2N/A/* Copyright (C) 1999, 2000, 2001, 2002, 2008 Free Software Foundation, Inc.
2N/A Contributed by David Mosberger-Tang <davidm@hpl.hp.com>.
2N/A
2N/A The GNU C Library is free software; you can redistribute it and/or
2N/A modify it under the terms of the GNU Lesser General Public
2N/A License as published by the Free Software Foundation; either
2N/A version 2.1 of the License, or (at your option) any later version.
2N/A
2N/A The GNU C Library is distributed in the hope that it will be useful,
2N/A but WITHOUT ANY WARRANTY; without even the implied warranty of
2N/A MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
2N/A Lesser General Public License for more details.
2N/A
2N/A You should have received a copy of the GNU Lesser General Public
2N/A License along with the GNU C Library; if not, write to the Free
2N/A Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
2N/A 02111-1307 USA.
2N/A
2N/A Note that __sigsetjmp() did NOT flush the register stack. Instead,
2N/A we do it here since __longjmp() is usually much less frequently
2N/A invoked than __sigsetjmp(). The only difficulty is that __sigsetjmp()
2N/A didn't (and wouldn't be able to) save ar.rnat either. This is a problem
2N/A because if we're not careful, we could end up loading random NaT bits.
2N/A There are two cases:
2N/A
2N/A (i) ar.bsp < ia64_rse_rnat_addr(jmpbuf.ar_bsp)
2N/A ar.rnat contains the desired bits---preserve ar.rnat
2N/A across loadrs and write to ar.bspstore
2N/A
2N/A (ii) ar.bsp >= ia64_rse_rnat_addr(jmpbuf.ar_bsp)
2N/A The desired ar.rnat is stored in
2N/A ia64_rse_rnat_addr(jmpbuf.ar_bsp). Load those
2N/A bits into ar.rnat after setting ar.bspstore. */
2N/A
2N/A
2N/A
2N/A# define pPos p6 /* is rotate count positive? */
2N/A# define pNeg p7 /* is rotate count negative? */
2N/A
2N/A
2N/A /* __longjmp(__jmp_buf buf, int val) */
2N/A
2N/A .text
2N/A .global longjmp
2N/A .proc longjmp
2N/Alongjmp:
2N/A alloc r8=ar.pfs,2,1,0,0
2N/A mov r27=ar.rsc
2N/A add r2=0x98,in0 // r2 <- &jmpbuf.orig_jmp_buf_addr
2N/A ;;
2N/A ld8 r8=[r2],-16 // r8 <- orig_jmp_buf_addr
2N/A mov r10=ar.bsp
2N/A and r11=~0x3,r27 // clear ar.rsc.mode
2N/A ;;
2N/A flushrs // flush dirty regs to backing store (must be first in insn grp)
2N/A ld8 r23=[r2],8 // r23 <- jmpbuf.ar_bsp
2N/A sub r8=r8,in0 // r8 <- &orig_jmpbuf - &jmpbuf
2N/A ;;
2N/A ld8 r25=[r2] // r25 <- jmpbuf.ar_unat
2N/A extr.u r8=r8,3,6 // r8 <- (&orig_jmpbuf - &jmpbuf)/8 & 0x3f
2N/A ;;
2N/A cmp.lt pNeg,pPos=r8,r0
2N/A mov r2=in0
2N/A ;;
2N/A(pPos) mov r16=r8
2N/A(pNeg) add r16=64,r8
2N/A(pPos) sub r17=64,r8
2N/A(pNeg) sub r17=r0,r8
2N/A ;;
2N/A mov ar.rsc=r11 // put RSE in enforced lazy mode
2N/A shr.u r8=r25,r16
2N/A add r3=8,in0 // r3 <- &jmpbuf.r1
2N/A shl r9=r25,r17
2N/A ;;
2N/A or r25=r8,r9
2N/A ;;
2N/A mov r26=ar.rnat
2N/A mov ar.unat=r25 // setup ar.unat (NaT bits for r1, r4-r7, and r12)
2N/A ;;
2N/A ld8.fill.nta sp=[r2],16 // r12 (sp)
2N/A ld8.fill.nta gp=[r3],16 // r1 (gp)
2N/A dep r11=-1,r23,3,6 // r11 <- ia64_rse_rnat_addr(jmpbuf.ar_bsp)
2N/A ;;
2N/A ld8.nta r16=[r2],16 // caller's unat
2N/A ld8.nta r17=[r3],16 // fpsr
2N/A ;;
2N/A ld8.fill.nta r4=[r2],16 // r4
2N/A ld8.fill.nta r5=[r3],16 // r5 (gp)
2N/A cmp.geu p8,p0=r10,r11 // p8 <- (ar.bsp >= jmpbuf.ar_bsp)
2N/A ;;
2N/A ld8.fill.nta r6=[r2],16 // r6
2N/A ld8.fill.nta r7=[r3],16 // r7
2N/A ;;
2N/A mov ar.unat=r16 // restore caller's unat
2N/A mov ar.fpsr=r17 // restore fpsr
2N/A ;;
2N/A ld8.nta r16=[r2],16 // b0
2N/A ld8.nta r17=[r3],16 // b1
2N/A ;;
2N/A(p8) ld8 r26=[r11] // r26 <- *ia64_rse_rnat_addr(jmpbuf.ar_bsp)
2N/A mov ar.bspstore=r23 // restore ar.bspstore
2N/A ;;
2N/A ld8.nta r18=[r2],16 // b2
2N/A ld8.nta r19=[r3],16 // b3
2N/A ;;
2N/A ld8.nta r20=[r2],16 // b4
2N/A ld8.nta r21=[r3],16 // b5
2N/A ;;
2N/A ld8.nta r11=[r2],16 // ar.pfs
2N/A ld8.nta r22=[r3],56 // ar.lc
2N/A ;;
2N/A ld8.nta r24=[r2],32 // pr
2N/A mov b0=r16
2N/A ;;
2N/A ldf.fill.nta f2=[r2],32
2N/A ldf.fill.nta f3=[r3],32
2N/A mov b1=r17
2N/A ;;
2N/A ldf.fill.nta f4=[r2],32
2N/A ldf.fill.nta f5=[r3],32
2N/A mov b2=r18
2N/A ;;
2N/A ldf.fill.nta f16=[r2],32
2N/A ldf.fill.nta f17=[r3],32
2N/A mov b3=r19
2N/A ;;
2N/A ldf.fill.nta f18=[r2],32
2N/A ldf.fill.nta f19=[r3],32
2N/A mov b4=r20
2N/A ;;
2N/A ldf.fill.nta f20=[r2],32
2N/A ldf.fill.nta f21=[r3],32
2N/A mov b5=r21
2N/A ;;
2N/A ldf.fill.nta f22=[r2],32
2N/A ldf.fill.nta f23=[r3],32
2N/A mov ar.lc=r22
2N/A ;;
2N/A ldf.fill.nta f24=[r2],32
2N/A ldf.fill.nta f25=[r3],32
2N/A cmp.eq p8,p9=0,in1
2N/A ;;
2N/A ldf.fill.nta f26=[r2],32
2N/A ldf.fill.nta f27=[r3],32
2N/A mov ar.pfs=r11
2N/A ;;
2N/A ldf.fill.nta f28=[r2],32
2N/A ldf.fill.nta f29=[r3],32
2N/A ;;
2N/A ldf.fill.nta f30=[r2]
2N/A ldf.fill.nta f31=[r3]
2N/A(p8) mov r8=1
2N/A
2N/A mov ar.rnat=r26 // restore ar.rnat
2N/A ;;
2N/A mov ar.rsc=r27 // restore ar.rsc
2N/A(p9) mov r8=in1
2N/A
2N/A invala // virt. -> phys. regnum mapping may change
2N/A mov pr=r24,-1
2N/A br.ret.dptk.few rp
2N/A .endp longjmp