2N/A/*
2N/A * GRUB -- GRand Unified Bootloader
2N/A * Copyright (C) 1999,2000,2001,2002,2003,2004,2009 Free Software Foundation, Inc.
2N/A * Copyright (c) 2010, 2012, Oracle and/or its affiliates. All rights reserved.
2N/A *
2N/A * GRUB is free software; you can redistribute it and/or modify
2N/A * it under the terms of the GNU General Public License as published by
2N/A * the Free Software Foundation; either version 3 of the License, or
2N/A * (at your option) any later version.
2N/A *
2N/A * GRUB is distributed in the hope that it will be useful,
2N/A * but WITHOUT ANY WARRANTY; without even the implied warranty of
2N/A * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
2N/A * GNU General Public License for more details.
2N/A *
2N/A * You should have received a copy of the GNU General Public License
2N/A * along with GRUB. If not, see <http://www.gnu.org/licenses/>.
2N/A */
2N/A
2N/A#ifndef GRUB_ZFS_SPA_HEADER
2N/A#define GRUB_ZFS_SPA_HEADER 1
2N/A
2N/A#define grub_zfs_to_cpu16(x,a) (((a) == GRUB_ZFS_BIG_ENDIAN) ? \
2N/A grub_be_to_cpu16(x) \
2N/A : grub_le_to_cpu16(x))
2N/A#define grub_cpu_to_zfs16(x,a) (((a) == GRUB_ZFS_BIG_ENDIAN) ? \
2N/A grub_cpu_to_be16(x) \
2N/A : grub_cpu_to_le16(x))
2N/A
2N/A#define grub_zfs_to_cpu32(x,a) (((a) == GRUB_ZFS_BIG_ENDIAN) ? \
2N/A grub_be_to_cpu32(x) \
2N/A : grub_le_to_cpu32(x))
2N/A#define grub_cpu_to_zfs32(x,a) (((a) == GRUB_ZFS_BIG_ENDIAN) ? \
2N/A grub_cpu_to_be32(x) \
2N/A : grub_cpu_to_le32(x))
2N/A
2N/A#define grub_zfs_to_cpu64(x,a) (((a) == GRUB_ZFS_BIG_ENDIAN) \
2N/A ? grub_be_to_cpu64(x) \
2N/A : grub_le_to_cpu64(x))
2N/A#define grub_cpu_to_zfs64(x,a) (((a) == GRUB_ZFS_BIG_ENDIAN) ? grub_cpu_to_be64(x) \
2N/A : grub_cpu_to_le64(x))
2N/A
2N/A/*
2N/A * General-purpose 32-bit and 64-bit bitfield encodings.
2N/A */
2N/A#define BF32_DECODE(x, low, len) P2PHASE((x) >> (low), 1U << (len))
2N/A#define BF64_DECODE(x, low, len) P2PHASE((x) >> (low), 1ULL << (len))
2N/A#define BF32_ENCODE(x, low, len) (P2PHASE((x), 1U << (len)) << (low))
2N/A#define BF64_ENCODE(x, low, len) (P2PHASE((x), 1ULL << (len)) << (low))
2N/A
2N/A#define BF32_GET(x, low, len) BF32_DECODE(x, low, len)
2N/A#define BF64_GET(x, low, len) BF64_DECODE(x, low, len)
2N/A
2N/A#define BF32_SET(x, low, len, val) \
2N/A ((x) ^= BF32_ENCODE((x >> low) ^ (val), low, len))
2N/A#define BF64_SET(x, low, len, val) \
2N/A ((x) ^= BF64_ENCODE((x >> low) ^ (val), low, len))
2N/A
2N/A#define BF32_GET_SB(x, low, len, shift, bias) \
2N/A ((BF32_GET(x, low, len) + (bias)) << (shift))
2N/A#define BF64_GET_SB(x, low, len, shift, bias) \
2N/A ((BF64_GET(x, low, len) + (bias)) << (shift))
2N/A
2N/A#define BF32_SET_SB(x, low, len, shift, bias, val) \
2N/A BF32_SET(x, low, len, ((val) >> (shift)) - (bias))
2N/A#define BF64_SET_SB(x, low, len, shift, bias, val) \
2N/A BF64_SET(x, low, len, ((val) >> (shift)) - (bias))
2N/A
2N/A#define SPA_MINBLOCKSHIFT 9
2N/A#define SPA_MAXBLOCKSHIFT 20
2N/A#define SPA_128KBLOCKSHIFT 17
2N/A#define SPA_MINBLOCKSIZE (1ULL << SPA_MINBLOCKSHIFT)
2N/A
2N/A/*
2N/A * Size of block to hold the configuration data (a packed nvlist)
2N/A */
2N/A#define SPA_CONFIG_BLOCKSIZE (1 << 14)
2N/A
2N/A/*
2N/A * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB.
2N/A * The ASIZE encoding should be at least 64 times larger (6 more bits)
2N/A * to support up to 4-way RAID-Z mirror mode with worst-case gang block
2N/A * overhead, three DVAs per bp, plus one more bit in case we do anything
2N/A * else that expands the ASIZE.
2N/A */
2N/A#define SPA_LSIZEBITS 16 /* LSIZE up to 32M (2^16 * 512) */
2N/A#define SPA_PSIZEBITS 16 /* PSIZE up to 32M (2^16 * 512) */
2N/A#define SPA_ASIZEBITS 24 /* ASIZE up to 64 times larger */
2N/A
2N/A/*
2N/A * All SPA data is represented by 128-bit data virtual addresses (DVAs).
2N/A * The members of the dva_t should be considered opaque outside the SPA.
2N/A */
2N/Atypedef struct dva {
2N/A grub_uint64_t dva_word[2];
2N/A} dva_t;
2N/A
2N/A/*
2N/A * Each block has a 256-bit checksum -- strong enough for cryptographic hashes.
2N/A */
2N/Atypedef struct zio_cksum {
2N/A grub_uint64_t zc_word[4];
2N/A} zio_cksum_t;
2N/A
2N/A/*
2N/A * Each block is described by its DVAs, time of birth, checksum, etc.
2N/A * The word-by-word, bit-by-bit layout of the blkptr is as follows:
2N/A *
2N/A * 64 56 48 40 32 24 16 8 0
2N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
2N/A * 0 | vdev1 | GRID | ASIZE |
2N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
2N/A * 1 |G| offset1 |
2N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
2N/A * 2 | vdev2 | GRID | ASIZE |
2N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
2N/A * 3 |G| offset2 |
2N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
2N/A * 4 | vdev3 | GRID | ASIZE |
2N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
2N/A * 5 |G| offset3 |
2N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
2N/A * 6 |BDX|lvl| type | cksum | comp | PSIZE | LSIZE |
2N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
2N/A * 7 | padding |
2N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
2N/A * 8 | padding |
2N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
2N/A * 9 | physical birth txg |
2N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
2N/A * a | logical birth txg |
2N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
2N/A * b | fill count |
2N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
2N/A * c | checksum[0] |
2N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
2N/A * d | checksum[1] |
2N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
2N/A * e | checksum[2] |
2N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
2N/A * f | checksum[3] |
2N/A * +-------+-------+-------+-------+-------+-------+-------+-------+
2N/A *
2N/A * Legend:
2N/A *
2N/A * vdev virtual device ID
2N/A * offset offset into virtual device
2N/A * LSIZE logical size
2N/A * PSIZE physical size (after compression)
2N/A * ASIZE allocated size (including RAID-Z parity and gang block headers)
2N/A * GRID RAID-Z layout information (reserved for future use)
2N/A * cksum checksum function
2N/A * comp compression function
2N/A * G gang block indicator
2N/A * B byteorder (endianness)
2N/A * D dedup
2N/A * X unused
2N/A * lvl level of indirection
2N/A * type DMU object type
2N/A * phys birth txg of block allocation; zero if same as logical birth txg
2N/A * log. birth transaction group in which the block was logically born
2N/A * fill count number of non-zero blocks under this bp
2N/A * checksum[4] 256-bit checksum of the data this bp describes
2N/A */
2N/A#define SPA_BLKPTRSHIFT 7 /* blkptr_t is 128 bytes */
2N/A#define SPA_DVAS_PER_BP 3 /* Number of DVAs in a bp */
2N/A
2N/Atypedef struct blkptr {
2N/A dva_t blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */
2N/A grub_uint64_t blk_prop; /* size, compression, type, etc */
2N/A grub_uint64_t blk_pad[2]; /* Extra space for the future */
2N/A grub_uint64_t blk_phys_birth; /* txg when block was allocated */
2N/A grub_uint64_t blk_birth; /* transaction group at birth */
2N/A grub_uint64_t blk_fill; /* fill count */
2N/A zio_cksum_t blk_cksum; /* 256-bit checksum */
2N/A} blkptr_t;
2N/A
2N/A/*
2N/A * Macros to get and set fields in a bp or DVA.
2N/A */
2N/A#define DVA_GET_ASIZE(dva) \
2N/A BF64_GET_SB((dva)->dva_word[0], 0, 24, SPA_MINBLOCKSHIFT, 0)
2N/A#define DVA_SET_ASIZE(dva, x) \
2N/A BF64_SET_SB((dva)->dva_word[0], 0, 24, SPA_MINBLOCKSHIFT, 0, x)
2N/A
2N/A#define DVA_GET_GRID(dva) BF64_GET((dva)->dva_word[0], 24, 8)
2N/A#define DVA_SET_GRID(dva, x) BF64_SET((dva)->dva_word[0], 24, 8, x)
2N/A
2N/A#define DVA_GET_VDEV(dva) BF64_GET((dva)->dva_word[0], 32, 32)
2N/A#define DVA_SET_VDEV(dva, x) BF64_SET((dva)->dva_word[0], 32, 32, x)
2N/A
2N/A#define DVA_GET_GANG(dva) BF64_GET((dva)->dva_word[1], 63, 1)
2N/A#define DVA_SET_GANG(dva, x) BF64_SET((dva)->dva_word[1], 63, 1, x)
2N/A
2N/A#define BP_GET_LSIZE(bp) \
2N/A BF64_GET_SB((bp)->blk_prop, 0, 16, SPA_MINBLOCKSHIFT, 1)
2N/A#define BP_SET_LSIZE(bp, x) \
2N/A BF64_SET_SB((bp)->blk_prop, 0, 16, SPA_MINBLOCKSHIFT, 1, x)
2N/A
2N/A#define BP_GET_COMPRESS(bp) BF64_GET((bp)->blk_prop, 32, 8)
2N/A#define BP_SET_COMPRESS(bp, x) BF64_SET((bp)->blk_prop, 32, 8, x)
2N/A
2N/A#define BP_GET_CHECKSUM(bp) BF64_GET((bp)->blk_prop, 40, 8)
2N/A#define BP_SET_CHECKSUM(bp, x) BF64_SET((bp)->blk_prop, 40, 8, x)
2N/A
2N/A#define BP_GET_TYPE(bp) BF64_GET((bp)->blk_prop, 48, 8)
2N/A#define BP_SET_TYPE(bp, x) BF64_SET((bp)->blk_prop, 48, 8, x)
2N/A
2N/A#define BP_GET_LEVEL(bp) BF64_GET((bp)->blk_prop, 56, 5)
2N/A#define BP_SET_LEVEL(bp, x) BF64_SET((bp)->blk_prop, 56, 5, x)
2N/A
2N/A#define BP_GET_PROP_BIT_61(bp) BF64_GET((bp)->blk_prop, 61, 1)
2N/A#define BP_SET_PROP_BIT_61(bp, x) BF64_SET((bp)->blk_prop, 61, 1, x)
2N/A
2N/A#define BP_GET_DEDUP(bp) BF64_GET((bp)->blk_prop, 62, 1)
2N/A#define BP_SET_DEDUP(bp, x) BF64_SET((bp)->blk_prop, 62, 1, x)
2N/A
2N/A#define BP_GET_BYTEORDER(bp) (0 - BF64_GET((bp)->blk_prop, 63, 1))
2N/A#define BP_SET_BYTEORDER(bp, x) BF64_SET((bp)->blk_prop, 63, 1, x)
2N/A
2N/A#define BP_PHYSICAL_BIRTH(bp) \
2N/A ((bp)->blk_phys_birth ? (bp)->blk_phys_birth : (bp)->blk_birth)
2N/A
2N/A#define BP_SET_BIRTH(bp, logical, physical) \
2N/A{ \
2N/A (bp)->blk_birth = (logical); \
2N/A (bp)->blk_phys_birth = ((logical) == (physical) ? 0 : (physical)); \
2N/A}
2N/A
2N/A#define BP_GET_ASIZE(bp) \
2N/A (DVA_GET_ASIZE(&(bp)->blk_dva[0]) + DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
2N/A DVA_GET_ASIZE(&(bp)->blk_dva[2]))
2N/A
2N/A#define BP_GET_UCSIZE(bp) \
2N/A ((BP_GET_LEVEL(bp) > 0 || dmu_ot[BP_GET_TYPE(bp)].ot_metadata) ? \
2N/A BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp));
2N/A
2N/A#define BP_GET_NDVAS(bp) \
2N/A (!!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
2N/A !!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
2N/A !!DVA_GET_ASIZE(&(bp)->blk_dva[2]))
2N/A
2N/A#define BP_COUNT_GANG(bp) \
2N/A (DVA_GET_GANG(&(bp)->blk_dva[0]) + \
2N/A DVA_GET_GANG(&(bp)->blk_dva[1]) + \
2N/A DVA_GET_GANG(&(bp)->blk_dva[2]))
2N/A
2N/A#define DVA_EQUAL(dva1, dva2) \
2N/A ((dva1)->dva_word[1] == (dva2)->dva_word[1] && \
2N/A (dva1)->dva_word[0] == (dva2)->dva_word[0])
2N/A
2N/A#define BP_EQUAL(bp1, bp2) \
2N/A (BP_PHYSICAL_BIRTH(bp1) == BP_PHYSICAL_BIRTH(bp2) && \
2N/A DVA_EQUAL(&(bp1)->blk_dva[0], &(bp2)->blk_dva[0]) && \
2N/A DVA_EQUAL(&(bp1)->blk_dva[1], &(bp2)->blk_dva[1]) && \
2N/A DVA_EQUAL(&(bp1)->blk_dva[2], &(bp2)->blk_dva[2]))
2N/A
2N/A#define ZIO_CHECKSUM_EQUAL(zc1, zc2) \
2N/A (0 == (((zc1).zc_word[0] - (zc2).zc_word[0]) | \
2N/A ((zc1).zc_word[1] - (zc2).zc_word[1]) | \
2N/A ((zc1).zc_word[2] - (zc2).zc_word[2]) | \
2N/A ((zc1).zc_word[3] - (zc2).zc_word[3])))
2N/A
2N/A#define DVA_IS_VALID(dva) (DVA_GET_ASIZE(dva) != 0)
2N/A
2N/A#define ZIO_SET_CHECKSUM(zcp, w0, w1, w2, w3) \
2N/A{ \
2N/A (zcp)->zc_word[0] = w0; \
2N/A (zcp)->zc_word[1] = w1; \
2N/A (zcp)->zc_word[2] = w2; \
2N/A (zcp)->zc_word[3] = w3; \
2N/A}
2N/A
2N/A#define BP_IDENTITY(bp) (&(bp)->blk_dva[0])
2N/A#define BP_IS_GANG(bp) DVA_GET_GANG(BP_IDENTITY(bp))
2N/A#define BP_IS_HOLE(bp) ((bp)->blk_birth == 0)
2N/A
2N/A/* BP_IS_RAIDZ(bp) assumes no block compression */
2N/A#define BP_IS_RAIDZ(bp) (DVA_GET_ASIZE(&(bp)->blk_dva[0]) > \
2N/A BP_GET_PSIZE(bp))
2N/A
2N/A#define BP_ZERO(bp) \
2N/A{ \
2N/A (bp)->blk_dva[0].dva_word[0] = 0; \
2N/A (bp)->blk_dva[0].dva_word[1] = 0; \
2N/A (bp)->blk_dva[1].dva_word[0] = 0; \
2N/A (bp)->blk_dva[1].dva_word[1] = 0; \
2N/A (bp)->blk_dva[2].dva_word[0] = 0; \
2N/A (bp)->blk_dva[2].dva_word[1] = 0; \
2N/A (bp)->blk_prop = 0; \
2N/A (bp)->blk_pad[0] = 0; \
2N/A (bp)->blk_pad[1] = 0; \
2N/A (bp)->blk_phys_birth = 0; \
2N/A (bp)->blk_birth = 0; \
2N/A (bp)->blk_fill = 0; \
2N/A ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0); \
2N/A}
2N/A
2N/A#define BP_SPRINTF_LEN 320
2N/A
2N/A#endif /* ! GRUB_ZFS_SPA_HEADER */