_BSD_USER_INTERRUPT;
1450N/A ring->irq_get = gen6_ring_get_irq;
1450N/A ring->irq_put = gen6_ring_put_irq;
1450N/A ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1450N/A ring->sync_to = gen6_ring_sync;
1450N/A ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VR;
1450N/A ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_INVALID;
1450N/A ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VB;
1450N/A ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_VVE;
1450N/A ring->signal_mbox[RCS] = GEN6_RVSYNC;
1450N/A ring->signal_mbox[VCS] = GEN6_NOSYNC;
1450N/A ring->signal_mbox[BCS] = GEN6_BVSYNC;
1450N/A ring->signal_mbox[VECS] = GEN6_VEVSYNC;
1450N/A } else {
1450N/A ring->mmio_base = BSD_RING_BASE;
1450N/A ring->flush = bsd_ring_flush;
1450N/A ring->add_request = i9xx_add_request;
1450N/A ring->get_seqno = ring_get_seqno;
1450N/A ring->set_seqno = ring_set_seqno;
1450N/A if (IS_GEN5(dev)) {
1450N/A ring->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
1450N/A ring->irq_get = gen5_ring_get_irq;
1450N/A ring->irq_put = gen5_ring_put_irq;
1450N/A } else {
1450N/A ring->irq_enable_mask = I915_BSD_USER_INTERRUPT;
1450N/A ring->irq_get = i9xx_ring_get_irq;
1450N/A ring->irq_put = i9xx_ring_put_irq;
1450N/A }
1450N/A ring->dispatch_execbuffer = i965_dispatch_execbuffer;
1450N/A }
1450N/A ring->init = init_ring_common;
1450N/A
1450N/A return intel_init_ring_buffer(dev, ring);
1450N/A}
1450N/A
1450N/Aint intel_init_blt_ring_buffer(struct drm_device *dev)
1450N/A{
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
1450N/A
1450N/A ring->name = "blitter ring";
1450N/A ring->id = BCS;
1450N/A
1450N/A ring->mmio_base = BLT_RING_BASE;
1450N/A ring->write_tail = ring_write_tail;
1450N/A ring->flush = gen6_ring_flush;
1450N/A ring->add_request = gen6_add_request;
1450N/A ring->get_seqno = gen6_ring_get_seqno;
1450N/A ring->set_seqno = ring_set_seqno;
1450N/A ring->irq_enable_mask = GT_BLT_USER_INTERRUPT;
1450N/A ring->irq_get = gen6_ring_get_irq;
1450N/A ring->irq_put = gen6_ring_put_irq;
1450N/A ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1450N/A ring->sync_to = gen6_ring_sync;
1450N/A ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_BR;
1450N/A ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_BV;
1450N/A ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_INVALID;
1450N/A ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_BVE;
1450N/A ring->signal_mbox[RCS] = GEN6_RBSYNC;
1450N/A ring->signal_mbox[VCS] = GEN6_VBSYNC;
1450N/A ring->signal_mbox[BCS] = GEN6_NOSYNC;
1450N/A ring->signal_mbox[VECS] = GEN6_VEBSYNC;
1450N/A ring->init = init_ring_common;
1450N/A
1450N/A return intel_init_ring_buffer(dev, ring);
1450N/A}
1450N/A
1450N/Aint intel_init_vebox_ring_buffer(struct drm_device *dev)
1450N/A{
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A struct intel_ring_buffer *ring = &dev_priv->ring[VECS];
1450N/A
1450N/A ring->name = "video enhancement ring";
1450N/A ring->id = VECS;
1450N/A
1450N/A ring->mmio_base = VEBOX_RING_BASE;
1450N/A ring->write_tail = ring_write_tail;
1450N/A ring->flush = gen6_ring_flush;
1450N/A ring->add_request = gen6_add_request;
1450N/A ring->get_seqno = gen6_ring_get_seqno;
1450N/A ring->set_seqno = ring_set_seqno;
1450N/A ring->irq_enable_mask = PM_VEBOX_USER_INTERRUPT |
1450N/A PM_VEBOX_CS_ERROR_INTERRUPT;
1450N/A ring->irq_get = hsw_vebox_get_irq;
1450N/A ring->irq_put = hsw_vebox_put_irq;
1450N/A ring->dispatch_execbuffer = gen6_ring_dispatch_execbuffer;
1450N/A ring->sync_to = gen6_ring_sync;
1450N/A ring->semaphore_register[RCS] = MI_SEMAPHORE_SYNC_VER;
1450N/A ring->semaphore_register[VCS] = MI_SEMAPHORE_SYNC_VEV;
1450N/A ring->semaphore_register[BCS] = MI_SEMAPHORE_SYNC_VEB;
1450N/A ring->semaphore_register[VECS] = MI_SEMAPHORE_SYNC_INVALID;
1450N/A ring->signal_mbox[RCS] = GEN6_RVESYNC;
1450N/A ring->signal_mbox[VCS] = GEN6_VVESYNC;
1450N/A ring->signal_mbox[BCS] = GEN6_BVESYNC;
1450N/A ring->signal_mbox[VECS] = GEN6_NOSYNC;
1450N/A ring->init = init_ring_common;
1450N/A
1450N/A return intel_init_ring_buffer(dev, ring);
1450N/A}
1450N/A
1450N/Aint
1450N/Aintel_ring_flush_all_caches(struct intel_ring_buffer *ring)
1450N/A{
1450N/A int ret;
1450N/A
1450N/A if (!ring->gpu_caches_dirty)
1450N/A return 0;
1450N/A
1450N/A ret = ring->flush(ring, 0, I915_GEM_GPU_DOMAINS);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A
1450N/A ring->gpu_caches_dirty = false;
1450N/A return 0;
1450N/A}
1450N/A
1450N/Aint
1450N/Aintel_ring_invalidate_all_caches(struct intel_ring_buffer *ring)
1450N/A{
1450N/A uint32_t flush_domains;
1450N/A int ret;
1450N/A
1450N/A flush_domains = 0;
1450N/A if (ring->gpu_caches_dirty)
1450N/A flush_domains = I915_GEM_GPU_DOMAINS;
1450N/A
1450N/A ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, flush_domains);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A
1450N/A ring->gpu_caches_dirty = false;
1450N/A return 0;
1450N/A}