1450N/A/*
1450N/A * Copyright (c) 2006, 2013, Oracle and/or its affiliates. All rights reserved.
1450N/A */
1450N/A
1450N/A/*
1450N/A * Copyright (c) 2009, 2013, Intel Corporation.
1450N/A * All Rights Reserved.
1450N/A *
1450N/A * Permission is hereby granted, free of charge, to any person obtaining a
1450N/A * copy of this software and associated documentation files (the "Software"),
1450N/A * to deal in the Software without restriction, including without limitation
1450N/A * the rights to use, copy, modify, merge, publish, distribute, sublicense,
1450N/A * and/or sell copies of the Software, and to permit persons to whom the
1450N/A * Software is furnished to do so, subject to the following conditions:
1450N/A *
1450N/A * The above copyright notice and this permission notice (including the next
1450N/A * paragraph) shall be included in all copies or substantial portions of the
1450N/A * Software.
1450N/A *
1450N/A * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
1450N/A * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
1450N/A * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
1450N/A * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
1450N/A * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
1450N/A * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
1450N/A * IN THE SOFTWARE.
1450N/A *
1450N/A * Authors:
1450N/A * Eric Anholt <eric@anholt.net>
1450N/A *
1450N/A */
1450N/A
1450N/A#include <sys/x86_archext.h>
1450N/A#include <sys/vfs_opreg.h>
1450N/A#include "drmP.h"
1450N/A#include "drm.h"
1450N/A#include "drm_mm.h"
1450N/A#include "i915_drm.h"
1450N/A#include "i915_drv.h"
1450N/A#include "intel_drv.h"
1450N/A
1450N/Astatic void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
1450N/Astatic void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
1450N/Astatic int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
1450N/A unsigned alignment,
1450N/A bool map_and_fenceable,
1450N/A bool nonblocking);
1450N/Astatic int i915_gem_phys_pwrite(struct drm_device *dev,
1450N/A struct drm_i915_gem_object *obj,
1450N/A struct drm_i915_gem_pwrite *args,
1450N/A struct drm_file *file);
1450N/Astatic void i915_gem_write_fence(struct drm_device *dev, int reg,
1450N/A struct drm_i915_gem_object *obj);
1450N/Astatic void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
1450N/A struct drm_i915_fence_reg *fence,
1450N/A bool enable);
1450N/A
1450N/Aint i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
1450N/A
1450N/Astatic inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
1450N/A{
1450N/A if (obj->tiling_mode)
1450N/A i915_gem_release_mmap(obj);
1450N/A
1450N/A /* As we do not have an associated fence register, we will force
1450N/A * a tiling change if we ever need to acquire one.
1450N/A */
1450N/A obj->fence_dirty = false;
1450N/A obj->fence_reg = I915_FENCE_REG_NONE;
1450N/A}
1450N/A
1450N/A/* some bookkeeping */
1450N/Astatic void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
1450N/A size_t size)
1450N/A{
1450N/A dev_priv->mm.object_count++;
1450N/A dev_priv->mm.object_memory += size;
1450N/A}
1450N/A
1450N/Astatic void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
1450N/A size_t size)
1450N/A{
1450N/A dev_priv->mm.object_count--;
1450N/A dev_priv->mm.object_memory -= size;
1450N/A}
1450N/A
1450N/Astatic int
1450N/Ai915_gem_wait_for_error(struct i915_gpu_error *error)
1450N/A{
1450N/A
1450N/A#define EXIT_COND (!i915_reset_in_progress(error) || \
1450N/A i915_terminally_wedged(error))
1450N/A if (EXIT_COND)
1450N/A return 0;
1450N/A
1450N/A /*
1450N/A * Only wait 10 seconds for the gpu reset to complete to avoid hanging
1450N/A * userspace. If it takes that long something really bad is going on and
1450N/A * we should simply try to bail out and fail as gracefully as possible.
1450N/A */
1450N/A if (wait_for(EXIT_COND, 10*1000)) {
1450N/A DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
1450N/A return -EIO;
1450N/A }
1450N/A#undef EXIT_COND
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/Aint
1450N/Ai915_mutex_lock_interruptible(struct drm_device *dev)
1450N/A{
1450N/A struct drm_i915_private *dev_priv = dev->dev_private;
1450N/A int ret;
1450N/A
1450N/A ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A /* fix me mutex_lock_interruptible */
1450N/A mutex_lock(&dev->struct_mutex);
1450N/A
1450N/A WARN_ON(i915_verify_lists(dev));
1450N/A return 0;
1450N/A}
1450N/A
1450N/Astatic inline bool
1450N/Ai915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
1450N/A{
1450N/A return obj->gtt_space && !obj->active;
1450N/A}
1450N/A
1450N/Aint
1450N/A/* LINTED */
1450N/Ai915_gem_init_ioctl(DRM_IOCTL_ARGS)
1450N/A{
1450N/A struct drm_i915_gem_init *args = data;
1450N/A struct drm_i915_private *dev_priv = dev->dev_private;
1450N/A
1450N/A if (drm_core_check_feature(dev, DRIVER_MODESET))
1450N/A return -ENODEV;
1450N/A
1450N/A if (args->gtt_start >= args->gtt_end ||
1450N/A (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
1450N/A return -EINVAL;
1450N/A
1450N/A /* GEM with user mode setting was never supported on ilk and later. */
1450N/A if (INTEL_INFO(dev)->gen >= 5)
1450N/A return -ENODEV;
1450N/A
1450N/A mutex_lock(&dev->struct_mutex);
1450N/A i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
1450N/A args->gtt_end);
1450N/A dev_priv->gtt.mappable_end = args->gtt_end;
1450N/A mutex_unlock(&dev->struct_mutex);
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/Aint
1450N/A/* LINTED */
1450N/Ai915_gem_get_aperture_ioctl(DRM_IOCTL_ARGS)
1450N/A{
1450N/A struct drm_i915_private *dev_priv = dev->dev_private;
1450N/A struct drm_i915_gem_get_aperture *args = data;
1450N/A struct drm_i915_gem_object *obj;
1450N/A size_t pinned;
1450N/A
1450N/A pinned = 0;
1450N/A mutex_lock(&dev->struct_mutex);
1450N/A list_for_each_entry(obj, struct drm_i915_gem_object, &dev_priv->mm.bound_list, global_list)
1450N/A if (obj->pin_count)
1450N/A pinned += obj->gtt_space->size;
1450N/A mutex_unlock(&dev->struct_mutex);
1450N/A
1450N/A args->aper_size = dev_priv->gtt.total;
1450N/A args->aper_available_size = args->aper_size -pinned;
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/Avoid *i915_gem_object_alloc(struct drm_device *dev)
1450N/A{
1450N/A return NULL;
1450N/A}
1450N/A
1450N/Avoid i915_gem_object_free(struct drm_i915_gem_object *obj)
1450N/A{
1450N/A}
1450N/A
1450N/Astatic int
1450N/Ai915_gem_create(struct drm_file *file,
1450N/A struct drm_device *dev,
1450N/A uint64_t size,
1450N/A uint32_t *handle_p)
1450N/A{
1450N/A struct drm_i915_gem_object *obj;
1450N/A int ret;
1450N/A u32 handle;
1450N/A
1450N/A size = roundup(size, PAGE_SIZE);
1450N/A if (size == 0)
1450N/A return -EINVAL;
1450N/A
1450N/A /* Allocate the new object */
1450N/A obj = i915_gem_alloc_object(dev, size);
1450N/A if (obj == NULL)
1450N/A return -ENOMEM;
1450N/A
1450N/A ret = drm_gem_handle_create(file, &obj->base, &handle);
1450N/A if (ret) {
1450N/A drm_gem_object_release(&obj->base);
1450N/A i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
1450N/A i915_gem_object_free(obj);
1450N/A return ret;
1450N/A }
1450N/A
1450N/A /* drop reference from allocate - handle holds it now */
1450N/A drm_gem_object_unreference(&obj->base);
1450N/A
1450N/A *handle_p = handle;
1450N/A return 0;
1450N/A}
1450N/A
1450N/Aint
1450N/Ai915_gem_dumb_create(struct drm_file *file,
1450N/A struct drm_device *dev,
1450N/A struct drm_mode_create_dumb *args)
1450N/A{
1450N/A /* have to work out size/pitch and return them */
1450N/A args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
1450N/A args->size = args->pitch * args->height;
1450N/A return i915_gem_create(file, dev,
1450N/A args->size, &args->handle);
1450N/A}
1450N/A
1450N/Aint i915_gem_dumb_destroy(struct drm_file *file,
1450N/A struct drm_device *dev,
1450N/A uint32_t handle)
1450N/A{
1450N/A return drm_gem_handle_delete(file, handle);
1450N/A}
1450N/A/**
1450N/A * Creates a new mm object and returns a handle to it.
1450N/A */
1450N/Aint
1450N/A/* LINTED */
1450N/Ai915_gem_create_ioctl(DRM_IOCTL_ARGS)
1450N/A{
1450N/A struct drm_i915_gem_create *args = data;
1450N/A return i915_gem_create(file, dev,
1450N/A args->size, &args->handle);
1450N/A}
1450N/A
1450N/Astatic inline void
1450N/Aslow_shmem_bit17_copy(caddr_t gpu_page,
1450N/A int gpu_offset,
1450N/A uint32_t *cpu_page,
1450N/A int cpu_offset,
1450N/A int length,
1450N/A int is_read)
1450N/A{
1450N/A
1450N/A int ret;
1450N/A /* Use the unswizzled path if this page isn't affected. */
1450N/A if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
1450N/A if (is_read)
1450N/A ret = DRM_COPY_TO_USER(cpu_page + cpu_offset,
1450N/A gpu_page + gpu_offset, length);
1450N/A else
1450N/A ret = DRM_COPY_FROM_USER(gpu_page + gpu_offset,
1450N/A cpu_page + cpu_offset, length);
1450N/A if (ret)
1450N/A DRM_ERROR("slow_shmem_bit17_copy unswizzled path failed, ret = %d", ret);
1450N/A return;
1450N/A }
1450N/A
1450N/A /* Copy the data, XORing A6 with A17 (1). The user already knows he's
1450N/A * XORing with the other bits (A9 for Y, A9 and A10 for X)
1450N/A */
1450N/A while (length > 0) {
1450N/A int cacheline_end = ALIGN(gpu_offset + 1, 64);
1450N/A int this_length = min(cacheline_end - gpu_offset, length);
1450N/A int swizzled_gpu_offset = gpu_offset ^ 64;
1450N/A
1450N/A if (is_read) {
1450N/A ret = DRM_COPY_TO_USER(cpu_page + cpu_offset,
1450N/A gpu_page + swizzled_gpu_offset,
1450N/A this_length);
1450N/A } else {
1450N/A ret = DRM_COPY_FROM_USER(gpu_page + swizzled_gpu_offset,
1450N/A cpu_page + cpu_offset,
1450N/A this_length);
1450N/A }
1450N/A cpu_offset += this_length;
1450N/A gpu_offset += this_length;
1450N/A length -= this_length;
1450N/A }
1450N/A if (ret)
1450N/A DRM_ERROR("slow_shmem_bit17_copy failed, ret = %d", ret);
1450N/A
1450N/A}
1450N/A
1450N/Aint
1450N/A/* LINTED */
1450N/Ai915_gem_shmem_pread(struct drm_device *dev,
1450N/A struct drm_i915_gem_object *obj,
1450N/A struct drm_i915_gem_pread *args,
1450N/A struct drm_file *file_priv)
1450N/A{
1450N/A ssize_t remain, page_length;
1450N/A uint32_t offset;
1450N/A uint64_t first_data_page;
1450N/A int shmem_page_index, shmem_page_offset;
1450N/A int data_page_index, data_page_offset;
1450N/A int ret = 0;
1450N/A uint64_t data_ptr = args->data_ptr;
1450N/A int do_bit17_swizzling;
1450N/A int needs_clflush = 0;
1450N/A uint32_t *user_data = (uint32_t *)(uintptr_t)args->data_ptr;
1450N/A
1450N/A remain = args->size;
1450N/A
1450N/A do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1450N/A
1450N/A if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
1450N/A /* If we're not in the cpu read domain, set ourself into the gtt
1450N/A * read domain and manually flush cachelines (if required). This
1450N/A * optimizes for the case when the gpu will dirty the data
1450N/A * anyway again before the next pread happens. */
1450N/A if (obj->cache_level == I915_CACHE_NONE)
1450N/A needs_clflush = 1;
1450N/A if (obj->gtt_space) {
1450N/A ret = i915_gem_object_set_to_gtt_domain(obj, false);
1450N/A if (ret)
1450N/A return ret;
1450N/A }
1450N/A }
1450N/A
1450N/A ret = i915_gem_object_get_pages(obj);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A i915_gem_object_pin_pages(obj);
1450N/A
1450N/A first_data_page = data_ptr / PAGE_SIZE;
1450N/A
1450N/A offset = args->offset;
1450N/A
1450N/A if (needs_clflush)
1450N/A i915_gem_clflush_object(obj);
1450N/A
1450N/A if (do_bit17_swizzling) {
1450N/A while (remain > 0) {
1450N/A /* Operation in this page
1450N/A *
1450N/A * shmem_page_index = page number within shmem file
1450N/A * shmem_page_offset = offset within page in shmem file
1450N/A * data_page_index = page number in get_user_pages return
1450N/A * data_page_offset = offset with data_page_index page.
1450N/A * page_length = bytes to copy for this page
1450N/A */
1450N/A shmem_page_index = offset / DRM_PAGE_SIZE;
1450N/A shmem_page_offset = offset & ~DRM_PAGE_MASK;
1450N/A data_page_index = data_ptr / DRM_PAGE_SIZE - first_data_page;
1450N/A data_page_offset = data_ptr & ~DRM_PAGE_MASK;
1450N/A
1450N/A page_length = remain;
1450N/A if ((shmem_page_offset + page_length) > DRM_PAGE_SIZE)
1450N/A page_length = PAGE_SIZE - shmem_page_offset;
1450N/A if ((data_page_offset + page_length) > DRM_PAGE_SIZE)
1450N/A page_length = PAGE_SIZE - data_page_offset;
1450N/A
1450N/A slow_shmem_bit17_copy(obj->page_list[shmem_page_index],
1450N/A shmem_page_offset,
1450N/A user_data + data_page_index * DRM_PAGE_SIZE,
1450N/A data_page_offset,
1450N/A page_length,
1450N/A 1);
1450N/A
1450N/A remain -= page_length;
1450N/A data_ptr += page_length;
1450N/A offset += page_length;
1450N/A }
1450N/A } else {
1450N/A ret = DRM_COPY_TO_USER((caddr_t)user_data,
1450N/A obj->base.kaddr + args->offset,
1450N/A args->size);
1450N/A if (ret)
1450N/A DRM_ERROR("shmem_pread_copy failed, ret = %d", ret);
1450N/A }
1450N/A i915_gem_object_unpin_pages(obj);
1450N/A return ret;
1450N/A}
1450N/A
1450N/A/**
1450N/A * Reads data from the object referenced by handle.
1450N/A *
1450N/A * On error, the contents of *data are undefined.
1450N/A */
1450N/Aint
1450N/A/* LINTED */
1450N/Ai915_gem_pread_ioctl(DRM_IOCTL_ARGS)
1450N/A{
1450N/A struct drm_i915_gem_pread *args = data;
1450N/A struct drm_i915_gem_object *obj;
1450N/A int ret = 0;
1450N/A
1450N/A if (args->size == 0)
1450N/A return 0;
1450N/A
1450N/A ret = i915_mutex_lock_interruptible(dev);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1450N/A if (&obj->base == NULL) {
1450N/A ret = -ENOENT;
1450N/A goto unlock;
1450N/A }
1450N/A
1450N/A /* Bounds check source. */
1450N/A if (args->offset > obj->base.size ||
1450N/A args->size > obj->base.size - args->offset) {
1450N/A ret = -EINVAL;
1450N/A goto out;
1450N/A }
1450N/A
1450N/A /* prime objects have no backing filp to GEM pread/pwrite
1450N/A * pages from.
1450N/A */
1450N/A ret = i915_gem_shmem_pread(dev, obj, args, file);
1450N/A
1450N/A TRACE_GEM_OBJ_HISTORY(obj, "pread");
1450N/A
1450N/Aout:
1450N/A drm_gem_object_unreference(&obj->base);
1450N/Aunlock:
1450N/A mutex_unlock(&dev->struct_mutex);
1450N/A return ret;
1450N/A}
1450N/A
1450N/Astatic int
1450N/Ai915_gem_gtt_pwrite_fast(struct drm_device *dev,
1450N/A struct drm_i915_gem_object *obj,
1450N/A struct drm_i915_gem_pwrite *args,
1450N/A /* LINTED */
1450N/A struct drm_file *file_priv)
1450N/A{
1450N/A uint32_t *user_data;
1450N/A int ret = 0;
1450N/A ret = i915_gem_object_pin(obj, 0, true, true);
1450N/A if (ret)
1450N/A goto out;
1450N/A
1450N/A ret = i915_gem_object_set_to_gtt_domain(obj, true);
1450N/A if (ret)
1450N/A goto out_unpin;
1450N/A
1450N/A ret = i915_gem_object_put_fence(obj);
1450N/A if (ret)
1450N/A goto out_unpin;
1450N/A user_data = (uint32_t *)(uintptr_t)args->data_ptr;
1450N/A
1450N/A ret = DRM_COPY_FROM_USER(obj->base.kaddr + args->offset, user_data, args->size);
1450N/A if (ret) {
1450N/A DRM_ERROR("copy_from_user failed, ret = %d", ret);
1450N/A return ret;
1450N/A }
1450N/A
1450N/Aout_unpin:
1450N/A i915_gem_object_unpin(obj);
1450N/Aout:
1450N/A return ret;
1450N/A}
1450N/A
1450N/Aint
1450N/Ai915_gem_shmem_pwrite(struct drm_device *dev,
1450N/A struct drm_i915_gem_object *obj,
1450N/A struct drm_i915_gem_pwrite *args,
1450N/A /* LINTED */
1450N/A struct drm_file *file_priv)
1450N/A{
1450N/A ssize_t remain, page_length;
1450N/A uint32_t offset;
1450N/A uint64_t first_data_page;
1450N/A int shmem_page_index, shmem_page_offset;
1450N/A int data_page_index, data_page_offset;
1450N/A int ret = 0;
1450N/A uint64_t data_ptr = args->data_ptr;
1450N/A int needs_clflush_after = 0;
1450N/A int needs_clflush_before = 0;
1450N/A int do_bit17_swizzling;
1450N/A uint32_t *user_data = (uint32_t *)(uintptr_t)args->data_ptr;
1450N/A
1450N/A remain = args->size;
1450N/A
1450N/A /* Pin the user pages containing the data. We can't fault while
1450N/A * holding the struct mutex, and all of the pwrite implementations
1450N/A * want to hold it while dereferencing the user data.
1450N/A */
1450N/A first_data_page = data_ptr / PAGE_SIZE;
1450N/A
1450N/A do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1450N/A
1450N/A if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1450N/A /* If we're not in the cpu write domain, set ourself into the gtt
1450N/A * write domain and manually flush cachelines (if required). This
1450N/A * optimizes for the case when the gpu will use the data
1450N/A * right away and we therefore have to clflush anyway. */
1450N/A if (obj->cache_level == I915_CACHE_NONE)
1450N/A needs_clflush_after = 1;
1450N/A if (obj->gtt_space) {
1450N/A ret = i915_gem_object_set_to_gtt_domain(obj, true);
1450N/A if (ret)
1450N/A return ret;
1450N/A }
1450N/A }
1450N/A /* Same trick applies for invalidate partially written cachelines before
1450N/A * writing. */
1450N/A if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
1450N/A && obj->cache_level == I915_CACHE_NONE)
1450N/A needs_clflush_before = 1;
1450N/A
1450N/A ret = i915_gem_object_get_pages(obj);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A i915_gem_object_pin_pages(obj);
1450N/A
1450N/A if (needs_clflush_before)
1450N/A i915_gem_clflush_object(obj);
1450N/A
1450N/A offset = args->offset;
1450N/A obj->dirty = 1;
1450N/A
1450N/A if (do_bit17_swizzling) {
1450N/A while (remain > 0) {
1450N/A /* Operation in this page
1450N/A *
1450N/A * shmem_page_index = page number within shmem file
1450N/A * shmem_page_offset = offset within page in shmem file
1450N/A * data_page_index = page number in get_user_pages return
1450N/A * data_page_offset = offset with data_page_index page.
1450N/A * page_length = bytes to copy for this page
1450N/A */
1450N/A shmem_page_index = offset / DRM_PAGE_SIZE;
1450N/A shmem_page_offset = offset & ~DRM_PAGE_MASK;
1450N/A data_page_index = data_ptr / DRM_PAGE_SIZE - first_data_page;
1450N/A data_page_offset = data_ptr & ~DRM_PAGE_MASK;
1450N/A
1450N/A page_length = remain;
1450N/A if ((shmem_page_offset + page_length) > DRM_PAGE_SIZE)
1450N/A page_length = PAGE_SIZE - shmem_page_offset;
1450N/A if ((data_page_offset + page_length) > DRM_PAGE_SIZE)
1450N/A page_length = PAGE_SIZE - data_page_offset;
1450N/A
1450N/A slow_shmem_bit17_copy(obj->page_list[shmem_page_index],
1450N/A shmem_page_offset,
1450N/A user_data + data_page_index * DRM_PAGE_SIZE,
1450N/A data_page_offset,
1450N/A page_length,
1450N/A 0);
1450N/A
1450N/A remain -= page_length;
1450N/A data_ptr += page_length;
1450N/A offset += page_length;
1450N/A }
1450N/A } else {
1450N/A ret = DRM_COPY_FROM_USER(obj->base.kaddr + args->offset,
1450N/A (caddr_t)user_data,
1450N/A args->size);
1450N/A if (ret)
1450N/A DRM_ERROR("shmem_pwrite_copy failed, ret = %d", ret);
1450N/A }
1450N/A
1450N/A i915_gem_object_unpin_pages(obj);
1450N/A
1450N/A if (needs_clflush_after)
1450N/A i915_gem_chipset_flush(dev);
1450N/A return ret;
1450N/A}
1450N/A
1450N/A/**
1450N/A * Writes data to the object referenced by handle.
1450N/A *
1450N/A * On error, the contents of the buffer that were to be modified are undefined.
1450N/A */
1450N/Aint
1450N/A/* LINTED */
1450N/Ai915_gem_pwrite_ioctl(DRM_IOCTL_ARGS)
1450N/A{
1450N/A struct drm_i915_gem_pwrite *args = data;
1450N/A struct drm_i915_gem_object *obj;
1450N/A int ret;
1450N/A
1450N/A if (args->size == 0)
1450N/A return 0;
1450N/A
1450N/A ret = i915_mutex_lock_interruptible(dev);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1450N/A if (&obj->base == NULL) {
1450N/A ret = -ENOENT;
1450N/A goto unlock;
1450N/A }
1450N/A
1450N/A /* Bounds check destination. */
1450N/A if (args->offset > obj->base.size ||
1450N/A args->size > obj->base.size - args->offset) {
1450N/A ret = -EINVAL;
1450N/A goto out;
1450N/A }
1450N/A
1450N/A /* prime objects have no backing filp to GEM pread/pwrite
1450N/A * pages from.
1450N/A */
1450N/A TRACE_GEM_OBJ_HISTORY(obj, "pwrite");
1450N/A ret = -EFAULT;
1450N/A /* We can only do the GTT pwrite on untiled buffers, as otherwise
1450N/A * it would end up going through the fenced access, and we'll get
1450N/A * different detiling behavior between reading and writing.
1450N/A * pread/pwrite currently are reading and writing from the CPU
1450N/A * perspective, requiring manual detiling by the client.
1450N/A */
1450N/A if (obj->phys_obj) {
1450N/A ret = i915_gem_phys_pwrite(dev, obj, args, file);
1450N/A goto out;
1450N/A }
1450N/A
1450N/A if (obj->cache_level == I915_CACHE_NONE &&
1450N/A obj->tiling_mode == I915_TILING_NONE &&
1450N/A obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1450N/A ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1450N/A /* Note that the gtt paths might fail with non-page-backed user
1450N/A * pointers (e.g. gtt mappings when moving data between
1450N/A * textures). Fallback to the shmem path in that case. */
1450N/A
1450N/A /* Flushing cursor object */
1450N/A if (obj->is_cursor)
1450N/A i915_gem_clflush_object(obj);
1450N/A }
1450N/A
1450N/A if (ret == -EFAULT || ret == -ENOSPC)
1450N/A ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1450N/A
1450N/Aout:
1450N/A drm_gem_object_unreference(&obj->base);
1450N/Aunlock:
1450N/A mutex_unlock(&dev->struct_mutex);
1450N/A return ret;
1450N/A}
1450N/A
1450N/Aint
1450N/Ai915_gem_check_wedge(struct i915_gpu_error *error,
1450N/A bool interruptible)
1450N/A{
1450N/A if (i915_reset_in_progress(error)) {
1450N/A /* Non-interruptible callers can't handle -EAGAIN, hence return
1450N/A * -EIO unconditionally for these. */
1450N/A if (!interruptible)
1450N/A return -EIO;
1450N/A
1450N/A /* Recovery complete, but the reset failed ... */
1450N/A if (i915_terminally_wedged(error))
1450N/A return -EIO;
1450N/A
1450N/A return -EAGAIN;
1450N/A }
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/A/*
1450N/A * Compare seqno against outstanding lazy request. Emit a request if they are
1450N/A * equal.
1450N/A */
1450N/Astatic int
1450N/Ai915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
1450N/A{
1450N/A int ret;
1450N/A
1450N/A BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1450N/A
1450N/A ret = 0;
1450N/A if (seqno == ring->outstanding_lazy_request)
1450N/A ret = i915_add_request(ring, NULL);
1450N/A
1450N/A return ret;
1450N/A}
1450N/A
1450N/A/**
1450N/A * __wait_seqno - wait until execution of seqno has finished
1450N/A * @ring: the ring expected to report seqno
1450N/A * @seqno: duh!
1450N/A * @reset_counter: reset sequence associated with the given seqno
1450N/A * @interruptible: do an interruptible wait (normally yes)
1450N/A * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1450N/A *
1450N/A * Note: It is of utmost importance that the passed in seqno and reset_counter
1450N/A * values have been read by the caller in an smp safe manner. Where read-side
1450N/A * locks are involved, it is sufficient to read the reset_counter before
1450N/A * unlocking the lock that protects the seqno. For lockless tricks, the
1450N/A * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1450N/A * inserted.
1450N/A *
1450N/A * Returns 0 if the seqno was found within the alloted time. Else returns the
1450N/A * errno with remaining time filled in timeout argument.
1450N/A */
1450N/Astatic int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1450N/A unsigned reset_counter,
1450N/A bool interruptible, clock_t timeout)
1450N/A{
1450N/A drm_i915_private_t *dev_priv = ring->dev->dev_private;
1450N/A clock_t wait_time = timeout;
1450N/A bool wait_forever = false;
1450N/A int ret = 0, end = 0;
1450N/A
1450N/A if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1450N/A return 0;
1450N/A
1450N/A if (wait_time == 0) {
1450N/A wait_time = 3 * DRM_HZ;
1450N/A }
1450N/A
1450N/A if (!ring->irq_get(ring))
1450N/A return -ENODEV;
1450N/A
1450N/A#define EXIT_COND \
1450N/A (i915_seqno_passed(ring->get_seqno(ring, false), seqno) || \
1450N/A i915_reset_in_progress(&dev_priv->gpu_error) || \
1450N/A reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1450N/A do {
1450N/A /* busy check is faster than cv wait on gen6+ */
1450N/A if (IS_GEN6(ring->dev)) {
1450N/A if (wait_for(EXIT_COND, jiffies_to_msecs(wait_time)))
1450N/A ret = -EBUSY;
1450N/A } else if (IS_GEN7(ring->dev) && !IS_HASWELL(ring->dev)) {
1450N/A /*
1450N/A * Frequently read CS register may cause my GEN7 platform hang,
1450N/A * but it's crucial for missed IRQ issue.
1450N/A * So the first wait busy check the seqno,
1450N/A * the second wait force correct ordering
1450N/A * between irq and seqno writes then check again.
1450N/A */
1450N/A u32 *regs = ring->status_page.page_addr;
1450N/A if (wait_for(i915_seqno_passed(regs[I915_GEM_HWS_INDEX],
1450N/A seqno) || i915_reset_in_progress(&dev_priv->gpu_error) ||
1450N/A reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter),
1450N/A 2500)) {
1450N/A if (wait_for(i915_seqno_passed(ring->get_seqno(ring, false),
1450N/A seqno) || i915_reset_in_progress(&dev_priv->gpu_error) ||
1450N/A reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter),
1450N/A 500)) {
1450N/A ret = -EBUSY;
1450N/A }
1450N/A }
1450N/A } else {
1450N/A DRM_WAIT(ret, &ring->irq_queue, EXIT_COND);
1450N/A }
1450N/A
1450N/A /* We need to check whether any gpu reset happened in between
1450N/A * the caller grabbing the seqno and now ... */
1450N/A if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
1450N/A ret = -EAGAIN;
1450N/A
1450N/A /* ... but upgrade the -EGAIN to an -EIO if the gpu is truely
1450N/A * gone. */
1450N/A end = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1450N/A if (end)
1450N/A ret = end;
1450N/A } while (end == 0 && wait_forever);
1450N/A
1450N/A
1450N/A ring->irq_put(ring);
1450N/A#undef EXIT_COND
1450N/A if (ret) {
1450N/A if ((gpu_dump > 0) && !IS_GEN7(ring->dev)) {
1450N/A ring_dump(ring->dev, ring);
1450N/A register_dump(ring->dev);
1450N/A gtt_dump(ring->dev);
1450N/A }
1450N/A DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
1450N/A __func__, ret, seqno, ring->get_seqno(ring, true),
1450N/A dev_priv->next_seqno);
1450N/A }
1450N/A
1450N/A return (ret);
1450N/A}
1450N/A
1450N/A/**
1450N/A * Waits for a sequence number to be signaled, and cleans up the
1450N/A * request and object lists appropriately for that event.
1450N/A */
1450N/Aint
1450N/Ai915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1450N/A{
1450N/A struct drm_device *dev = ring->dev;
1450N/A struct drm_i915_private *dev_priv = dev->dev_private;
1450N/A bool interruptible = dev_priv->mm.interruptible;
1450N/A int ret;
1450N/A
1450N/A BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1450N/A BUG_ON(seqno == 0);
1450N/A
1450N/A ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A ret = i915_gem_check_olr(ring, seqno);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A return __wait_seqno(ring, seqno,
1450N/A atomic_read(&dev_priv->gpu_error.reset_counter),
1450N/A interruptible, NULL);
1450N/A}
1450N/A
1450N/Astatic int
1450N/Ai915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1450N/A struct intel_ring_buffer *ring)
1450N/A{
1450N/A i915_gem_retire_requests_ring(ring);
1450N/A
1450N/A /* Manually manage the write flush as we may have not yet
1450N/A * retired the buffer.
1450N/A *
1450N/A * Note that the last_write_seqno is always the earlier of
1450N/A * the two (read/write) seqno, so if we haved successfully waited,
1450N/A * we know we have passed the last write.
1450N/A */
1450N/A obj->last_write_seqno = 0;
1450N/A obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/A/**
1450N/A * Ensures that all rendering to the object has completed and the object is
1450N/A * safe to unbind from the GTT or access from the CPU.
1450N/A */
1450N/Astatic int
1450N/Ai915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1450N/A bool readonly)
1450N/A{
1450N/A struct intel_ring_buffer *ring = obj->ring;
1450N/A u32 seqno;
1450N/A int ret;
1450N/A
1450N/A seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1450N/A if (seqno == 0)
1450N/A return 0;
1450N/A
1450N/A ret = i915_wait_seqno(ring, seqno);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A return i915_gem_object_wait_rendering__tail(obj, ring);
1450N/A}
1450N/A
1450N/A/* A nonblocking variant of the above wait. This is a highly dangerous routine
1450N/A * as the object state may change during this call.
1450N/A */
1450N/Astatic int
1450N/Ai915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1450N/A bool readonly)
1450N/A{
1450N/A struct drm_device *dev = obj->base.dev;
1450N/A struct drm_i915_private *dev_priv = dev->dev_private;
1450N/A struct intel_ring_buffer *ring = obj->ring;
1450N/A unsigned reset_counter;
1450N/A u32 seqno;
1450N/A int ret;
1450N/A
1450N/A BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1450N/A BUG_ON(!dev_priv->mm.interruptible);
1450N/A
1450N/A seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1450N/A if (seqno == 0)
1450N/A return 0;
1450N/A
1450N/A ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A ret = i915_gem_check_olr(ring, seqno);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1450N/A mutex_unlock(&dev->struct_mutex);
1450N/A ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1450N/A mutex_lock(&dev->struct_mutex);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A return i915_gem_object_wait_rendering__tail(obj, ring);
1450N/A}
1450N/A
1450N/A/**
1450N/A * Called when user space prepares to use an object with the CPU, either
1450N/A * through the mmap ioctl's mapping or a GTT mapping.
1450N/A */
1450N/Aint
1450N/A/* LINTED */
1450N/Ai915_gem_set_domain_ioctl(DRM_IOCTL_ARGS)
1450N/A{
1450N/A struct drm_i915_gem_set_domain *args = data;
1450N/A struct drm_i915_gem_object *obj;
1450N/A uint32_t read_domains = args->read_domains;
1450N/A uint32_t write_domain = args->write_domain;
1450N/A int ret;
1450N/A
1450N/A /* Only handle setting domains to types used by the CPU. */
1450N/A if (write_domain & I915_GEM_GPU_DOMAINS)
1450N/A return -EINVAL;
1450N/A
1450N/A if (read_domains & I915_GEM_GPU_DOMAINS)
1450N/A return -EINVAL;
1450N/A
1450N/A /* Having something in the write domain implies it's in the read
1450N/A * domain, and only that read domain. Enforce that in the request.
1450N/A */
1450N/A if (write_domain != 0 && read_domains != write_domain)
1450N/A return -EINVAL;
1450N/A
1450N/A ret = i915_mutex_lock_interruptible(dev);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1450N/A if (&obj->base == NULL) {
1450N/A ret = -ENOENT;
1450N/A goto unlock;
1450N/A }
1450N/A
1450N/A /* Try to flush the object off the GPU without holding the lock.
1450N/A * We will repeat the flush holding the lock in the normal manner
1450N/A * to catch cases where we are gazumped.
1450N/A */
1450N/A ret = i915_gem_object_wait_rendering__nonblocking(obj, !write_domain);
1450N/A if (ret)
1450N/A goto unref;
1450N/A
1450N/A if (read_domains & I915_GEM_DOMAIN_GTT) {
1450N/A ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1450N/A
1450N/A /* Silently promote "you're not bound, there was nothing to do"
1450N/A * to success, since the client was just asking us to
1450N/A * make sure everything was done.
1450N/A */
1450N/A if (ret == -EINVAL)
1450N/A ret = 0;
1450N/A } else {
1450N/A ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1450N/A }
1450N/A
1450N/Aunref:
1450N/A drm_gem_object_unreference(&obj->base);
1450N/Aunlock:
1450N/A mutex_unlock(&dev->struct_mutex);
1450N/A return ret;
1450N/A}
1450N/A
1450N/A/**
1450N/A * Called when user space has done writes to this buffer
1450N/A */
1450N/Aint
1450N/A/* LINTED */
1450N/Ai915_gem_sw_finish_ioctl(DRM_IOCTL_ARGS)
1450N/A{
1450N/A struct drm_i915_gem_sw_finish *args = data;
1450N/A struct drm_i915_gem_object *obj;
1450N/A int ret = 0;
1450N/A
1450N/A ret = i915_mutex_lock_interruptible(dev);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1450N/A if (&obj->base == NULL) {
1450N/A ret = -ENOENT;
1450N/A goto unlock;
1450N/A }
1450N/A
1450N/A /* Pinned buffers may be scanout, so flush the cache */
1450N/A if (obj->pin_count)
1450N/A i915_gem_object_flush_cpu_write_domain(obj);
1450N/A
1450N/A drm_gem_object_unreference(&obj->base);
1450N/Aunlock:
1450N/A mutex_unlock(&dev->struct_mutex);
1450N/A return ret;
1450N/A}
1450N/A
1450N/A/**
1450N/A * Maps the contents of an object, returning the address it is mapped
1450N/A * into.
1450N/A *
1450N/A * While the mapping holds a reference on the contents of the object, it doesn't
1450N/A * imply a ref on the object itself.
1450N/A */
1450N/Aint
1450N/A/* LINTED */
1450N/Ai915_gem_mmap_ioctl(DRM_IOCTL_ARGS)
1450N/A{
1450N/A struct drm_i915_private *dev_priv = dev->dev_private;
1450N/A struct drm_i915_gem_mmap *args = data;
1450N/A struct drm_gem_object *obj;
1450N/A caddr_t vvaddr = NULL;
1450N/A int ret;
1450N/A
1450N/A if (!(dev->driver->driver_features & DRIVER_GEM))
1450N/A return -ENODEV;
1450N/A
1450N/A obj = drm_gem_object_lookup(dev, file, args->handle);
1450N/A if (obj == NULL)
1450N/A return -EBADF;
1450N/A
1450N/A /* prime objects have no backing filp to GEM mmap
1450N/A * pages from.
1450N/A */
1450N/A
1450N/A if (obj->size > dev_priv->gtt.mappable_end) {
1450N/A drm_gem_object_unreference_unlocked(obj);
1450N/A return -E2BIG;
1450N/A }
1450N/A
1450N/A ret = ddi_devmap_segmap(dev_id, (off_t)obj->maplist.user_token,
1450N/A ttoproc(curthread)->p_as, &vvaddr, obj->maplist.map->size,
1450N/A PROT_ALL, PROT_ALL, MAP_SHARED, credp);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A mutex_lock(&dev->struct_mutex);
1450N/A drm_gem_object_unreference(obj);
1450N/A mutex_unlock(&dev->struct_mutex);
1450N/A
1450N/A args->addr_ptr = (uint64_t)(uintptr_t)vvaddr;
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/Avoid
1450N/Ai915_gem_fault(struct drm_gem_object *obj)
1450N/A{
1450N/A struct drm_device *dev = obj->dev;
1450N/A struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1450N/A uint64_t start;
1450N/A int ret = 0;
1450N/A
1450N/A if (obj->maplist.map->gtt_mmap)
1450N/A return;
1450N/A
1450N/A /* Now bind it into the GTT if needed */
1450N/A mutex_lock(&dev->struct_mutex);
1450N/A
1450N/A TRACE_GEM_OBJ_HISTORY(obj_priv, "gfault");
1450N/A
1450N/A /* Access to snoopable pages through the GTT is incoherent. */
1450N/A if (obj_priv->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1450N/A ret = -EINVAL;
1450N/A goto unlock;
1450N/A }
1450N/A
1450N/A ret = i915_gem_object_pin(obj_priv, 0, true, false);
1450N/A if (ret)
1450N/A goto unlock;
1450N/A
1450N/A ret = i915_gem_object_set_to_gtt_domain(obj_priv, 1);
1450N/A if (ret)
1450N/A goto unpin;
1450N/A
1450N/A ret = i915_gem_object_get_fence(obj_priv);
1450N/A if (ret)
1450N/A goto unpin;
1450N/A
1450N/A obj_priv->fault_mappable = true;
1450N/A
1450N/A start = (dev->agp_aperbase + obj_priv->gtt_offset);
1450N/A
1450N/A /* Finally, remap it using the new GTT offset */
1450N/A drm_gem_mmap(obj, start);
1450N/A
1450N/A obj->maplist.map->gtt_mmap = 1;
1450N/A
1450N/Aunpin:
1450N/A i915_gem_object_unpin(obj_priv);
1450N/Aunlock:
1450N/A mutex_unlock(&dev->struct_mutex);
1450N/A}
1450N/A
1450N/A/**
1450N/A * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1450N/A * @obj: obj in question
1450N/A *
1450N/A * GEM memory mapping works by handing back to userspace a fake mmap offset
1450N/A * it can use in a subsequent mmap(2) call. The DRM core code then looks
1450N/A * up the object based on the offset and sets up the various memory mapping
1450N/A * structures.
1450N/A *
1450N/A * This routine allocates and attaches a fake offset for @obj.
1450N/A */
1450N/Astatic int
1450N/Ai915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
1450N/A{
1450N/A struct ddi_umem_cookie *umem_cookie = obj->base.maplist.map->umem_cookie;
1450N/A int ret;
1450N/A
1450N/A if (obj->base.gtt_map_kaddr == NULL) {
1450N/A ret = drm_gem_create_mmap_offset(&obj->base);
1450N/A if (ret) {
1450N/A DRM_ERROR("failed to alloc kernel memory");
1450N/A return ret;
1450N/A }
1450N/A }
1450N/A
1450N/A umem_cookie->cvaddr = obj->base.gtt_map_kaddr;
1450N/A
1450N/A /* user_token is the fake offset
1450N/A * which create in drm_map_handle at alloc time
1450N/A */
1450N/A obj->mmap_offset = obj->base.maplist.user_token;
1450N/A obj->base.maplist.map->callback = 1;
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/A/**
1450N/A * i915_gem_release_mmap - remove physical page mappings
1450N/A * @obj: obj in question
1450N/A *
1450N/A * Preserve the reservation of the mmaping with the DRM core code, but
1450N/A * relinquish ownership of the pages back to the system.
1450N/A *
1450N/A * It is vital that we remove the page mapping if we have mapped a tiled
1450N/A * object through the GTT and then lose the fence register due to
1450N/A * resource pressure. Similarly if the object has been moved out of the
1450N/A * aperture, than pages mapped into userspace must be revoked. Removing the
1450N/A * mapping will then trigger a page fault on the next user access, allowing
1450N/A * fixup by i915_gem_fault().
1450N/A */
1450N/Avoid
1450N/Ai915_gem_release_mmap(struct drm_i915_gem_object *obj)
1450N/A{
1450N/A struct drm_device *dev = obj->base.dev;
1450N/A struct gem_map_list *entry, *temp;
1450N/A
1450N/A if (obj->base.maplist.map->gtt_mmap) {
1450N/A mutex_lock(&dev->page_fault_lock);
1450N/A if (!list_empty(&obj->base.seg_list)) {
1450N/A list_for_each_entry_safe(entry, temp, struct gem_map_list, &obj->base.seg_list, head) {
1450N/A devmap_unload(entry->dhp, entry->mapoffset, entry->maplen);
1450N/A list_del(&entry->head);
1450N/A drm_free(entry, sizeof (struct gem_map_list), DRM_MEM_MAPS);
1450N/A }
1450N/A }
1450N/A mutex_unlock(&dev->page_fault_lock);
1450N/A drm_gem_release_mmap(&obj->base);
1450N/A obj->base.maplist.map->gtt_mmap = 0;
1450N/A }
1450N/A}
1450N/A
1450N/Astatic void
1450N/Ai915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
1450N/A{
1450N/A drm_gem_free_mmap_offset(&obj->base);
1450N/A obj->mmap_offset = 0;
1450N/A}
1450N/A
1450N/Auint32_t
1450N/Ai915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1450N/A{
1450N/A uint32_t gtt_size;
1450N/A
1450N/A if (INTEL_INFO(dev)->gen >= 4 ||
1450N/A tiling_mode == I915_TILING_NONE)
1450N/A return size;
1450N/A
1450N/A /* Previous chips need a power-of-two fence region when tiling */
1450N/A if (INTEL_INFO(dev)->gen == 3)
1450N/A gtt_size = 1024*1024;
1450N/A else
1450N/A gtt_size = 512*1024;
1450N/A
1450N/A while (gtt_size < size)
1450N/A gtt_size <<= 1;
1450N/A
1450N/A return gtt_size;
1450N/A}
1450N/A
1450N/A/**
1450N/A * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1450N/A * @obj: object to check
1450N/A *
1450N/A * Return the required GTT alignment for an object, taking into account
1450N/A * potential fence register mapping if needed.
1450N/A */
1450N/Auint32_t
1450N/Ai915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1450N/A int tiling_mode, bool fenced)
1450N/A{
1450N/A /*
1450N/A * Minimum alignment is 4k (GTT page size), but might be greater
1450N/A * if a fence register is needed for the object.
1450N/A */
1450N/A if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1450N/A tiling_mode == I915_TILING_NONE)
1450N/A return 4096;
1450N/A
1450N/A /*
1450N/A * Previous chips need to be aligned to the size of the smallest
1450N/A * fence register that can contain the object.
1450N/A */
1450N/A return i915_gem_get_gtt_size(dev, size, tiling_mode);
1450N/A}
1450N/A
1450N/A
1450N/Aint
1450N/Ai915_gem_mmap_gtt(struct drm_file *file,
1450N/A struct drm_device *dev,
1450N/A uint32_t handle,
1450N/A uint64_t *offset)
1450N/A{
1450N/A struct drm_i915_private *dev_priv = dev->dev_private;
1450N/A struct drm_i915_gem_object *obj;
1450N/A int ret;
1450N/A
1450N/A ret = i915_mutex_lock_interruptible(dev);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1450N/A if (&obj->base == NULL) {
1450N/A ret = -ENOENT;
1450N/A goto unlock;
1450N/A }
1450N/A
1450N/A if (obj->base.size > dev_priv->gtt.mappable_end) {
1450N/A ret = -E2BIG;
1450N/A goto out;
1450N/A }
1450N/A
1450N/A if (!obj->mmap_offset) {
1450N/A ret = i915_gem_create_mmap_offset(obj);
1450N/A if (ret)
1450N/A goto out;
1450N/A }
1450N/A
1450N/A *offset = obj->mmap_offset;
1450N/A
1450N/Aout:
1450N/A drm_gem_object_unreference(&obj->base);
1450N/Aunlock:
1450N/A mutex_unlock(&dev->struct_mutex);
1450N/A return ret;
1450N/A}
1450N/A
1450N/A/**
1450N/A * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1450N/A * @dev: DRM device
1450N/A * @data: GTT mapping ioctl data
1450N/A * @file_priv: GEM object info
1450N/A *
1450N/A * Simply returns the fake offset to userspace so it can mmap it.
1450N/A * The mmap call will end up in drm_gem_mmap(), which will set things
1450N/A * up so we can get faults in the handler above.
1450N/A *
1450N/A * The fault handler will take care of binding the object into the GTT
1450N/A * (since it may have been evicted to make room for something), allocating
1450N/A * a fence register, and mapping the appropriate aperture address into
1450N/A * userspace.
1450N/A */
1450N/Aint
1450N/A/* LINTED */
1450N/Ai915_gem_mmap_gtt_ioctl(DRM_IOCTL_ARGS)
1450N/A{
1450N/A struct drm_i915_gem_mmap_gtt *args = data;
1450N/A
1450N/A return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1450N/A}
1450N/A
1450N/Astatic void
1450N/Ai915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1450N/A{
1450N/A int ret;
1450N/A ret = i915_gem_object_set_to_cpu_domain(obj, true);
1450N/A if (ret) {
1450N/A /* In the event of a disaster, abandon all caches and
1450N/A * hope for the best.
1450N/A */
1450N/A WARN_ON(ret != -EIO);
1450N/A i915_gem_clflush_object(obj);
1450N/A obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1450N/A }
1450N/A if (i915_gem_object_needs_bit17_swizzle(obj))
1450N/A i915_gem_object_save_bit_17_swizzle(obj);
1450N/A
1450N/A obj->dirty = 0;
1450N/A
1450N/A kmem_free(obj->page_list,
1450N/A btop(obj->base.size) * sizeof(caddr_t));
1450N/A obj->page_list = NULL;
1450N/A}
1450N/A
1450N/Astatic int
1450N/Ai915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1450N/A{
1450N/A const struct drm_i915_gem_object_ops *ops = obj->ops;
1450N/A
1450N/A if (obj->page_list == NULL)
1450N/A return 0;
1450N/A
1450N/A BUG_ON(obj->gtt_space);
1450N/A
1450N/A if (obj->pages_pin_count)
1450N/A return -EBUSY;
1450N/A
1450N/A ops->put_pages(obj);
1450N/A obj->page_list = NULL;
1450N/A
1450N/A list_del(&obj->global_list);
1450N/A return 0;
1450N/A}
1450N/A
1450N/Astatic int
1450N/Ai915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1450N/A{
1450N/A pgcnt_t np = btop(obj->base.size);
1450N/A caddr_t va;
1450N/A long i;
1450N/A
1450N/A obj->page_list = kmem_zalloc(np * sizeof(caddr_t), KM_SLEEP);
1450N/A if (obj->page_list == NULL) {
1450N/A DRM_ERROR("Faled to allocate page list. size = %ld", np * sizeof(caddr_t));
1450N/A return -ENOMEM;
1450N/A }
1450N/A
1450N/A for (i = 0, va = obj->base.kaddr; i < np; i++, va += PAGESIZE) {
1450N/A obj->page_list[i] = va;
1450N/A }
1450N/A
1450N/A if (i915_gem_object_needs_bit17_swizzle(obj))
1450N/A i915_gem_object_do_bit_17_swizzle(obj);
1450N/A return 0;
1450N/A}
1450N/A
1450N/A
1450N/A/* Ensure that the associated pages are gathered from the backing storage
1450N/A * and pinned into our object. i915_gem_object_get_pages() may be called
1450N/A * multiple times before they are released by a single call to
1450N/A * i915_gem_object_put_pages() - once the pages are no longer referenced
1450N/A * either as a result of memory pressure (reaping pages under the shrinker)
1450N/A * or as the object is itself released.
1450N/A */
1450N/Aint
1450N/Ai915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1450N/A{
1450N/A struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1450N/A const struct drm_i915_gem_object_ops *ops = obj->ops;
1450N/A int ret;
1450N/A
1450N/A if (obj->page_list)
1450N/A return 0;
1450N/A
1450N/A BUG_ON(obj->pages_pin_count);
1450N/A
1450N/A ret = ops->get_pages(obj);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list, (caddr_t)obj);
1450N/A return 0;
1450N/A}
1450N/A
1450N/Avoid
1450N/Ai915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1450N/A struct intel_ring_buffer *ring)
1450N/A{
1450N/A struct drm_device *dev = obj->base.dev;
1450N/A struct drm_i915_private *dev_priv = dev->dev_private;
1450N/A u32 seqno = intel_ring_get_seqno(ring);
1450N/A
1450N/A BUG_ON(ring == NULL);
1450N/A if (obj->ring != ring && obj->last_write_seqno) {
1450N/A /* Keep the seqno relative to the current ring */
1450N/A obj->last_write_seqno = seqno;
1450N/A }
1450N/A obj->ring = ring;
1450N/A
1450N/A /* Add a reference if we're newly entering the active list. */
1450N/A if (!obj->active) {
1450N/A drm_gem_object_reference(&obj->base);
1450N/A obj->active = 1;
1450N/A }
1450N/A
1450N/A /* Move from whatever list we were on to the tail of execution. */
1450N/A list_move_tail(&obj->mm_list, &dev_priv->mm.active_list, (caddr_t)obj);
1450N/A list_move_tail(&obj->ring_list, &ring->active_list, (caddr_t)obj);
1450N/A obj->last_read_seqno = seqno;
1450N/A
1450N/A if (obj->fenced_gpu_access) {
1450N/A obj->last_fenced_seqno = seqno;
1450N/A
1450N/A /* Bump MRU to take account of the delayed flush */
1450N/A if (obj->fence_reg != I915_FENCE_REG_NONE) {
1450N/A struct drm_i915_fence_reg *reg;
1450N/A
1450N/A reg = &dev_priv->fence_regs[obj->fence_reg];
1450N/A list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list, (caddr_t)reg);
1450N/A }
1450N/A }
1450N/A TRACE_GEM_OBJ_HISTORY(obj, "to active");
1450N/A}
1450N/A
1450N/Astatic void
1450N/Ai915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1450N/A{
1450N/A struct drm_device *dev = obj->base.dev;
1450N/A struct drm_i915_private *dev_priv = dev->dev_private;
1450N/A
1450N/A BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
1450N/A BUG_ON(!obj->active);
1450N/A
1450N/A list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list, (caddr_t)obj);
1450N/A
1450N/A list_del_init(&obj->ring_list);
1450N/A obj->ring = NULL;
1450N/A
1450N/A obj->last_read_seqno = 0;
1450N/A obj->last_write_seqno = 0;
1450N/A obj->base.write_domain = 0;
1450N/A
1450N/A obj->last_fenced_seqno = 0;
1450N/A obj->fenced_gpu_access = false;
1450N/A
1450N/A obj->active = 0;
1450N/A TRACE_GEM_OBJ_HISTORY(obj, "to inactive");
1450N/A drm_gem_object_unreference(&obj->base);
1450N/A
1450N/A WARN_ON(i915_verify_lists(dev));
1450N/A}
1450N/A
1450N/Astatic int
1450N/Ai915_gem_init_seqno(struct drm_device *dev, u32 seqno)
1450N/A{
1450N/A struct drm_i915_private *dev_priv = dev->dev_private;
1450N/A struct intel_ring_buffer *ring;
1450N/A int ret, i, j;
1450N/A
1450N/A /* Carefully retire all requests without writing to the rings */
1450N/A for_each_ring(ring, dev_priv, i) {
1450N/A ret = intel_ring_idle(ring);
1450N/A if (ret)
1450N/A return ret;
1450N/A }
1450N/A i915_gem_retire_requests(dev);
1450N/A
1450N/A /* Finally reset hw state */
1450N/A for_each_ring(ring, dev_priv, i) {
1450N/A intel_ring_init_seqno(ring, seqno);
1450N/A
1450N/A for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
1450N/A ring->sync_seqno[j] = 0;
1450N/A }
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/Aint i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
1450N/A{
1450N/A struct drm_i915_private *dev_priv = dev->dev_private;
1450N/A int ret;
1450N/A
1450N/A if (seqno == 0)
1450N/A return -EINVAL;
1450N/A
1450N/A /* HWS page needs to be set less than what we
1450N/A * will inject to ring
1450N/A */
1450N/A ret = i915_gem_init_seqno(dev, seqno - 1);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A /* Carefully set the last_seqno value so that wrap
1450N/A * detection still works
1450N/A */
1450N/A dev_priv->next_seqno = seqno;
1450N/A dev_priv->last_seqno = seqno - 1;
1450N/A if (dev_priv->last_seqno == 0)
1450N/A dev_priv->last_seqno--;
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/Aint
1450N/Ai915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
1450N/A{
1450N/A struct drm_i915_private *dev_priv = dev->dev_private;
1450N/A
1450N/A /* reserve 0 for non-seqno */
1450N/A if (dev_priv->next_seqno == 0) {
1450N/A int ret = i915_gem_init_seqno(dev, 0);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A dev_priv->next_seqno = 1;
1450N/A }
1450N/A
1450N/A *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
1450N/A return 0;
1450N/A}
1450N/A
1450N/Aint __i915_add_request(struct intel_ring_buffer *ring,
1450N/A struct drm_file *file,
1450N/A struct drm_i915_gem_object *obj,
1450N/A u32 *out_seqno)
1450N/A{
1450N/A drm_i915_private_t *dev_priv = ring->dev->dev_private;
1450N/A struct drm_i915_gem_request *request;
1450N/A u32 request_ring_position, request_start;
1450N/A int was_empty;
1450N/A int ret;
1450N/A
1450N/A request_start = intel_ring_get_tail(ring);
1450N/A /*
1450N/A * Emit any outstanding flushes - execbuf can fail to emit the flush
1450N/A * after having emitted the batchbuffer command. Hence we need to fix
1450N/A * things up similar to emitting the lazy request. The difference here
1450N/A * is that the flush _must_ happen before the next request, no matter
1450N/A * what.
1450N/A */
1450N/A ret = intel_ring_flush_all_caches(ring);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A request = kmalloc(sizeof(*request), GFP_KERNEL);
1450N/A if (request == NULL)
1450N/A return -ENOMEM;
1450N/A
1450N/A
1450N/A /* Record the position of the start of the request so that
1450N/A * should we detect the updated seqno part-way through the
1450N/A * GPU processing the request, we never over-estimate the
1450N/A * position of the head.
1450N/A */
1450N/A request_ring_position = intel_ring_get_tail(ring);
1450N/A
1450N/A ret = ring->add_request(ring);
1450N/A if (ret) {
1450N/A kfree(request, sizeof(*request));
1450N/A return ret;
1450N/A }
1450N/A
1450N/A request->seqno = intel_ring_get_seqno(ring);
1450N/A request->ring = ring;
1450N/A request->head = request_start;
1450N/A request->tail = request_ring_position;
1450N/A request->ctx = ring->last_context;
1450N/A request->batch_obj = obj;
1450N/A
1450N/A /* Whilst this request exists, batch_obj will be on the
1450N/A * active_list, and so will hold the active reference. Only when this
1450N/A * request is retired will the the batch_obj be moved onto the
1450N/A * inactive_list and lose its active reference. Hence we do not need
1450N/A * to explicitly hold another reference here.
1450N/A */
1450N/A
1450N/A if (request->ctx)
1450N/A i915_gem_context_reference(request->ctx);
1450N/A
1450N/A request->emitted_jiffies = jiffies;
1450N/A was_empty = list_empty(&ring->request_list);
1450N/A list_add_tail(&request->list, &ring->request_list, (caddr_t)request);
1450N/A request->file_priv = NULL;
1450N/A
1450N/A if (file) {
1450N/A struct drm_i915_file_private *file_priv = file->driver_priv;
1450N/A if (file_priv->status == 1) {
1450N/A spin_lock(&file_priv->mm.lock);
1450N/A request->file_priv = file_priv;
1450N/A list_add_tail(&request->client_list,
1450N/A &file_priv->mm.request_list, (caddr_t)request);
1450N/A spin_unlock(&file_priv->mm.lock);
1450N/A }
1450N/A }
1450N/A
1450N/A ring->outstanding_lazy_request = 0;
1450N/A
1450N/A if (!dev_priv->mm.suspended && !dev_priv->gpu_hang) {
1450N/A if (i915_enable_hangcheck) {
1450N/A mod_timer(&dev_priv->gpu_error.hangcheck_timer,
1450N/A msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1450N/A }
1450N/A if (was_empty) {
1450N/A /* change to delay HZ and then run work (not insert to workqueue of Linux) */
1450N/A test_set_timer(&dev_priv->mm.retire_timer, DRM_HZ);
1450N/A DRM_DEBUG("i915_gem: schedule_delayed_work");
1450N/A intel_mark_busy(dev_priv->dev);
1450N/A }
1450N/A }
1450N/A
1450N/A if (out_seqno)
1450N/A *out_seqno = request->seqno;
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/Astatic inline void
1450N/Ai915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1450N/A{
1450N/A struct drm_i915_file_private *file_priv = request->file_priv;
1450N/A
1450N/A if (!file_priv)
1450N/A return;
1450N/A
1450N/A spin_lock(&file_priv->mm.lock);
1450N/A if (request->file_priv) {
1450N/A list_del(&request->client_list);
1450N/A request->file_priv = NULL;
1450N/A }
1450N/A spin_unlock(&file_priv->mm.lock);
1450N/A}
1450N/A
1450N/Astatic bool i915_head_inside_object(u32 acthd, struct drm_i915_gem_object *obj)
1450N/A{
1450N/A if (acthd >= obj->gtt_offset &&
1450N/A acthd < obj->gtt_offset + obj->base.size)
1450N/A return true;
1450N/A
1450N/A return false;
1450N/A}
1450N/A
1450N/Astatic bool i915_head_inside_request(const u32 acthd_unmasked,
1450N/A const u32 request_start,
1450N/A const u32 request_end)
1450N/A{
1450N/A const u32 acthd = acthd_unmasked & HEAD_ADDR;
1450N/A
1450N/A if (request_start < request_end) {
1450N/A if (acthd >= request_start && acthd < request_end)
1450N/A return true;
1450N/A } else if (request_start > request_end) {
1450N/A if (acthd >= request_start || acthd < request_end)
1450N/A return true;
1450N/A }
1450N/A
1450N/A return false;
1450N/A}
1450N/A
1450N/Astatic bool i915_request_guilty(struct drm_i915_gem_request *request,
1450N/A const u32 acthd, bool *inside)
1450N/A{
1450N/A /* There is a possibility that unmasked head address
1450N/A * pointing inside the ring, matches the batch_obj address range.
1450N/A * However this is extremely unlikely.
1450N/A */
1450N/A
1450N/A if (request->batch_obj) {
1450N/A if (i915_head_inside_object(acthd, request->batch_obj)) {
1450N/A *inside = true;
1450N/A return true;
1450N/A }
1450N/A }
1450N/A
1450N/A if (i915_head_inside_request(acthd, request->head, request->tail)) {
1450N/A *inside = false;
1450N/A return true;
1450N/A }
1450N/A
1450N/A return false;
1450N/A}
1450N/A
1450N/Astatic void i915_set_reset_status(struct intel_ring_buffer *ring,
1450N/A struct drm_i915_gem_request *request,
1450N/A u32 acthd)
1450N/A{
1450N/A struct i915_ctx_hang_stats *hs = NULL;
1450N/A bool inside, guilty;
1450N/A
1450N/A /* Innocent until proven guilty */
1450N/A guilty = false;
1450N/A
1450N/A if (ring->hangcheck.action != wait &&
1450N/A i915_request_guilty(request, acthd, &inside)) {
1450N/A DRM_ERROR("%s hung %s bo (0x%x ctx %d) at 0x%x\n",
1450N/A ring->name,
1450N/A inside ? "inside" : "flushing",
1450N/A request->batch_obj ?
1450N/A request->batch_obj->gtt_offset : 0,
1450N/A request->ctx ? request->ctx->id : 0,
1450N/A acthd);
1450N/A
1450N/A guilty = true;
1450N/A }
1450N/A
1450N/A /* If contexts are disabled or this is the default context, use
1450N/A * file_priv->reset_state
1450N/A */
1450N/A if (request->ctx && request->ctx->id != DEFAULT_CONTEXT_ID)
1450N/A hs = &request->ctx->hang_stats;
1450N/A else if (request->file_priv)
1450N/A hs = &request->file_priv->hang_stats;
1450N/A
1450N/A if (hs) {
1450N/A if (guilty)
1450N/A hs->batch_active++;
1450N/A else
1450N/A hs->batch_pending++;
1450N/A }
1450N/A}
1450N/A
1450N/Astatic void i915_gem_free_request(struct drm_i915_gem_request *request)
1450N/A{
1450N/A list_del(&request->list);
1450N/A i915_gem_request_remove_from_client(request);
1450N/A
1450N/A if (request->ctx)
1450N/A i915_gem_context_unreference(request->ctx);
1450N/A
1450N/A kfree(request, sizeof(*request));
1450N/A}
1450N/A
1450N/Astatic void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1450N/A struct intel_ring_buffer *ring)
1450N/A{
1450N/A u32 completed_seqno;
1450N/A u32 acthd;
1450N/A
1450N/A acthd = intel_ring_get_active_head(ring);
1450N/A completed_seqno = ring->get_seqno(ring, false);
1450N/A
1450N/A while (!list_empty(&ring->request_list)) {
1450N/A struct drm_i915_gem_request *request;
1450N/A
1450N/A request = list_first_entry(&ring->request_list,
1450N/A struct drm_i915_gem_request,
1450N/A list);
1450N/A
1450N/A if (request->seqno > completed_seqno)
1450N/A i915_set_reset_status(ring, request, acthd);
1450N/A
1450N/A i915_gem_free_request(request);
1450N/A }
1450N/A
1450N/A while (!list_empty(&ring->active_list)) {
1450N/A struct drm_i915_gem_object *obj;
1450N/A
1450N/A obj = list_first_entry(&ring->active_list,
1450N/A struct drm_i915_gem_object,
1450N/A ring_list);
1450N/A
1450N/A i915_gem_object_move_to_inactive(obj);
1450N/A }
1450N/A}
1450N/A
1450N/Avoid i915_gem_restore_fences(struct drm_device *dev)
1450N/A{
1450N/A struct drm_i915_private *dev_priv = dev->dev_private;
1450N/A int i;
1450N/A
1450N/A for (i = 0; i < dev_priv->num_fence_regs; i++) {
1450N/A struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1450N/A
1450N/A /*
1450N/A * Commit delayed tiling changes if we have an object still
1450N/A * attached to the fence, otherwise just clear the fence.
1450N/A */
1450N/A if (reg->obj) {
1450N/A i915_gem_object_update_fence(reg->obj, reg,
1450N/A reg->obj->tiling_mode);
1450N/A } else {
1450N/A i915_gem_write_fence(dev, i, NULL);
1450N/A }
1450N/A }
1450N/A}
1450N/A
1450N/Avoid i915_gem_reset(struct drm_device *dev)
1450N/A{
1450N/A struct drm_i915_private *dev_priv = dev->dev_private;
1450N/A struct drm_i915_gem_object *obj;
1450N/A struct intel_ring_buffer *ring;
1450N/A int i;
1450N/A
1450N/A for_each_ring(ring, dev_priv, i)
1450N/A i915_gem_reset_ring_lists(dev_priv, ring);
1450N/A
1450N/A /* Move everything out of the GPU domains to ensure we do any
1450N/A * necessary invalidation upon reuse.
1450N/A */
1450N/A list_for_each_entry(obj, struct drm_i915_gem_object,
1450N/A &dev_priv->mm.inactive_list,
1450N/A mm_list)
1450N/A {
1450N/A obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1450N/A }
1450N/A
1450N/A i915_gem_restore_fences(dev);
1450N/A}
1450N/A
1450N/A/**
1450N/A * This function clears the request list as sequence numbers are passed.
1450N/A */
1450N/Avoid
1450N/Ai915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1450N/A{
1450N/A uint32_t seqno;
1450N/A
1450N/A if (list_empty(&ring->request_list))
1450N/A return;
1450N/A
1450N/A WARN_ON(i915_verify_lists(ring->dev));
1450N/A
1450N/A seqno = ring->get_seqno(ring, true);
1450N/A
1450N/A while (!list_empty(&ring->request_list)) {
1450N/A struct drm_i915_gem_request *request;
1450N/A
1450N/A request = list_first_entry(&ring->request_list,
1450N/A struct drm_i915_gem_request,
1450N/A list);
1450N/A
1450N/A if (!i915_seqno_passed(seqno, request->seqno))
1450N/A break;
1450N/A
1450N/A /* We know the GPU must have read the request to have
1450N/A * sent us the seqno + interrupt, so use the position
1450N/A * of tail of the request to update the last known position
1450N/A * of the GPU head.
1450N/A */
1450N/A ring->last_retired_head = request->tail;
1450N/A
1450N/A i915_gem_free_request(request);
1450N/A }
1450N/A
1450N/A /* Move any buffers on the active list that are no longer referenced
1450N/A * by the ringbuffer to the flushing/inactive lists as appropriate.
1450N/A */
1450N/A while (!list_empty(&ring->active_list)) {
1450N/A struct drm_i915_gem_object *obj;
1450N/A
1450N/A obj = list_first_entry(&ring->active_list,
1450N/A struct drm_i915_gem_object,
1450N/A ring_list);
1450N/A
1450N/A if (!i915_seqno_passed(seqno, obj->last_read_seqno))
1450N/A break;
1450N/A
1450N/A i915_gem_object_move_to_inactive(obj);
1450N/A }
1450N/A
1450N/A if (ring->trace_irq_seqno &&
1450N/A i915_seqno_passed(seqno, ring->trace_irq_seqno)) {
1450N/A ring->irq_put(ring);
1450N/A ring->trace_irq_seqno = 0;
1450N/A }
1450N/A
1450N/A WARN_ON(i915_verify_lists(ring->dev));
1450N/A}
1450N/A
1450N/Avoid
1450N/Ai915_gem_retire_requests(struct drm_device *dev)
1450N/A{
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A struct intel_ring_buffer *ring;
1450N/A int i;
1450N/A
1450N/A for_each_ring(ring, dev_priv, i)
1450N/A i915_gem_retire_requests_ring(ring);
1450N/A}
1450N/A
1450N/Astatic void
1450N/Ai915_gem_retire_work_handler(struct work_struct *work)
1450N/A{
1450N/A drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
1450N/A mm.retire_work);
1450N/A struct drm_device *dev = dev_priv->dev;
1450N/A struct intel_ring_buffer *ring;
1450N/A bool idle;
1450N/A int i;
1450N/A
1450N/A /* Come back later if the device is busy... */
1450N/A if (!mutex_tryenter(&dev->struct_mutex)) {
1450N/A test_set_timer(&dev_priv->mm.retire_timer, DRM_HZ);
1450N/A return;
1450N/A }
1450N/A
1450N/A i915_gem_retire_requests(dev);
1450N/A
1450N/A /* Send a periodic flush down the ring so we don't hold onto GEM
1450N/A * objects indefinitely.
1450N/A */
1450N/A idle = true;
1450N/A for_each_ring(ring, dev_priv, i) {
1450N/A if (ring->gpu_caches_dirty)
1450N/A i915_add_request(ring, NULL);
1450N/A
1450N/A idle &= list_empty(&ring->request_list);
1450N/A }
1450N/A
1450N/A if (!dev_priv->mm.suspended && !idle && !dev_priv->gpu_hang)
1450N/A {
1450N/A DRM_DEBUG("i915_gem: schedule_delayed_work");
1450N/A test_set_timer(&dev_priv->mm.retire_timer, DRM_HZ);
1450N/A }
1450N/A if (idle)
1450N/A intel_mark_idle(dev);
1450N/A mutex_unlock(&dev->struct_mutex);
1450N/A}
1450N/A
1450N/Avoid
1450N/Ai915_gem_retire_work_timer(void *device)
1450N/A{
1450N/A struct drm_device *dev = (struct drm_device *)device;
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A queue_work(dev_priv->wq, &dev_priv->mm.retire_work);
1450N/A}
1450N/A
1450N/A/**
1450N/A * Ensures that an object will eventually get non-busy by flushing any required
1450N/A * write domains, emitting any outstanding lazy request and retiring and
1450N/A * completed requests.
1450N/A */
1450N/Astatic int
1450N/Ai915_gem_object_flush_active(struct drm_i915_gem_object *obj)
1450N/A{
1450N/A int ret;
1450N/A
1450N/A if (obj->active) {
1450N/A ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A i915_gem_retire_requests_ring(obj->ring);
1450N/A }
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/A/**
1450N/A * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
1450N/A * @DRM_IOCTL_ARGS: standard ioctl arguments
1450N/A *
1450N/A * Returns 0 if successful, else an error is returned with the remaining time in
1450N/A * the timeout parameter.
1450N/A * -ETIME: object is still busy after timeout
1450N/A * -ERESTARTSYS: signal interrupted the wait
1450N/A * -ENONENT: object doesn't exist
1450N/A * Also possible, but rare:
1450N/A * -EAGAIN: GPU wedged
1450N/A * -ENOMEM: damn
1450N/A * -ENODEV: Internal IRQ fail
1450N/A * -E?: The add request failed
1450N/A *
1450N/A * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
1450N/A * non-zero timeout parameter the wait ioctl will wait for the given number of
1450N/A * nanoseconds on an object becoming unbusy. Since the wait itself does so
1450N/A * without holding struct_mutex the object may become re-busied before this
1450N/A * function completes. A similar but shorter * race condition exists in the busy
1450N/A * ioctl
1450N/A */
1450N/Aint
1450N/Ai915_gem_wait_ioctl(DRM_IOCTL_ARGS)
1450N/A{
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A struct drm_i915_gem_wait *args = data;
1450N/A struct drm_i915_gem_object *obj;
1450N/A struct intel_ring_buffer *ring = NULL;
1450N/A clock_t timeout = NULL;
1450N/A unsigned reset_counter;
1450N/A u32 seqno = 0;
1450N/A int ret = 0;
1450N/A
1450N/A if (args->timeout_ns >= 0) {
1450N/A timeout = drv_usectohz(args->timeout_ns / 1000);
1450N/A }
1450N/A
1450N/A ret = i915_mutex_lock_interruptible(dev);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
1450N/A if (&obj->base == NULL) {
1450N/A mutex_unlock(&dev->struct_mutex);
1450N/A return -ENOENT;
1450N/A }
1450N/A
1450N/A /* Need to make sure the object gets inactive eventually. */
1450N/A ret = i915_gem_object_flush_active(obj);
1450N/A if (ret)
1450N/A goto out;
1450N/A
1450N/A if (obj->active) {
1450N/A seqno = obj->last_read_seqno;
1450N/A ring = obj->ring;
1450N/A }
1450N/A
1450N/A if (seqno == 0)
1450N/A goto out;
1450N/A
1450N/A /* Do this after OLR check to make sure we make forward progress polling
1450N/A * on this IOCTL with a 0 timeout (like busy ioctl)
1450N/A */
1450N/A if (!args->timeout_ns) {
1450N/A ret = -ETIME;
1450N/A goto out;
1450N/A }
1450N/A
1450N/A drm_gem_object_unreference(&obj->base);
1450N/A reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1450N/A mutex_unlock(&dev->struct_mutex);
1450N/A
1450N/A ret = __wait_seqno(ring, seqno, reset_counter, true, timeout);
1450N/A if (timeout) {
1450N/A args->timeout_ns = drv_hztousec(timeout) * 1000;
1450N/A }
1450N/A return ret;
1450N/A
1450N/Aout:
1450N/A drm_gem_object_unreference(&obj->base);
1450N/A mutex_unlock(&dev->struct_mutex);
1450N/A return ret;
1450N/A}
1450N/A
1450N/A/**
1450N/A * i915_gem_object_sync - sync an object to a ring.
1450N/A *
1450N/A * @obj: object which may be in use on another ring.
1450N/A * @to: ring we wish to use the object on. May be NULL.
1450N/A *
1450N/A * This code is meant to abstract object synchronization with the GPU.
1450N/A * Calling with NULL implies synchronizing the object with the CPU
1450N/A * rather than a particular GPU ring.
1450N/A *
1450N/A * Returns 0 if successful, else propagates up the lower layer error.
1450N/A */
1450N/Aint
1450N/Ai915_gem_object_sync(struct drm_i915_gem_object *obj,
1450N/A struct intel_ring_buffer *to)
1450N/A{
1450N/A struct intel_ring_buffer *from = obj->ring;
1450N/A u32 seqno;
1450N/A int ret, idx;
1450N/A
1450N/A if (from == NULL || to == from)
1450N/A return 0;
1450N/A
1450N/A if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
1450N/A return i915_gem_object_wait_rendering(obj, false);
1450N/A
1450N/A idx = intel_ring_sync_index(from, to);
1450N/A
1450N/A seqno = obj->last_read_seqno;
1450N/A if (seqno <= from->sync_seqno[idx])
1450N/A return 0;
1450N/A
1450N/A ret = i915_gem_check_olr(obj->ring, seqno);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A ret = to->sync_to(to, from, seqno);
1450N/A if (!ret)
1450N/A /* We use last_read_seqno because sync_to()
1450N/A * might have just caused seqno wrap under
1450N/A * the radar.
1450N/A */
1450N/A from->sync_seqno[idx] = obj->last_read_seqno;
1450N/A
1450N/A return ret;
1450N/A}
1450N/A
1450N/Astatic void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
1450N/A{
1450N/A
1450N/A /* Force a pagefault for domain tracking on next user access */
1450N/A i915_gem_release_mmap(obj);
1450N/A
1450N/A if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
1450N/A return;
1450N/A
1450N/A membar_producer();
1450N/A obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
1450N/A obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
1450N/A}
1450N/A
1450N/A/**
1450N/A * Unbinds an object from the GTT aperture.
1450N/A */
1450N/Aint
1450N/Ai915_gem_object_unbind(struct drm_i915_gem_object *obj, uint32_t type)
1450N/A{
1450N/A drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1450N/A int ret;
1450N/A
1450N/A if (obj->gtt_space == NULL)
1450N/A return 0;
1450N/A
1450N/A if (obj->pin_count)
1450N/A return -EBUSY;
1450N/A
1450N/A BUG_ON(obj->page_list == NULL);
1450N/A
1450N/A ret = i915_gem_object_finish_gpu(obj);
1450N/A if (ret)
1450N/A return ret;
1450N/A /* Continue on if we fail due to EIO, the GPU is hung so we
1450N/A * should be safe and we need to cleanup or else we might
1450N/A * cause memory corruption through use-after-free.
1450N/A */
1450N/A
1450N/A i915_gem_object_finish_gtt(obj);
1450N/A
1450N/A /* release the fence reg _after_ flushing */
1450N/A ret = i915_gem_object_put_fence(obj);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A if (obj->has_global_gtt_mapping)
1450N/A i915_gem_gtt_unbind_object(obj, type);
1450N/A if (obj->has_aliasing_ppgtt_mapping) {
1450N/A i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
1450N/A obj->has_aliasing_ppgtt_mapping = 0;
1450N/A }
1450N/A i915_gem_gtt_finish_object(obj);
1450N/A i915_gem_object_unpin_pages(obj);
1450N/A
1450N/A list_del(&obj->mm_list);
1450N/A list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list, (caddr_t)obj);
1450N/A /* Avoid an unnecessary call to unbind on rebind. */
1450N/A obj->map_and_fenceable = true;
1450N/A
1450N/A drm_mm_put_block(obj->gtt_space);
1450N/A obj->gtt_space = NULL;
1450N/A obj->gtt_offset = 0;
1450N/A TRACE_GEM_OBJ_HISTORY(obj, "unbind");
1450N/A return 0;
1450N/A}
1450N/A
1450N/A
1450N/Aint i915_gpu_idle(struct drm_device *dev)
1450N/A{
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A struct intel_ring_buffer *ring;
1450N/A int ret, i;
1450N/A
1450N/A /* Flush everything onto the inactive list. */
1450N/A for_each_ring(ring, dev_priv, i) {
1450N/A ret = i915_switch_context(ring, NULL, DEFAULT_CONTEXT_ID);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A ret = intel_ring_idle(ring);
1450N/A if (ret)
1450N/A return ret;
1450N/A }
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/Astatic void i965_write_fence_reg(struct drm_device *dev, int reg,
1450N/A struct drm_i915_gem_object *obj)
1450N/A{
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A int fence_reg;
1450N/A int fence_pitch_shift;
1450N/A
1450N/A if (INTEL_INFO(dev)->gen >= 6) {
1450N/A fence_reg = FENCE_REG_SANDYBRIDGE_0;
1450N/A fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
1450N/A } else {
1450N/A fence_reg = FENCE_REG_965_0;
1450N/A fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
1450N/A }
1450N/A
1450N/A fence_reg += reg * 8;
1450N/A
1450N/A /* To w/a incoherency with non-atomic 64-bit register updates,
1450N/A * we split the 64-bit update into two 32-bit writes. In order
1450N/A * for a partial fence not to be evaluated between writes, we
1450N/A * precede the update with write to turn off the fence register,
1450N/A * and only enable the fence as the last step.
1450N/A *
1450N/A * For extra levels of paranoia, we make sure each step lands
1450N/A * before applying the next step.
1450N/A */
1450N/A I915_WRITE(fence_reg, 0);
1450N/A POSTING_READ(fence_reg);
1450N/A
1450N/A if (obj) {
1450N/A u32 size = obj->gtt_space->size;
1450N/A uint64_t val;
1450N/A
1450N/A val = (uint64_t)((obj->gtt_offset + size - 4096) &
1450N/A 0xfffff000) << 32;
1450N/A val |= obj->gtt_offset & 0xfffff000;
1450N/A val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
1450N/A if (obj->tiling_mode == I915_TILING_Y)
1450N/A val |= 1 << I965_FENCE_TILING_Y_SHIFT;
1450N/A val |= I965_FENCE_REG_VALID;
1450N/A
1450N/A I915_WRITE(fence_reg + 4, val >> 32);
1450N/A POSTING_READ(fence_reg + 4);
1450N/A
1450N/A I915_WRITE(fence_reg + 0, val);
1450N/A POSTING_READ(fence_reg);
1450N/A } else {
1450N/A I915_WRITE(fence_reg + 4, 0);
1450N/A POSTING_READ(fence_reg + 4);
1450N/A }
1450N/A}
1450N/A
1450N/Astatic void i915_write_fence_reg(struct drm_device *dev, int reg,
1450N/A struct drm_i915_gem_object *obj)
1450N/A{
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A u32 val;
1450N/A
1450N/A if (obj) {
1450N/A u32 size = obj->gtt_space->size;
1450N/A int pitch_val;
1450N/A int tile_width;
1450N/A
1450N/A if((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
1450N/A (size & -size) != size ||
1450N/A (obj->gtt_offset & (size - 1)))
1450N/A DRM_ERROR("object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
1450N/A obj->gtt_offset, obj->map_and_fenceable, size);
1450N/A
1450N/A if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
1450N/A tile_width = 128;
1450N/A else
1450N/A tile_width = 512;
1450N/A
1450N/A /* Note: pitch better be a power of two tile widths */
1450N/A pitch_val = obj->stride / tile_width;
1450N/A pitch_val = ffs(pitch_val) - 1;
1450N/A
1450N/A val = obj->gtt_offset;
1450N/A if (obj->tiling_mode == I915_TILING_Y)
1450N/A val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1450N/A val |= I915_FENCE_SIZE_BITS(size);
1450N/A val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1450N/A val |= I830_FENCE_REG_VALID;
1450N/A } else
1450N/A val = 0;
1450N/A
1450N/A if (reg < 8)
1450N/A reg = FENCE_REG_830_0 + reg * 4;
1450N/A else
1450N/A reg = FENCE_REG_945_8 + (reg - 8) * 4;
1450N/A
1450N/A I915_WRITE(reg, val);
1450N/A POSTING_READ(reg);
1450N/A}
1450N/A
1450N/Astatic void i830_write_fence_reg(struct drm_device *dev, int reg,
1450N/A struct drm_i915_gem_object *obj)
1450N/A{
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A uint32_t val;
1450N/A
1450N/A if (obj) {
1450N/A u32 size = obj->gtt_space->size;
1450N/A uint32_t pitch_val;
1450N/A
1450N/A if((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
1450N/A (size & -size) != size ||
1450N/A (obj->gtt_offset & (size - 1)))
1450N/A DRM_ERROR("object 0x%08x not 512K or pot-size 0x%08x aligned\n",
1450N/A obj->gtt_offset, size);
1450N/A
1450N/A pitch_val = obj->stride / 128;
1450N/A pitch_val = ffs(pitch_val) - 1;
1450N/A
1450N/A val = obj->gtt_offset;
1450N/A if (obj->tiling_mode == I915_TILING_Y)
1450N/A val |= 1 << I830_FENCE_TILING_Y_SHIFT;
1450N/A val |= I830_FENCE_SIZE_BITS(size);
1450N/A val |= pitch_val << I830_FENCE_PITCH_SHIFT;
1450N/A val |= I830_FENCE_REG_VALID;
1450N/A } else
1450N/A val = 0;
1450N/A
1450N/A I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
1450N/A POSTING_READ(FENCE_REG_830_0 + reg * 4);
1450N/A}
1450N/A
1450N/Ainline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
1450N/A{
1450N/A return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
1450N/A}
1450N/A
1450N/Astatic void i915_gem_write_fence(struct drm_device *dev, int reg,
1450N/A struct drm_i915_gem_object *obj)
1450N/A{
1450N/A struct drm_i915_private *dev_priv = dev->dev_private;
1450N/A
1450N/A /* Ensure that all CPU reads are completed before installing a fence
1450N/A * and all writes before removing the fence.
1450N/A */
1450N/A if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
1450N/A membar_producer();
1450N/A
1450N/A if(obj && (!obj->stride || !obj->tiling_mode))
1450N/A DRM_ERROR("bogus fence setup with stride: 0x%x, tiling mode: %i\n",
1450N/A obj->stride, obj->tiling_mode);
1450N/A
1450N/A switch (INTEL_INFO(dev)->gen) {
1450N/A case 7:
1450N/A case 6:
1450N/A case 5:
1450N/A case 4: i965_write_fence_reg(dev, reg, obj); break;
1450N/A case 3: i915_write_fence_reg(dev, reg, obj); break;
1450N/A case 2: i830_write_fence_reg(dev, reg, obj); break;
1450N/A default: BUG();
1450N/A }
1450N/A
1450N/A /* And similarly be paranoid that no direct access to this region
1450N/A * is reordered to before the fence is installed.
1450N/A */
1450N/A if (i915_gem_object_needs_mb(obj))
1450N/A membar_producer();
1450N/A}
1450N/A
1450N/Astatic inline int fence_number(struct drm_i915_private *dev_priv,
1450N/A struct drm_i915_fence_reg *fence)
1450N/A{
1450N/A return fence - dev_priv->fence_regs;
1450N/A}
1450N/A
1450N/Astatic void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
1450N/A struct drm_i915_fence_reg *fence,
1450N/A bool enable)
1450N/A{
1450N/A struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1450N/A int reg = fence_number(dev_priv, fence);
1450N/A
1450N/A i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
1450N/A
1450N/A if (enable) {
1450N/A obj->fence_reg = reg;
1450N/A fence->obj = obj;
1450N/A list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list, (caddr_t)fence);
1450N/A } else {
1450N/A obj->fence_reg = I915_FENCE_REG_NONE;
1450N/A fence->obj = NULL;
1450N/A list_del_init(&fence->lru_list);
1450N/A }
1450N/A obj->fence_dirty = false;
1450N/A}
1450N/A
1450N/Astatic int
1450N/Ai915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
1450N/A{
1450N/A if (obj->last_fenced_seqno) {
1450N/A int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A obj->last_fenced_seqno = 0;
1450N/A }
1450N/A
1450N/A obj->fenced_gpu_access = false;
1450N/A return 0;
1450N/A}
1450N/A
1450N/Aint
1450N/Ai915_gem_object_put_fence(struct drm_i915_gem_object *obj)
1450N/A{
1450N/A struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1450N/A struct drm_i915_fence_reg *fence;
1450N/A int ret;
1450N/A
1450N/A ret = i915_gem_object_wait_fence(obj);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A if (obj->fence_reg == I915_FENCE_REG_NONE)
1450N/A return 0;
1450N/A
1450N/A fence = &dev_priv->fence_regs[obj->fence_reg];
1450N/A
1450N/A i915_gem_object_fence_lost(obj);
1450N/A i915_gem_object_update_fence(obj, fence, false);
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/Astatic struct drm_i915_fence_reg *
1450N/Ai915_find_fence_reg(struct drm_device *dev)
1450N/A{
1450N/A struct drm_i915_private *dev_priv = dev->dev_private;
1450N/A struct drm_i915_fence_reg *reg, *avail;
1450N/A int i;
1450N/A
1450N/A /* First try to find a free reg */
1450N/A avail = NULL;
1450N/A for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
1450N/A reg = &dev_priv->fence_regs[i];
1450N/A if (!reg->obj)
1450N/A return reg;
1450N/A
1450N/A if (!reg->pin_count)
1450N/A avail = reg;
1450N/A }
1450N/A
1450N/A if (avail == NULL)
1450N/A return NULL;
1450N/A
1450N/A /* None available, try to steal one or wait for a user to finish */
1450N/A list_for_each_entry(reg, struct drm_i915_fence_reg, &dev_priv->mm.fence_list, lru_list) {
1450N/A if (reg->pin_count)
1450N/A continue;
1450N/A
1450N/A return reg;
1450N/A }
1450N/A
1450N/A return NULL;
1450N/A}
1450N/A
1450N/A/**
1450N/A * i915_gem_object_get_fence_reg - set up a fence reg for an object
1450N/A * @obj: object to map through a fence reg
1450N/A *
1450N/A * When mapping objects through the GTT, userspace wants to be able to write
1450N/A * to them without having to worry about swizzling if the object is tiled.
1450N/A * This function walks the fence regs looking for a free one for @obj,
1450N/A * stealing one if it can't find any.
1450N/A *
1450N/A * It then sets up the reg based on the object's properties: address, pitch
1450N/A * and tiling format.
1450N/A *
1450N/A * For an untiled surface, this removes any existing fence.
1450N/A */
1450N/Aint
1450N/Ai915_gem_object_get_fence(struct drm_i915_gem_object *obj)
1450N/A{
1450N/A struct drm_device *dev = obj->base.dev;
1450N/A struct drm_i915_private *dev_priv = dev->dev_private;
1450N/A bool enable = obj->tiling_mode != I915_TILING_NONE;
1450N/A struct drm_i915_fence_reg *reg;
1450N/A int ret;
1450N/A
1450N/A /* Have we updated the tiling parameters upon the object and so
1450N/A * will need to serialise the write to the associated fence register?
1450N/A */
1450N/A if (obj->fence_dirty) {
1450N/A ret = i915_gem_object_wait_fence(obj);
1450N/A if (ret)
1450N/A return ret;
1450N/A }
1450N/A
1450N/A /* Just update our place in the LRU if our fence is getting reused. */
1450N/A if (obj->fence_reg != I915_FENCE_REG_NONE) {
1450N/A reg = &dev_priv->fence_regs[obj->fence_reg];
1450N/A if (!obj->fence_dirty) {
1450N/A list_move_tail(&reg->lru_list,
1450N/A &dev_priv->mm.fence_list, (caddr_t)reg);
1450N/A return 0;
1450N/A }
1450N/A } else if (enable) {
1450N/A reg = i915_find_fence_reg(dev);
1450N/A if (reg == NULL)
1450N/A return -EDEADLK;
1450N/A
1450N/A if (reg->obj) {
1450N/A struct drm_i915_gem_object *old = reg->obj;
1450N/A
1450N/A ret = i915_gem_object_wait_fence(old);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A i915_gem_object_fence_lost(old);
1450N/A }
1450N/A } else
1450N/A return 0;
1450N/A
1450N/A i915_gem_object_update_fence(obj, reg, enable);
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/Astatic bool i915_gem_valid_gtt_space(struct drm_device *dev,
1450N/A struct drm_mm_node *gtt_space,
1450N/A unsigned long cache_level)
1450N/A{
1450N/A struct drm_mm_node *other;
1450N/A
1450N/A /* On non-LLC machines we have to be careful when putting differing
1450N/A * types of snoopable memory together to avoid the prefetcher
1450N/A * crossing memory domains and dieing.
1450N/A */
1450N/A if (HAS_LLC(dev))
1450N/A return true;
1450N/A
1450N/A if (gtt_space == NULL)
1450N/A return true;
1450N/A
1450N/A if (list_empty(&gtt_space->node_list))
1450N/A return true;
1450N/A
1450N/A other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
1450N/A if (other->allocated && !other->hole_follows && other->color != cache_level)
1450N/A return false;
1450N/A
1450N/A other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
1450N/A if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
1450N/A return false;
1450N/A
1450N/A return true;
1450N/A}
1450N/A
1450N/Astatic void i915_gem_verify_gtt(struct drm_device *dev)
1450N/A{
1450N/A#if WATCH_GTT
1450N/A struct drm_i915_private *dev_priv = dev->dev_private;
1450N/A struct drm_i915_gem_object *obj;
1450N/A int err = 0;
1450N/A
1450N/A list_for_each_entry(obj, struct drm_i915_gem_object, &dev_priv->mm.gtt_list, global_list) {
1450N/A if (obj->gtt_space == NULL) {
1450N/A DRM_ERROR("object found on GTT list with no space reserved\n");
1450N/A err++;
1450N/A continue;
1450N/A }
1450N/A
1450N/A if (obj->cache_level != obj->gtt_space->color) {
1450N/A DRM_ERROR("object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
1450N/A obj->gtt_space->start,
1450N/A obj->gtt_space->start + obj->gtt_space->size,
1450N/A obj->cache_level,
1450N/A obj->gtt_space->color);
1450N/A err++;
1450N/A continue;
1450N/A }
1450N/A
1450N/A if (!i915_gem_valid_gtt_space(dev,
1450N/A obj->gtt_space,
1450N/A obj->cache_level)) {
1450N/A DRM_ERROR("invalid GTT space found at [%08lx, %08lx] - color=%x\n",
1450N/A obj->gtt_space->start,
1450N/A obj->gtt_space->start + obj->gtt_space->size,
1450N/A obj->cache_level);
1450N/A err++;
1450N/A continue;
1450N/A }
1450N/A }
1450N/A
1450N/A WARN_ON(err);
1450N/A#endif
1450N/A}
1450N/A
1450N/A/**
1450N/A * Finds free space in the GTT aperture and binds the object there.
1450N/A */
1450N/Astatic int
1450N/Ai915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
1450N/A unsigned alignment,
1450N/A bool map_and_fenceable,
1450N/A bool nonblocking)
1450N/A{
1450N/A struct drm_device *dev = obj->base.dev;
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A struct drm_mm_node *node;
1450N/A u32 size, fence_size, fence_alignment, unfenced_alignment;
1450N/A bool mappable, fenceable;
1450N/A size_t gtt_max = map_and_fenceable ?
1450N/A dev_priv->gtt.mappable_end : dev_priv->gtt.total;
1450N/A int ret;
1450N/A
1450N/A fence_size = i915_gem_get_gtt_size(dev,
1450N/A obj->base.size,
1450N/A obj->tiling_mode);
1450N/A fence_alignment = i915_gem_get_gtt_alignment(dev,
1450N/A obj->base.size,
1450N/A obj->tiling_mode, true);
1450N/A unfenced_alignment =
1450N/A i915_gem_get_gtt_alignment(dev,
1450N/A obj->base.size,
1450N/A obj->tiling_mode, false);
1450N/A
1450N/A if (alignment == 0)
1450N/A alignment = map_and_fenceable ? fence_alignment :
1450N/A unfenced_alignment;
1450N/A if (map_and_fenceable && alignment & (fence_alignment - 1)) {
1450N/A DRM_ERROR("Invalid object alignment requested %u\n", alignment);
1450N/A return -EINVAL;
1450N/A }
1450N/A
1450N/A size = map_and_fenceable ? fence_size : obj->base.size;
1450N/A
1450N/A /* If the object is bigger than the entire aperture, reject it early
1450N/A * before evicting everything in a vain attempt to find space.
1450N/A */
1450N/A if (obj->base.size > gtt_max) {
1450N/A DRM_ERROR("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
1450N/A obj->base.size,
1450N/A map_and_fenceable ? "mappable" : "total",
1450N/A gtt_max);
1450N/A return -E2BIG;
1450N/A }
1450N/A
1450N/A ret = i915_gem_object_get_pages(obj);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A i915_gem_object_pin_pages(obj);
1450N/A
1450N/A node = kzalloc(sizeof(*node), GFP_KERNEL);
1450N/A if (node == NULL) {
1450N/A i915_gem_object_unpin_pages(obj);
1450N/A return -ENOMEM;
1450N/A }
1450N/A
1450N/Asearch_free:
1450N/A ret = drm_mm_insert_node_in_range_generic(&dev_priv->mm.gtt_space, node,
1450N/A size, alignment,
1450N/A obj->cache_level, 0, gtt_max);
1450N/A if (ret) {
1450N/A ret = i915_gem_evict_something(dev, size, alignment,
1450N/A obj->cache_level,
1450N/A map_and_fenceable,
1450N/A nonblocking);
1450N/A if (ret == 0)
1450N/A goto search_free;
1450N/A
1450N/A i915_gem_object_unpin_pages(obj);
1450N/A kfree(node, sizeof(*node));
1450N/A return ret;
1450N/A }
1450N/A if ((!i915_gem_valid_gtt_space(dev,
1450N/A node,
1450N/A obj->cache_level))) {
1450N/A i915_gem_object_unpin_pages(obj);
1450N/A drm_mm_put_block(node);
1450N/A return -EINVAL;
1450N/A }
1450N/A
1450N/A ret = i915_gem_gtt_prepare_object(obj);
1450N/A if (ret) {
1450N/A i915_gem_object_unpin_pages(obj);
1450N/A drm_mm_put_block(node);
1450N/A return ret;
1450N/A }
1450N/A
1450N/A list_move_tail(&obj->global_list, &dev_priv->mm.bound_list, (caddr_t)obj);
1450N/A list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list, (caddr_t)obj);
1450N/A
1450N/A obj->gtt_space = node;
1450N/A obj->gtt_offset = node->start;
1450N/A
1450N/A fenceable =
1450N/A node->size == fence_size &&
1450N/A (node->start & (fence_alignment - 1)) == 0;
1450N/A
1450N/A mappable =
1450N/A obj->gtt_offset + obj->base.size <= dev_priv->gtt.mappable_end;
1450N/A
1450N/A obj->map_and_fenceable = mappable && fenceable;
1450N/A
1450N/A TRACE_GEM_OBJ_HISTORY(obj, "bind gtt");
1450N/A i915_gem_verify_gtt(dev);
1450N/A return 0;
1450N/A}
1450N/A
1450N/Avoid
1450N/Ai915_gem_clflush_object(struct drm_i915_gem_object *obj)
1450N/A{
1450N/A /* If we don't have a page list set up, then we're not pinned
1450N/A * to GPU, and we can ignore the cache flush because it'll happen
1450N/A * again at bind time.
1450N/A */
1450N/A if (obj->page_list == NULL)
1450N/A return;
1450N/A
1450N/A /*
1450N/A * Stolen memory is always coherent with the GPU as it is explicitly
1450N/A * marked as wc by the system, or the system is cache-coherent.
1450N/A */
1450N/A if (obj->stolen)
1450N/A return;
1450N/A
1450N/A /* If the GPU is snooping the contents of the CPU cache,
1450N/A * we do not need to manually clear the CPU cache lines. However,
1450N/A * the caches are only snooped when the render cache is
1450N/A * flushed/invalidated. As we always have to emit invalidations
1450N/A * and flushes when moving into and out of the RENDER domain, correct
1450N/A * snooping behaviour occurs naturally as the result of our domain
1450N/A * tracking.
1450N/A */
1450N/A if (obj->cache_level != I915_CACHE_NONE)
1450N/A return;
1450N/A
1450N/A drm_clflush_pages(obj->page_list, obj->base.size / PAGE_SIZE);
1450N/A TRACE_GEM_OBJ_HISTORY(obj, "clflush");
1450N/A}
1450N/A
1450N/A/** Flushes the GTT write domain for the object if it's dirty. */
1450N/Astatic void
1450N/Ai915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
1450N/A{
1450N/A if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
1450N/A return;
1450N/A
1450N/A /* No actual flushing is required for the GTT write domain. Writes
1450N/A * to it immediately go to main memory as far as we know, so there's
1450N/A * no chipset flush. It also doesn't land in render cache.
1450N/A *
1450N/A * However, we do have to enforce the order so that all writes through
1450N/A * the GTT land before any writes to the device, such as updates to
1450N/A * the GATT itself.
1450N/A */
1450N/A membar_producer();
1450N/A
1450N/A obj->base.write_domain = 0;
1450N/A}
1450N/A
1450N/A/** Flushes the CPU write domain for the object if it's dirty. */
1450N/Astatic void
1450N/Ai915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
1450N/A{
1450N/A struct drm_device *dev = obj->base.dev;
1450N/A
1450N/A if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
1450N/A return;
1450N/A
1450N/A i915_gem_clflush_object(obj);
1450N/A i915_gem_chipset_flush(dev);
1450N/A obj->base.write_domain = 0;
1450N/A}
1450N/A
1450N/A/**
1450N/A * Moves a single object to the GTT read, and possibly write domain.
1450N/A *
1450N/A * This function returns when the move is complete, including waiting on
1450N/A * flushes to occur.
1450N/A */
1450N/Aint
1450N/Ai915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, int write)
1450N/A{
1450N/A drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
1450N/A int ret;
1450N/A
1450N/A /* Not valid to be called on unbound objects. */
1450N/A if (obj->gtt_space == NULL)
1450N/A return -EINVAL;
1450N/A
1450N/A if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
1450N/A return 0;
1450N/A
1450N/A ret = i915_gem_object_wait_rendering(obj, !write);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A i915_gem_object_flush_cpu_write_domain(obj);
1450N/A
1450N/A /* Serialise direct access to this object with the barriers for
1450N/A * coherent writes from the GPU, by effectively invalidating the
1450N/A * GTT domain upon first access.
1450N/A */
1450N/A if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
1450N/A membar_producer();
1450N/A
1450N/A /* It should now be out of any other write domains, and we can update
1450N/A * the domain values for our changes.
1450N/A */
1450N/A /* GPU reset can handle this error */
1450N/A// BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
1450N/A obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
1450N/A if (write) {
1450N/A obj->base.read_domains = I915_GEM_DOMAIN_GTT;
1450N/A obj->base.write_domain = I915_GEM_DOMAIN_GTT;
1450N/A obj->dirty = 1;
1450N/A }
1450N/A
1450N/A /* And bump the LRU for this access */
1450N/A if (i915_gem_object_is_inactive(obj))
1450N/A list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list, (caddr_t)obj);
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/Aint i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
1450N/A enum i915_cache_level cache_level)
1450N/A{
1450N/A struct drm_device *dev = obj->base.dev;
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A int ret;
1450N/A
1450N/A if (obj->cache_level == cache_level)
1450N/A return 0;
1450N/A
1450N/A if (obj->pin_count) {
1450N/A DRM_DEBUG("can not change the cache level of pinned objects\n");
1450N/A return -EBUSY;
1450N/A }
1450N/A
1450N/A if (!i915_gem_valid_gtt_space(dev, obj->gtt_space, cache_level)) {
1450N/A ret = i915_gem_object_unbind(obj, true);
1450N/A if (ret)
1450N/A return ret;
1450N/A }
1450N/A
1450N/A if (obj->gtt_space) {
1450N/A ret = i915_gem_object_finish_gpu(obj);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A i915_gem_object_finish_gtt(obj);
1450N/A
1450N/A /* Before SandyBridge, you could not use tiling or fence
1450N/A * registers with snooped memory, so relinquish any fences
1450N/A * currently pointing to our region in the aperture.
1450N/A */
1450N/A if (INTEL_INFO(dev)->gen < 6) {
1450N/A ret = i915_gem_object_put_fence(obj);
1450N/A if (ret)
1450N/A return ret;
1450N/A }
1450N/A
1450N/A if (obj->has_global_gtt_mapping)
1450N/A i915_gem_gtt_bind_object(obj, cache_level);
1450N/A if (obj->has_aliasing_ppgtt_mapping)
1450N/A i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
1450N/A obj, cache_level);
1450N/A
1450N/A obj->gtt_space->color = cache_level;
1450N/A }
1450N/A
1450N/A if (cache_level == I915_CACHE_NONE) {
1450N/A /* If we're coming from LLC cached, then we haven't
1450N/A * actually been tracking whether the data is in the
1450N/A * CPU cache or not, since we only allow one bit set
1450N/A * in obj->write_domain and have been skipping the clflushes.
1450N/A * Just set it to the CPU cache for now.
1450N/A */
1450N/A WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
1450N/A WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
1450N/A
1450N/A obj->base.read_domains = I915_GEM_DOMAIN_CPU;
1450N/A obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1450N/A }
1450N/A
1450N/A obj->cache_level = cache_level;
1450N/A i915_gem_verify_gtt(dev);
1450N/A return 0;
1450N/A}
1450N/A
1450N/Aint i915_gem_get_caching_ioctl(DRM_IOCTL_ARGS)
1450N/A{
1450N/A struct drm_i915_gem_caching *args = data;
1450N/A struct drm_i915_gem_object *obj;
1450N/A int ret;
1450N/A
1450N/A ret = i915_mutex_lock_interruptible(dev);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1450N/A if (&obj->base == NULL) {
1450N/A ret = -ENOENT;
1450N/A goto unlock;
1450N/A }
1450N/A
1450N/A args->caching = obj->cache_level != I915_CACHE_NONE;
1450N/A
1450N/A drm_gem_object_unreference(&obj->base);
1450N/Aunlock:
1450N/A mutex_unlock(&dev->struct_mutex);
1450N/A return ret;
1450N/A}
1450N/A
1450N/Aint i915_gem_set_caching_ioctl(DRM_IOCTL_ARGS)
1450N/A{
1450N/A struct drm_i915_gem_caching *args = data;
1450N/A struct drm_i915_gem_object *obj;
1450N/A enum i915_cache_level level;
1450N/A int ret;
1450N/A
1450N/A switch (args->caching) {
1450N/A case I915_CACHING_NONE:
1450N/A level = I915_CACHE_NONE;
1450N/A break;
1450N/A case I915_CACHING_CACHED:
1450N/A level = I915_CACHE_LLC;
1450N/A break;
1450N/A default:
1450N/A return -EINVAL;
1450N/A }
1450N/A
1450N/A ret = i915_mutex_lock_interruptible(dev);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1450N/A if (&obj->base == NULL) {
1450N/A ret = -ENOENT;
1450N/A goto unlock;
1450N/A }
1450N/A
1450N/A ret = i915_gem_object_set_cache_level(obj, level);
1450N/A
1450N/A drm_gem_object_unreference(&obj->base);
1450N/Aunlock:
1450N/A mutex_unlock(&dev->struct_mutex);
1450N/A return ret;
1450N/A}
1450N/A
1450N/A/*
1450N/A * Prepare buffer for display plane (scanout, cursors, etc).
1450N/A * Can be called from an uninterruptible phase (modesetting) and allows
1450N/A * any flushes to be pipelined (for pageflips).
1450N/A */
1450N/Aint
1450N/Ai915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
1450N/A u32 alignment,
1450N/A struct intel_ring_buffer *pipelined)
1450N/A{
1450N/A /* LINTED */
1450N/A u32 old_read_domains, old_write_domain;
1450N/A int ret;
1450N/A
1450N/A if (pipelined != obj->ring) {
1450N/A ret = i915_gem_object_sync(obj, pipelined);
1450N/A if (ret)
1450N/A return ret;
1450N/A }
1450N/A
1450N/A /* The display engine is not coherent with the LLC cache on gen6. As
1450N/A * a result, we make sure that the pinning that is about to occur is
1450N/A * done with uncached PTEs. This is lowest common denominator for all
1450N/A * chipsets.
1450N/A *
1450N/A * However for gen6+, we could do better by using the GFDT bit instead
1450N/A * of uncaching, which would allow us to flush all the LLC-cached data
1450N/A * with that bit in the PTE to main memory with just one PIPE_CONTROL.
1450N/A */
1450N/A ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A /* As the user may map the buffer once pinned in the display plane
1450N/A * (e.g. libkms for the bootup splash), we have to ensure that we
1450N/A * always use map_and_fenceable for all scanout buffers.
1450N/A */
1450N/A ret = i915_gem_object_pin(obj, alignment, true, false);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A i915_gem_object_flush_cpu_write_domain(obj);
1450N/A
1450N/A old_write_domain = obj->base.write_domain;
1450N/A old_read_domains = obj->base.read_domains;
1450N/A
1450N/A /* It should now be out of any other write domains, and we can update
1450N/A * the domain values for our changes.
1450N/A */
1450N/A obj->base.write_domain = 0;
1450N/A obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/Aint
1450N/Ai915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
1450N/A{
1450N/A int ret;
1450N/A
1450N/A if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
1450N/A return 0;
1450N/A
1450N/A ret = i915_gem_object_wait_rendering(obj, false);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A /* Ensure that we invalidate the GPU's caches and TLBs. */
1450N/A obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1450N/A return 0;
1450N/A}
1450N/A
1450N/A/**
1450N/A * Moves a single object to the CPU read, and possibly write domain.
1450N/A *
1450N/A * This function returns when the move is complete, including waiting on
1450N/A * flushes to occur.
1450N/A */
1450N/Aint
1450N/Ai915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
1450N/A{
1450N/A /* LINTED */
1450N/A uint32_t old_write_domain, old_read_domains;
1450N/A int ret;
1450N/A
1450N/A if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
1450N/A return 0;
1450N/A
1450N/A ret = i915_gem_object_wait_rendering(obj, !write);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A i915_gem_object_flush_gtt_write_domain(obj);
1450N/A
1450N/A old_write_domain = obj->base.write_domain;
1450N/A old_read_domains = obj->base.read_domains;
1450N/A
1450N/A /* Flush the CPU cache if it's still invalid. */
1450N/A if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
1450N/A i915_gem_clflush_object(obj);
1450N/A
1450N/A obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
1450N/A }
1450N/A
1450N/A /* It should now be out of any other write domains, and we can update
1450N/A * the domain values for our changes.
1450N/A */
1450N/A BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
1450N/A
1450N/A /* If we're writing through the CPU, then the GPU read domains will
1450N/A * need to be invalidated at next use.
1450N/A */
1450N/A if (write) {
1450N/A obj->base.read_domains = I915_GEM_DOMAIN_CPU;
1450N/A obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1450N/A }
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/A/* Throttle our rendering by waiting until the ring has completed our requests
1450N/A * emitted over 20 msec ago.
1450N/A *
1450N/A * Note that if we were to use the current jiffies each time around the loop,
1450N/A * we wouldn't escape the function with any frames outstanding if the time to
1450N/A * render a frame was over 20ms.
1450N/A *
1450N/A * This should get us reasonable parallelism between CPU and GPU but also
1450N/A * relatively low latency when blocking on a particular request to finish.
1450N/A */
1450N/Astatic int
1450N/Ai915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
1450N/A{
1450N/A struct drm_i915_private *dev_priv = dev->dev_private;
1450N/A struct drm_i915_file_private *file_priv = file->driver_priv;
1450N/A unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
1450N/A struct drm_i915_gem_request *request;
1450N/A struct intel_ring_buffer *ring = NULL;
1450N/A unsigned reset_counter;
1450N/A u32 seqno = 0;
1450N/A int ret;
1450N/A
1450N/A ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
1450N/A if (ret)
1450N/A return ret;
1450N/A spin_lock(&file_priv->mm.lock);
1450N/A list_for_each_entry(request, struct drm_i915_gem_request, &file_priv->mm.request_list, client_list) {
1450N/A if (time_after_eq(request->emitted_jiffies, recent_enough))
1450N/A break;
1450N/A
1450N/A ring = request->ring;
1450N/A seqno = request->seqno;
1450N/A }
1450N/A reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1450N/A spin_unlock(&file_priv->mm.lock);
1450N/A
1450N/A if (seqno == 0)
1450N/A return 0;
1450N/A
1450N/A ret = __wait_seqno(ring, seqno, reset_counter, true, NULL);
1450N/A if (ret == 0)
1450N/A test_set_timer(&dev_priv->mm.retire_timer, 0);
1450N/A
1450N/A return ret;
1450N/A}
1450N/A
1450N/Aint
1450N/Ai915_gem_object_pin(struct drm_i915_gem_object *obj,
1450N/A uint32_t alignment,
1450N/A bool map_and_fenceable,
1450N/A bool nonblocking)
1450N/A{
1450N/A int ret;
1450N/A
1450N/A if ((obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
1450N/A return -EBUSY;
1450N/A
1450N/A if (obj->gtt_space != NULL) {
1450N/A if ((alignment && obj->gtt_offset & (alignment - 1)) ||
1450N/A (map_and_fenceable && !obj->map_and_fenceable)) {
1450N/A DRM_INFO("bo is already pinned with incorrect alignment:"
1450N/A " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
1450N/A " obj->map_and_fenceable=%d\n",
1450N/A obj->gtt_offset, alignment,
1450N/A map_and_fenceable,
1450N/A obj->map_and_fenceable);
1450N/A ret = i915_gem_object_unbind(obj, 1);
1450N/A if (ret)
1450N/A return ret;
1450N/A }
1450N/A }
1450N/A
1450N/A if (obj->gtt_space == NULL) {
1450N/A struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1450N/A
1450N/A ret = i915_gem_object_bind_to_gtt(obj, alignment,
1450N/A map_and_fenceable,
1450N/A nonblocking);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A if (!dev_priv->mm.aliasing_ppgtt)
1450N/A i915_gem_gtt_bind_object(obj, obj->cache_level);
1450N/A }
1450N/A
1450N/A if (!obj->has_global_gtt_mapping && map_and_fenceable)
1450N/A i915_gem_gtt_bind_object(obj, obj->cache_level);
1450N/A
1450N/A obj->pin_count++;
1450N/A obj->pin_mappable |= map_and_fenceable;
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/Avoid
1450N/Ai915_gem_object_unpin(struct drm_i915_gem_object *obj)
1450N/A{
1450N/A BUG_ON(obj->pin_count == 0);
1450N/A BUG_ON(obj->gtt_space == NULL);
1450N/A
1450N/A if (--obj->pin_count == 0)
1450N/A obj->pin_mappable = false;
1450N/A}
1450N/A
1450N/Aint
1450N/A/* LINTED */
1450N/Ai915_gem_pin_ioctl(DRM_IOCTL_ARGS)
1450N/A{
1450N/A struct drm_i915_gem_pin *args = data;
1450N/A struct drm_i915_gem_object *obj;
1450N/A int ret;
1450N/A
1450N/A ret = i915_mutex_lock_interruptible(dev);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1450N/A if (&obj->base == NULL) {
1450N/A ret = -ENOENT;
1450N/A goto unlock;
1450N/A }
1450N/A
1450N/A if (obj->pin_filp != NULL && obj->pin_filp != file) {
1450N/A DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
1450N/A args->handle);
1450N/A ret = -EINVAL;
1450N/A goto out;
1450N/A }
1450N/A
1450N/A obj->user_pin_count++;
1450N/A obj->pin_filp = file;
1450N/A if (obj->user_pin_count == 1) {
1450N/A ret = i915_gem_object_pin(obj, args->alignment, true, false);
1450N/A if (ret)
1450N/A goto out;
1450N/A }
1450N/A
1450N/A /* XXX - flush the CPU caches for pinned objects
1450N/A * as the X server doesn't manage domains yet
1450N/A */
1450N/A i915_gem_object_flush_cpu_write_domain(obj);
1450N/A args->offset = obj->gtt_offset;
1450N/Aout:
1450N/A drm_gem_object_unreference(&obj->base);
1450N/Aunlock:
1450N/A mutex_unlock(&dev->struct_mutex);
1450N/A return ret;
1450N/A}
1450N/A
1450N/Aint
1450N/A/* LINTED */
1450N/Ai915_gem_unpin_ioctl(DRM_IOCTL_ARGS)
1450N/A{
1450N/A struct drm_i915_gem_pin *args = data;
1450N/A struct drm_i915_gem_object *obj;
1450N/A int ret;
1450N/A
1450N/A ret = i915_mutex_lock_interruptible(dev);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1450N/A if (&obj->base == NULL) {
1450N/A ret = -ENOENT;
1450N/A goto unlock;
1450N/A }
1450N/A
1450N/A if (obj->pin_filp != file) {
1450N/A DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
1450N/A args->handle);
1450N/A ret = -EINVAL;
1450N/A goto out;
1450N/A }
1450N/A obj->user_pin_count--;
1450N/A if (obj->user_pin_count == 0) {
1450N/A obj->pin_filp = NULL;
1450N/A i915_gem_object_unpin(obj);
1450N/A }
1450N/A
1450N/Aout:
1450N/A drm_gem_object_unreference(&obj->base);
1450N/Aunlock:
1450N/A mutex_unlock(&dev->struct_mutex);
1450N/A return ret;
1450N/A}
1450N/A
1450N/Aint
1450N/A/* LINTED */
1450N/Ai915_gem_busy_ioctl(DRM_IOCTL_ARGS)
1450N/A{
1450N/A struct drm_i915_gem_busy *args = data;
1450N/A struct drm_i915_gem_object *obj;
1450N/A int ret;
1450N/A
1450N/A ret = i915_mutex_lock_interruptible(dev);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1450N/A if (&obj->base == NULL) {
1450N/A ret = -ENOENT;
1450N/A goto unlock;
1450N/A }
1450N/A
1450N/A /* Count all active objects as busy, even if they are currently not used
1450N/A * by the gpu. Users of this interface expect objects to eventually
1450N/A * become non-busy without any further actions, therefore emit any
1450N/A * necessary flushes here.
1450N/A */
1450N/A ret = i915_gem_object_flush_active(obj);
1450N/A
1450N/A args->busy = obj->active;
1450N/A if (obj->ring) {
1450N/A args->busy |= intel_ring_flag(obj->ring) << 16;
1450N/A }
1450N/A
1450N/A drm_gem_object_unreference(&obj->base);
1450N/Aunlock:
1450N/A mutex_unlock(&dev->struct_mutex);
1450N/A return ret;
1450N/A}
1450N/A
1450N/Aint
1450N/A/* LINTED */
1450N/Ai915_gem_throttle_ioctl(DRM_IOCTL_ARGS)
1450N/A{
1450N/A return i915_gem_ring_throttle(dev, file);
1450N/A}
1450N/A
1450N/Aint
1450N/A/* LINTED */
1450N/Ai915_gem_madvise_ioctl(DRM_IOCTL_ARGS)
1450N/A{
1450N/A struct drm_i915_gem_madvise *args = data;
1450N/A
1450N/A /* Don't enable buffer catch */
1450N/A args->retained = 0;
1450N/A return 0;
1450N/A}
1450N/A
1450N/Avoid i915_gem_object_init(struct drm_i915_gem_object *obj,
1450N/A const struct drm_i915_gem_object_ops *ops)
1450N/A{
1450N/A INIT_LIST_HEAD(&obj->mm_list);
1450N/A INIT_LIST_HEAD(&obj->global_list);
1450N/A INIT_LIST_HEAD(&obj->ring_list);
1450N/A INIT_LIST_HEAD(&obj->exec_list);
1450N/A
1450N/A obj->ops = ops;
1450N/A
1450N/A obj->fence_reg = I915_FENCE_REG_NONE;
1450N/A obj->madv = I915_MADV_WILLNEED;
1450N/A /* Avoid an unnecessary call to unbind on the first bind. */
1450N/A obj->map_and_fenceable = true;
1450N/A
1450N/A i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
1450N/A}
1450N/A
1450N/Astatic const struct drm_i915_gem_object_ops i915_gem_object_ops = {
1450N/A .get_pages = i915_gem_object_get_pages_gtt,
1450N/A .put_pages = i915_gem_object_put_pages_gtt,
1450N/A};
1450N/A
1450N/Astruct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
1450N/A size_t size)
1450N/A{
1450N/A struct drm_i915_gem_object *obj;
1450N/A int gen;
1450N/A
1450N/A obj = kzalloc(sizeof(*obj), GFP_KERNEL);
1450N/A if (obj == NULL)
1450N/A return NULL;
1450N/A
1450N/A if (IS_G33(dev))
1450N/A gen = 33;
1450N/A else
1450N/A gen = INTEL_INFO(dev)->gen * 10;
1450N/A
1450N/A if (drm_gem_object_init(dev, &obj->base, size, gen) != 0) {
1450N/A kfree(obj, sizeof(*obj));
1450N/A DRM_ERROR("failed to init gem object");
1450N/A return NULL;
1450N/A }
1450N/A
1450N/A
1450N/A i915_gem_object_init(obj, &i915_gem_object_ops);
1450N/A
1450N/A obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1450N/A obj->base.read_domains = I915_GEM_DOMAIN_CPU;
1450N/A
1450N/A if (HAS_LLC(dev)) {
1450N/A /* On Gen6, we can have the GPU use the LLC (the CPU
1450N/A * cache) for about a 10% performance improvement
1450N/A * compared to uncached. Graphics requests other than
1450N/A * display scanout are coherent with the CPU in
1450N/A * accessing this cache. This means in this mode we
1450N/A * don't need to clflush on the CPU side, and on the
1450N/A * GPU side we only need to flush internal caches to
1450N/A * get data visible to the CPU.
1450N/A *
1450N/A * However, we maintain the display planes as UC, and so
1450N/A * need to rebind when first used as such.
1450N/A */
1450N/A obj->cache_level = I915_CACHE_LLC;
1450N/A } else
1450N/A obj->cache_level = I915_CACHE_NONE;
1450N/A
1450N/A return obj;
1450N/A}
1450N/A
1450N/Aint i915_gem_init_object(struct drm_gem_object *obj)
1450N/A{
1450N/A DRM_ERROR("i915_gem_init_object is not supported, BUG!");
1450N/A return 0;
1450N/A}
1450N/A
1450N/Avoid i915_gem_free_object(struct drm_gem_object *gem_obj)
1450N/A{
1450N/A struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
1450N/A struct drm_device *dev = obj->base.dev;
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A int ret;
1450N/A
1450N/A if (obj->phys_obj)
1450N/A i915_gem_detach_phys_object(dev, obj);
1450N/A
1450N/A obj->pin_count = 0;
1450N/A ret = i915_gem_object_unbind(obj, 1);
1450N/A if (ret) {
1450N/A bool was_interruptible;
1450N/A was_interruptible = dev_priv->mm.interruptible;
1450N/A dev_priv->mm.interruptible = false;
1450N/A
1450N/A WARN_ON(i915_gem_object_unbind(obj, 1));
1450N/A
1450N/A dev_priv->mm.interruptible = was_interruptible;
1450N/A }
1450N/A
1450N/A /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
1450N/A * before progressing. */
1450N/A if (obj->stolen)
1450N/A i915_gem_object_unpin_pages(obj);
1450N/A
1450N/A if (obj->pages_pin_count)
1450N/A obj->pages_pin_count = 0;
1450N/A i915_gem_object_put_pages(obj);
1450N/A if (obj->mmap_offset)
1450N/A i915_gem_free_mmap_offset(obj);
1450N/A
1450N/A// if (obj->base.import_attach)
1450N/A// drm_prime_gem_destroy(&obj->base, NULL);
1450N/A
1450N/A i915_gem_info_remove_obj(dev_priv, obj->base.size);
1450N/A
1450N/A if (obj->bit_17 != NULL)
1450N/A kfree(obj->bit_17, sizeof(BITS_TO_LONGS(obj->base.size >> PAGE_SHIFT) * sizeof(long)));
1450N/A drm_gem_object_release(&obj->base);
1450N/A kfree(obj, sizeof(*obj));
1450N/A}
1450N/A
1450N/Aint
1450N/Ai915_gem_idle(struct drm_device *dev, uint32_t type)
1450N/A{
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A int ret;
1450N/A
1450N/A mutex_lock(&dev->struct_mutex);
1450N/A
1450N/A if (dev_priv->mm.suspended) {
1450N/A mutex_unlock(&dev->struct_mutex);
1450N/A return 0;
1450N/A }
1450N/A
1450N/A ret = i915_gpu_idle(dev);
1450N/A if (ret) {
1450N/A mutex_unlock(&dev->struct_mutex);
1450N/A return ret;
1450N/A }
1450N/A i915_gem_retire_requests(dev);
1450N/A
1450N/A /* Under UMS, be paranoid and evict. */
1450N/A if (!drm_core_check_feature(dev, DRIVER_MODESET))
1450N/A i915_gem_evict_everything(dev);
1450N/A
1450N/A /* Hack! Don't let anybody do execbuf while we don't control the chip.
1450N/A * We need to replace this with a semaphore, or something.
1450N/A * And not confound mm.suspended!
1450N/A */
1450N/A dev_priv->mm.suspended = 1;
1450N/A del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
1450N/A
1450N/A i915_kernel_lost_context(dev);
1450N/A i915_gem_cleanup_ringbuffer(dev);
1450N/A
1450N/A mutex_unlock(&dev->struct_mutex);
1450N/A
1450N/A /* Cancel the retire work handler, wait for it to finish if running
1450N/A */
1450N/A del_timer_sync(&dev_priv->mm.retire_timer);
1450N/A cancel_delayed_work(dev_priv->wq);
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/Avoid i915_gem_l3_remap(struct drm_device *dev)
1450N/A{
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A u32 misccpctl;
1450N/A int i;
1450N/A
1450N/A if (!HAS_L3_GPU_CACHE(dev))
1450N/A return;
1450N/A
1450N/A if (!dev_priv->l3_parity.remap_info)
1450N/A return;
1450N/A
1450N/A misccpctl = I915_READ(GEN7_MISCCPCTL);
1450N/A I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1450N/A POSTING_READ(GEN7_MISCCPCTL);
1450N/A
1450N/A for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
1450N/A u32 remap = I915_READ(GEN7_L3LOG_BASE + i);
1450N/A if (remap && remap != dev_priv->l3_parity.remap_info[i/4])
1450N/A DRM_DEBUG("0x%x was already programmed to %x\n",
1450N/A GEN7_L3LOG_BASE + i, remap);
1450N/A if (remap && !dev_priv->l3_parity.remap_info[i/4])
1450N/A DRM_DEBUG_DRIVER("Clearing remapped register\n");
1450N/A I915_WRITE(GEN7_L3LOG_BASE + i, dev_priv->l3_parity.remap_info[i/4]);
1450N/A }
1450N/A
1450N/A /* Make sure all the writes land before disabling dop clock gating */
1450N/A POSTING_READ(GEN7_L3LOG_BASE);
1450N/A
1450N/A I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1450N/A}
1450N/A
1450N/Avoid i915_gem_init_swizzling(struct drm_device *dev)
1450N/A{
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A
1450N/A if (INTEL_INFO(dev)->gen < 5 ||
1450N/A dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
1450N/A return;
1450N/A
1450N/A I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
1450N/A DISP_TILE_SURFACE_SWIZZLING);
1450N/A
1450N/A if (IS_GEN5(dev))
1450N/A return;
1450N/A
1450N/A I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
1450N/A if (IS_GEN6(dev))
1450N/A I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
1450N/A else if (IS_GEN7(dev))
1450N/A I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
1450N/A /* LINTED */
1450N/A else
1450N/A BUG();
1450N/A}
1450N/A
1450N/Astatic bool
1450N/Aintel_enable_blt(struct drm_device *dev)
1450N/A{
1450N/A if (!HAS_BLT(dev))
1450N/A return false;
1450N/A
1450N/A return true;
1450N/A}
1450N/A
1450N/Astatic int i915_gem_init_rings(struct drm_device *dev)
1450N/A{
1450N/A struct drm_i915_private *dev_priv = dev->dev_private;
1450N/A int ret;
1450N/A
1450N/A ret = intel_init_render_ring_buffer(dev);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A if (HAS_BSD(dev)) {
1450N/A ret = intel_init_bsd_ring_buffer(dev);
1450N/A if (ret)
1450N/A goto cleanup_render_ring;
1450N/A }
1450N/A
1450N/A if (intel_enable_blt(dev)) {
1450N/A ret = intel_init_blt_ring_buffer(dev);
1450N/A if (ret)
1450N/A goto cleanup_bsd_ring;
1450N/A }
1450N/A
1450N/A if (HAS_VEBOX(dev)) {
1450N/A ret = intel_init_vebox_ring_buffer(dev);
1450N/A if (ret)
1450N/A goto cleanup_blt_ring;
1450N/A }
1450N/A
1450N/A
1450N/A ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
1450N/A if (ret)
1450N/A goto cleanup_vebox_ring;
1450N/A
1450N/A return 0;
1450N/A
1450N/Acleanup_vebox_ring:
1450N/A intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
1450N/Acleanup_blt_ring:
1450N/A intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
1450N/Acleanup_bsd_ring:
1450N/A intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
1450N/Acleanup_render_ring:
1450N/A intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
1450N/A
1450N/A return ret;
1450N/A}
1450N/A
1450N/Aint
1450N/Ai915_gem_init_hw(struct drm_device *dev)
1450N/A{
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A int ret;
1450N/A
1450N/A if (IS_HASWELL(dev) && (I915_READ(0x120010) == 1))
1450N/A I915_WRITE(0x9008, I915_READ(0x9008) | 0xf0000);
1450N/A
1450N/A if (HAS_PCH_NOP(dev)) {
1450N/A u32 temp = I915_READ(GEN7_MSG_CTL);
1450N/A temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
1450N/A I915_WRITE(GEN7_MSG_CTL, temp);
1450N/A }
1450N/A
1450N/A i915_gem_l3_remap(dev);
1450N/A
1450N/A i915_gem_init_swizzling(dev);
1450N/A
1450N/A ret = i915_gem_init_rings(dev);
1450N/A if (ret)
1450N/A return ret;
1450N/A
1450N/A /*
1450N/A * XXX: There was some w/a described somewhere suggesting loading
1450N/A * contexts before PPGTT.
1450N/A */
1450N/A i915_gem_context_init(dev);
1450N/A if (dev_priv->mm.aliasing_ppgtt) {
1450N/A ret = dev_priv->mm.aliasing_ppgtt->enable(dev);
1450N/A if (ret) {
1450N/A i915_gem_cleanup_aliasing_ppgtt(dev);
1450N/A DRM_INFO("PPGTT enable failed. This is not fatal, but unexpected\n");
1450N/A }
1450N/A }
1450N/A
1450N/A return 0;
1450N/A}
1450N/A
1450N/Aint i915_gem_init(struct drm_device *dev)
1450N/A{
1450N/A struct drm_i915_private *dev_priv = dev->dev_private;
1450N/A int ret;
1450N/A int size;
1450N/A
1450N/A mutex_lock(&dev->struct_mutex);
1450N/A
1450N/A if (IS_VALLEYVIEW(dev)) {
1450N/A /* VLVA0 (potential hack), BIOS isn't actually waking us */
1450N/A I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
1450N/A if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
1450N/A DRM_DEBUG_DRIVER("allow wake ack timed out\n");
1450N/A }
1450N/A
1450N/A i915_gem_init_global_gtt(dev);
1450N/A
1450N/A size = drm_getfb_size(dev);
1450N/A dev_priv->fbcon_obj = NULL;
1450N/A if (size > 0) {
1450N/A /* save original fb GTT */
1450N/A dev->old_gtt_size = size;
1450N/A dev->old_gtt = kmem_zalloc(dev->old_gtt_size, KM_NOSLEEP);
1450N/A intel_rw_gtt(dev, dev->old_gtt_size,
1450N/A 0, (void *) dev->old_gtt, 0);
1450N/A
1450N/A /*
1450N/A * Some BIOSes fail to initialise the GTT, which will cause DMA faults when
1450N/A * the IOMMU is enabled. We need to clear the whole GTT.
1450N/A */
1450N/A i915_clean_gtt(dev, size);
1450N/A
1450N/A /* workaround: prealloc fb buffer, make sure the start address 0 */
1450N/A dev_priv->fbcon_obj = i915_gem_alloc_object(dev, size);
1450N/A if (!dev_priv->fbcon_obj) {
1450N/A DRM_ERROR("failed to allocate framebuffer");
1450N/A mutex_unlock(&dev->struct_mutex);
1450N/A teardown_scratch_page(dev);
1450N/A return (-ENOMEM);
1450N/A }
1450N/A
1450N/A /* copy old content to fb buffer */
1450N/A (void) memcpy(dev_priv->fbcon_obj->base.kaddr, dev->old_gtt, size);
1450N/A
1450N/A /* Flush everything out, we'll be doing GTT only from now on */
1450N/A ret = intel_pin_and_fence_fb_obj(dev, dev_priv->fbcon_obj, false);
1450N/A if (ret) {
1450N/A DRM_ERROR("failed to pin fb ret %d", ret);
1450N/A mutex_unlock(&dev->struct_mutex);
1450N/A teardown_scratch_page(dev);
1450N/A i915_gem_free_object(&dev_priv->fbcon_obj->base);
1450N/A return ret;
1450N/A }
1450N/A }
1450N/A
1450N/A dev_priv->mm.interruptible = true;
1450N/A
1450N/A ret = i915_gem_init_hw(dev);
1450N/A mutex_unlock(&dev->struct_mutex);
1450N/A if (ret) {
1450N/A i915_gem_cleanup_aliasing_ppgtt(dev);
1450N/A return ret;
1450N/A }
1450N/A
1450N/A /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
1450N/A if (!drm_core_check_feature(dev, DRIVER_MODESET))
1450N/A dev_priv->dri1.allow_batchbuffer = 1;
1450N/A return 0;
1450N/A}
1450N/A
1450N/Avoid
1450N/Ai915_gem_cleanup_ringbuffer(struct drm_device *dev)
1450N/A{
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A struct intel_ring_buffer *ring;
1450N/A int i;
1450N/A
1450N/A for_each_ring(ring, dev_priv, i)
1450N/A intel_cleanup_ring_buffer(ring);
1450N/A}
1450N/A
1450N/Aint
1450N/A/* LINTED */
1450N/Ai915_gem_entervt_ioctl(DRM_IOCTL_ARGS)
1450N/A{
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A int ret;
1450N/A
1450N/A if (drm_core_check_feature(dev, DRIVER_MODESET))
1450N/A return 0;
1450N/A
1450N/A if (i915_reset_in_progress(&dev_priv->gpu_error)) {
1450N/A DRM_ERROR("Reenabling wedged hardware, good luck\n");
1450N/A atomic_set(&dev_priv->gpu_error.reset_counter, 0);
1450N/A }
1450N/A
1450N/A mutex_lock(&dev->struct_mutex);
1450N/A dev_priv->mm.suspended = 0;
1450N/A
1450N/A ret = i915_gem_init_hw(dev);
1450N/A if (ret != 0) {
1450N/A mutex_unlock(&dev->struct_mutex);
1450N/A return ret;
1450N/A }
1450N/A
1450N/A BUG_ON(!list_empty(&dev_priv->mm.active_list));
1450N/A mutex_unlock(&dev->struct_mutex);
1450N/A
1450N/A ret = drm_irq_install(dev);
1450N/A if (ret)
1450N/A goto cleanup_ringbuffer;
1450N/A
1450N/A return 0;
1450N/A
1450N/Acleanup_ringbuffer:
1450N/A mutex_lock(&dev->struct_mutex);
1450N/A i915_gem_cleanup_ringbuffer(dev);
1450N/A dev_priv->mm.suspended = 1;
1450N/A mutex_unlock(&dev->struct_mutex);
1450N/A
1450N/A return ret;
1450N/A}
1450N/A
1450N/Aint
1450N/A/* LINTED */
1450N/Ai915_gem_leavevt_ioctl(DRM_IOCTL_ARGS)
1450N/A{
1450N/A if (drm_core_check_feature(dev, DRIVER_MODESET))
1450N/A return 0;
1450N/A
1450N/A (void ) drm_irq_uninstall(dev);
1450N/A return i915_gem_idle(dev, 0);
1450N/A}
1450N/A
1450N/Avoid
1450N/Ai915_gem_lastclose(struct drm_device *dev)
1450N/A{
1450N/A int ret;
1450N/A
1450N/A if (drm_core_check_feature(dev, DRIVER_MODESET))
1450N/A return;
1450N/A
1450N/A ret = i915_gem_idle(dev, 1);
1450N/A if (ret)
1450N/A DRM_ERROR("failed to idle hardware: %d\n", ret);
1450N/A}
1450N/A
1450N/Astatic void
1450N/Ainit_ring_lists(struct intel_ring_buffer *ring)
1450N/A{
1450N/A INIT_LIST_HEAD(&ring->active_list);
1450N/A INIT_LIST_HEAD(&ring->request_list);
1450N/A}
1450N/A
1450N/Avoid
1450N/Ai915_gem_load(struct drm_device *dev)
1450N/A{
1450N/A int i;
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A
1450N/A INIT_LIST_HEAD(&dev_priv->mm.active_list);
1450N/A INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
1450N/A INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
1450N/A INIT_LIST_HEAD(&dev_priv->mm.bound_list);
1450N/A INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1450N/A for (i = 0; i < I915_NUM_RINGS; i++)
1450N/A init_ring_lists(&dev_priv->ring[i]);
1450N/A for (i = 0; i < I915_MAX_NUM_FENCES; i++)
1450N/A INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
1450N/A
1450N/A INIT_WORK(&dev_priv->mm.retire_work, i915_gem_retire_work_handler);
1450N/A setup_timer(&dev_priv->mm.retire_timer, i915_gem_retire_work_timer,
1450N/A (void *)dev);
1450N/A
1450N/A /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
1450N/A if (IS_GEN3(dev)) {
1450N/A I915_WRITE(MI_ARB_STATE,
1450N/A _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
1450N/A }
1450N/A
1450N/A dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
1450N/A
1450N/A /* Old X drivers will take 0-2 for front, back, depth buffers */
1450N/A if (!drm_core_check_feature(dev, DRIVER_MODESET))
1450N/A dev_priv->fence_reg_start = 3;
1450N/A
1450N/A if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
1450N/A dev_priv->num_fence_regs = 32;
1450N/A else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
1450N/A dev_priv->num_fence_regs = 16;
1450N/A else
1450N/A dev_priv->num_fence_regs = 8;
1450N/A
1450N/A /* Initialize fence registers to zero */
1450N/A INIT_LIST_HEAD(&dev_priv->mm.fence_list);
1450N/A i915_gem_restore_fences(dev);
1450N/A
1450N/A i915_gem_detect_bit_6_swizzle(dev);
1450N/A DRM_INIT_WAITQUEUE(&dev_priv->pending_flip_queue, DRM_INTR_PRI(dev));
1450N/A dev_priv->mm.interruptible = true;
1450N/A}
1450N/A
1450N/A/*
1450N/A * Create a physically contiguous memory object for this object
1450N/A * e.g. for cursor + overlay regs
1450N/A */
1450N/Astatic int i915_gem_init_phys_object(struct drm_device *dev,
1450N/A int id, int size, int align)
1450N/A{
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A struct drm_i915_gem_phys_object *phys_obj;
1450N/A int ret;
1450N/A
1450N/A if (dev_priv->mm.phys_objs[id - 1] || !size)
1450N/A return 0;
1450N/A
1450N/A phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
1450N/A if (!phys_obj)
1450N/A return -ENOMEM;
1450N/A
1450N/A phys_obj->id = id;
1450N/A
1450N/A phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff, 1);
1450N/A if (!phys_obj->handle) {
1450N/A ret = -ENOMEM;
1450N/A goto kfree_obj;
1450N/A }
1450N/A
1450N/A dev_priv->mm.phys_objs[id - 1] = phys_obj;
1450N/A
1450N/A return 0;
1450N/Akfree_obj:
1450N/A kfree(phys_obj, sizeof (struct drm_i915_gem_phys_object));
1450N/A return ret;
1450N/A}
1450N/A
1450N/Astatic void i915_gem_free_phys_object(struct drm_device *dev, int id)
1450N/A{
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A struct drm_i915_gem_phys_object *phys_obj;
1450N/A
1450N/A if (!dev_priv->mm.phys_objs[id - 1])
1450N/A return;
1450N/A
1450N/A phys_obj = dev_priv->mm.phys_objs[id - 1];
1450N/A if (phys_obj->cur_obj) {
1450N/A i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
1450N/A }
1450N/A
1450N/A drm_pci_free(phys_obj->handle);
1450N/A kfree(phys_obj, sizeof (struct drm_i915_gem_phys_object));
1450N/A dev_priv->mm.phys_objs[id - 1] = NULL;
1450N/A}
1450N/A
1450N/Avoid i915_gem_free_all_phys_object(struct drm_device *dev)
1450N/A{
1450N/A int i;
1450N/A
1450N/A for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
1450N/A i915_gem_free_phys_object(dev, i);
1450N/A}
1450N/A
1450N/Avoid i915_gem_detach_phys_object(struct drm_device *dev,
1450N/A struct drm_i915_gem_object *obj)
1450N/A{
1450N/A int i, ret;
1450N/A int page_count;
1450N/A
1450N/A if (!obj->phys_obj)
1450N/A return;
1450N/A
1450N/A if (!obj->page_list) {
1450N/A ret = i915_gem_object_get_pages_gtt(obj);
1450N/A if (ret)
1450N/A goto out;
1450N/A }
1450N/A
1450N/A page_count = obj->base.size / PAGE_SIZE;
1450N/A
1450N/A for (i = 0; i < page_count; i++) {
1450N/A char *dst = obj->page_list[i];
1450N/A char *src = (caddr_t)(obj->phys_obj->handle->vaddr + (i * PAGE_SIZE));
1450N/A
1450N/A (void) memcpy(dst, src, PAGE_SIZE);
1450N/A }
1450N/A drm_clflush_pages(obj->page_list, page_count);
1450N/A i915_gem_chipset_flush(dev);
1450N/A
1450N/A i915_gem_object_put_pages_gtt(obj);
1450N/Aout:
1450N/A obj->phys_obj->cur_obj = NULL;
1450N/A obj->phys_obj = NULL;
1450N/A}
1450N/A
1450N/Aint
1450N/Ai915_gem_attach_phys_object(struct drm_device *dev,
1450N/A struct drm_i915_gem_object *obj,
1450N/A int id,
1450N/A int align)
1450N/A{
1450N/A drm_i915_private_t *dev_priv = dev->dev_private;
1450N/A int ret = 0;
1450N/A int page_count;
1450N/A int i;
1450N/A
1450N/A if (id > I915_MAX_PHYS_OBJECT)
1450N/A return -EINVAL;
1450N/A
1450N/A if (obj->phys_obj) {
1450N/A if (obj->phys_obj->id == id)
1450N/A return 0;
1450N/A i915_gem_detach_phys_object(dev, obj);
1450N/A }
1450N/A
1450N/A /* create a new object */
1450N/A if (!dev_priv->mm.phys_objs[id - 1]) {
1450N/A ret = i915_gem_init_phys_object(dev, id,
1450N/A obj->base.size, align);
1450N/A if (ret) {
1450N/A DRM_ERROR("failed to init phys object %d size: %lu\n", id, obj->base.size);
1450N/A goto out;
1450N/A }
1450N/A }
1450N/A
1450N/A /* bind to the object */
1450N/A obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
1450N/A obj->phys_obj->cur_obj = obj;
1450N/A
1450N/A if (!obj->page_list) {
1450N/A ret = i915_gem_object_get_pages_gtt(obj);
1450N/A if (ret) {
1450N/A DRM_ERROR("failed to get page list\n");
1450N/A goto out;
1450N/A }
1450N/A }
1450N/A
1450N/A page_count = obj->base.size / PAGE_SIZE;
1450N/A
1450N/A for (i = 0; i < page_count; i++) {
1450N/A char *dst = obj->page_list[i];
1450N/A char *src = (caddr_t)(obj->phys_obj->handle->vaddr + (i * PAGE_SIZE));
1450N/A (void) memcpy(dst, src, PAGE_SIZE);
1450N/A
1450N/A }
1450N/A
1450N/A i915_gem_object_put_pages_gtt(obj);
1450N/A
1450N/A return 0;
1450N/Aout:
1450N/A return ret;
1450N/A}
1450N/A
1450N/Astatic int
1450N/Ai915_gem_phys_pwrite(struct drm_device *dev,
1450N/A struct drm_i915_gem_object *obj,
1450N/A struct drm_i915_gem_pwrite *args,
1450N/A /* LINTED */
1450N/A struct drm_file *file_priv)
1450N/A{
1450N/A void *obj_addr;
1450N/A int ret;
1450N/A char __user *user_data;
1450N/A
1450N/A user_data = (char __user *) (uintptr_t) args->data_ptr;
1450N/A obj_addr = (void *)(uintptr_t)(obj->phys_obj->handle->vaddr + args->offset);
1450N/A
1450N/A DRM_DEBUG("obj_addr %p, %ld\n", obj_addr, args->size);
1450N/A ret = DRM_COPY_FROM_USER(obj_addr, user_data, args->size);
1450N/A if (ret)
1450N/A return -EFAULT;
1450N/A
1450N/A i915_gem_chipset_flush(dev);
1450N/A return 0;
1450N/A}
1450N/A
1450N/Avoid i915_gem_release(struct drm_device * dev, struct drm_file *file)
1450N/A{
1450N/A struct drm_i915_file_private *file_priv = file->driver_priv;
1450N/A
1450N/A file_priv->status = 0;
1450N/A
1450N/A mutex_lock(&dev->struct_mutex);
1450N/A /* i915_gpu_idle() generates warning message, so just ignore return */
1450N/A (void) i915_gpu_idle(dev);
1450N/A mutex_unlock(&dev->struct_mutex);
1450N/A
1450N/A /* Clean up our request list when the client is going away, so that
1450N/A * later retire_requests won't dereference our soon-to-be-gone
1450N/A * file_priv.
1450N/A */
1450N/A spin_lock(&file_priv->mm.lock);
1450N/A while (!list_empty(&file_priv->mm.request_list)) {
1450N/A struct drm_i915_gem_request *request;
1450N/A
1450N/A request = list_first_entry(&file_priv->mm.request_list,
1450N/A struct drm_i915_gem_request,
1450N/A client_list);
1450N/A list_del(&request->client_list);
1450N/A request->file_priv = NULL;
1450N/A }
1450N/A spin_unlock(&file_priv->mm.lock);
1450N/A}