2N/A/* Memory management for efiemu */
2N/A/*
2N/A * GRUB -- GRand Unified Bootloader
2N/A * Copyright (C) 2009 Free Software Foundation, Inc.
2N/A *
2N/A * GRUB is free software: you can redistribute it and/or modify
2N/A * it under the terms of the GNU General Public License as published by
2N/A * the Free Software Foundation, either version 3 of the License, or
2N/A * (at your option) any later version.
2N/A *
2N/A * GRUB is distributed in the hope that it will be useful,
2N/A * but WITHOUT ANY WARRANTY; without even the implied warranty of
2N/A * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
2N/A * GNU General Public License for more details.
2N/A *
2N/A * You should have received a copy of the GNU General Public License
2N/A * along with GRUB. If not, see <http://www.gnu.org/licenses/>.
2N/A */
2N/A/*
2N/A To keep efiemu runtime contiguous this mm is special.
2N/A It uses deferred allocation.
2N/A In the first stage you may request memory with grub_efiemu_request_memalign
2N/A It will give you a handle with which in the second phase you can access your
2N/A memory with grub_efiemu_mm_obtain_request (handle). It's guaranteed that
2N/A subsequent calls with the same handle return the same result. You can't request any additional memory once you're in the second phase
2N/A*/
2N/A
2N/A#include <grub/err.h>
2N/A#include <grub/normal.h>
2N/A#include <grub/mm.h>
2N/A#include <grub/misc.h>
2N/A#include <grub/efiemu/efiemu.h>
2N/A#include <grub/memory.h>
2N/A
2N/Astruct grub_efiemu_memrequest
2N/A{
2N/A struct grub_efiemu_memrequest *next;
2N/A grub_efi_memory_type_t type;
2N/A grub_size_t size;
2N/A grub_size_t align_overhead;
2N/A int handle;
2N/A void *val;
2N/A};
2N/A/* Linked list of requested memory. */
2N/Astatic struct grub_efiemu_memrequest *memrequests = 0;
2N/A/* Memory map. */
2N/Astatic grub_efi_memory_descriptor_t *efiemu_mmap = 0;
2N/A/* Pointer to allocated memory */
2N/Astatic void *resident_memory = 0;
2N/A/* Size of requested memory per type */
2N/Astatic grub_size_t requested_memory[GRUB_EFI_MAX_MEMORY_TYPE];
2N/A/* How many slots is allocated for memory_map and how many are already used */
2N/Astatic int mmap_reserved_size = 0, mmap_num = 0;
2N/A
2N/A/* Add a memory region to map*/
2N/Astatic grub_err_t
2N/Agrub_efiemu_add_to_mmap (grub_uint64_t start, grub_uint64_t size,
2N/A grub_efi_memory_type_t type)
2N/A{
2N/A grub_uint64_t page_start, npages;
2N/A
2N/A /* Extend map if necessary*/
2N/A if (mmap_num >= mmap_reserved_size)
2N/A {
2N/A efiemu_mmap = (grub_efi_memory_descriptor_t *)
2N/A grub_realloc (efiemu_mmap, (++mmap_reserved_size)
2N/A * sizeof (grub_efi_memory_descriptor_t));
2N/A if (!efiemu_mmap)
2N/A return grub_error (GRUB_ERR_OUT_OF_MEMORY,
2N/A "not enough space for memory map");
2N/A }
2N/A
2N/A /* Fill slot*/
2N/A page_start = start - (start % GRUB_EFIEMU_PAGESIZE);
2N/A npages = (size + (start % GRUB_EFIEMU_PAGESIZE) + GRUB_EFIEMU_PAGESIZE - 1)
2N/A / GRUB_EFIEMU_PAGESIZE;
2N/A efiemu_mmap[mmap_num].physical_start = page_start;
2N/A efiemu_mmap[mmap_num].virtual_start = page_start;
2N/A efiemu_mmap[mmap_num].num_pages = npages;
2N/A efiemu_mmap[mmap_num].type = type;
2N/A mmap_num++;
2N/A
2N/A return GRUB_ERR_NONE;
2N/A}
2N/A
2N/A/* Request a resident memory of type TYPE of size SIZE aligned at ALIGN
2N/A ALIGN must be a divisor of page size (if it's a divisor of 4096
2N/A it should be ok on all platforms)
2N/A */
2N/Aint
2N/Agrub_efiemu_request_memalign (grub_size_t align, grub_size_t size,
2N/A grub_efi_memory_type_t type)
2N/A{
2N/A grub_size_t align_overhead;
2N/A struct grub_efiemu_memrequest *ret, *cur, *prev;
2N/A /* Check that the request is correct */
2N/A if (type >= GRUB_EFI_MAX_MEMORY_TYPE || type <= GRUB_EFI_LOADER_CODE)
2N/A return -2;
2N/A
2N/A /* Add new size to requested size */
2N/A align_overhead = align - (requested_memory[type]%align);
2N/A if (align_overhead == align)
2N/A align_overhead = 0;
2N/A requested_memory[type] += align_overhead + size;
2N/A
2N/A /* Remember the request */
2N/A ret = grub_zalloc (sizeof (*ret));
2N/A if (!ret)
2N/A return -1;
2N/A ret->type = type;
2N/A ret->size = size;
2N/A ret->align_overhead = align_overhead;
2N/A prev = 0;
2N/A
2N/A /* Add request to the end of the chain.
2N/A It should be at the end because otherwise alignment isn't guaranteed */
2N/A for (cur = memrequests; cur; prev = cur, cur = cur->next);
2N/A if (prev)
2N/A {
2N/A ret->handle = prev->handle + 1;
2N/A prev->next = ret;
2N/A }
2N/A else
2N/A {
2N/A ret->handle = 1; /* Avoid 0 handle*/
2N/A memrequests = ret;
2N/A }
2N/A return ret->handle;
2N/A}
2N/A
2N/A/* Really allocate the memory */
2N/Astatic grub_err_t
2N/Aefiemu_alloc_requests (void)
2N/A{
2N/A grub_size_t align_overhead = 0;
2N/A grub_uint8_t *curptr, *typestart;
2N/A struct grub_efiemu_memrequest *cur;
2N/A grub_size_t total_alloc = 0;
2N/A unsigned i;
2N/A /* Order of memory regions */
2N/A grub_efi_memory_type_t reqorder[] =
2N/A {
2N/A /* First come regions usable by OS*/
2N/A GRUB_EFI_LOADER_CODE,
2N/A GRUB_EFI_LOADER_DATA,
2N/A GRUB_EFI_BOOT_SERVICES_CODE,
2N/A GRUB_EFI_BOOT_SERVICES_DATA,
2N/A GRUB_EFI_CONVENTIONAL_MEMORY,
2N/A GRUB_EFI_ACPI_RECLAIM_MEMORY,
2N/A
2N/A /* Then memory used by runtime */
2N/A /* This way all our regions are in a single block */
2N/A GRUB_EFI_RUNTIME_SERVICES_CODE,
2N/A GRUB_EFI_RUNTIME_SERVICES_DATA,
2N/A GRUB_EFI_ACPI_MEMORY_NVS,
2N/A
2N/A /* And then unavailable memory types. This is more for a completeness.
2N/A You should double think before allocating memory of any of these types
2N/A */
2N/A GRUB_EFI_UNUSABLE_MEMORY,
2N/A GRUB_EFI_MEMORY_MAPPED_IO,
2N/A GRUB_EFI_MEMORY_MAPPED_IO_PORT_SPACE,
2N/A GRUB_EFI_PAL_CODE
2N/A };
2N/A
2N/A /* Compute total memory needed */
2N/A for (i = 0; i < sizeof (reqorder) / sizeof (reqorder[0]); i++)
2N/A {
2N/A align_overhead = GRUB_EFIEMU_PAGESIZE
2N/A - (requested_memory[reqorder[i]] % GRUB_EFIEMU_PAGESIZE);
2N/A if (align_overhead == GRUB_EFIEMU_PAGESIZE)
2N/A align_overhead = 0;
2N/A total_alloc += requested_memory[reqorder[i]] + align_overhead;
2N/A }
2N/A
2N/A /* Allocate the whole memory in one block */
2N/A resident_memory = grub_memalign (GRUB_EFIEMU_PAGESIZE, total_alloc);
2N/A if (!resident_memory)
2N/A return grub_error (GRUB_ERR_OUT_OF_MEMORY,
2N/A "couldn't allocate resident memory");
2N/A
2N/A /* Split the memory into blocks by type */
2N/A curptr = resident_memory;
2N/A for (i = 0; i < sizeof (reqorder) / sizeof (reqorder[0]); i++)
2N/A {
2N/A if (!requested_memory[reqorder[i]])
2N/A continue;
2N/A typestart = curptr;
2N/A
2N/A /* Write pointers to requests */
2N/A for (cur = memrequests; cur; cur = cur->next)
2N/A if (cur->type == reqorder[i])
2N/A {
2N/A curptr = ((grub_uint8_t *)curptr) + cur->align_overhead;
2N/A cur->val = curptr;
2N/A curptr = ((grub_uint8_t *)curptr) + cur->size;
2N/A }
2N/A
2N/A /* Ensure that the regions are page-aligned */
2N/A align_overhead = GRUB_EFIEMU_PAGESIZE
2N/A - (requested_memory[reqorder[i]] % GRUB_EFIEMU_PAGESIZE);
2N/A if (align_overhead == GRUB_EFIEMU_PAGESIZE)
2N/A align_overhead = 0;
2N/A curptr = ((grub_uint8_t *) curptr) + align_overhead;
2N/A
2N/A /* Add the region to memory map */
2N/A grub_efiemu_add_to_mmap ((grub_addr_t) typestart,
2N/A curptr - typestart, reqorder[i]);
2N/A }
2N/A
2N/A return GRUB_ERR_NONE;
2N/A}
2N/A
2N/A/* Get a pointer to requested memory from handle */
2N/Avoid *
2N/Agrub_efiemu_mm_obtain_request (int handle)
2N/A{
2N/A struct grub_efiemu_memrequest *cur;
2N/A for (cur = memrequests; cur; cur = cur->next)
2N/A if (cur->handle == handle)
2N/A return cur->val;
2N/A return 0;
2N/A}
2N/A
2N/A/* Get type of requested memory by handle */
2N/Agrub_efi_memory_type_t
2N/Agrub_efiemu_mm_get_type (int handle)
2N/A{
2N/A struct grub_efiemu_memrequest *cur;
2N/A for (cur = memrequests; cur; cur = cur->next)
2N/A if (cur->handle == handle)
2N/A return cur->type;
2N/A return 0;
2N/A}
2N/A
2N/A/* Free a request */
2N/Avoid
2N/Agrub_efiemu_mm_return_request (int handle)
2N/A{
2N/A struct grub_efiemu_memrequest *cur, *prev;
2N/A
2N/A /* Remove head if necessary */
2N/A while (memrequests && memrequests->handle == handle)
2N/A {
2N/A cur = memrequests->next;
2N/A grub_free (memrequests);
2N/A memrequests = cur;
2N/A }
2N/A if (!memrequests)
2N/A return;
2N/A
2N/A /* Remove request from a middle of chain*/
2N/A for (prev = memrequests, cur = prev->next; cur;)
2N/A if (cur->handle == handle)
2N/A {
2N/A prev->next = cur->next;
2N/A grub_free (cur);
2N/A cur = prev->next;
2N/A }
2N/A else
2N/A {
2N/A prev = cur;
2N/A cur = prev->next;
2N/A }
2N/A}
2N/A
2N/A/* Reserve space for memory map */
2N/Astatic grub_err_t
2N/Agrub_efiemu_mmap_init (void)
2N/A{
2N/A auto int NESTED_FUNC_ATTR bounds_hook (grub_uint64_t, grub_uint64_t,
2N/A grub_memory_type_t);
2N/A int NESTED_FUNC_ATTR bounds_hook (grub_uint64_t addr __attribute__ ((unused)),
2N/A grub_uint64_t size __attribute__ ((unused)),
2N/A grub_memory_type_t type
2N/A __attribute__ ((unused)))
2N/A {
2N/A mmap_reserved_size++;
2N/A return 0;
2N/A }
2N/A
2N/A // the place for memory used by efiemu itself
2N/A mmap_reserved_size = GRUB_EFI_MAX_MEMORY_TYPE + 1;
2N/A
2N/A#ifndef GRUB_MACHINE_EMU
2N/A grub_machine_mmap_iterate (bounds_hook);
2N/A#endif
2N/A
2N/A return GRUB_ERR_NONE;
2N/A}
2N/A
2N/A/* This is a drop-in replacement of grub_efi_get_memory_map */
2N/A/* Get the memory map as defined in the EFI spec. Return 1 if successful,
2N/A return 0 if partial, or return -1 if an error occurs. */
2N/Aint
2N/Agrub_efiemu_get_memory_map (grub_efi_uintn_t *memory_map_size,
2N/A grub_efi_memory_descriptor_t *memory_map,
2N/A grub_efi_uintn_t *map_key,
2N/A grub_efi_uintn_t *descriptor_size,
2N/A grub_efi_uint32_t *descriptor_version)
2N/A{
2N/A if (!efiemu_mmap)
2N/A {
2N/A grub_error (GRUB_ERR_INVALID_COMMAND,
2N/A "you need to first launch efiemu_prepare");
2N/A return -1;
2N/A }
2N/A
2N/A if (*memory_map_size < mmap_num * sizeof (grub_efi_memory_descriptor_t))
2N/A {
2N/A *memory_map_size = mmap_num * sizeof (grub_efi_memory_descriptor_t);
2N/A return 0;
2N/A }
2N/A
2N/A *memory_map_size = mmap_num * sizeof (grub_efi_memory_descriptor_t);
2N/A grub_memcpy (memory_map, efiemu_mmap, *memory_map_size);
2N/A if (descriptor_size)
2N/A *descriptor_size = sizeof (grub_efi_memory_descriptor_t);
2N/A if (descriptor_version)
2N/A *descriptor_version = 1;
2N/A if (map_key)
2N/A *map_key = 0;
2N/A
2N/A return 1;
2N/A}
2N/A
2N/Agrub_err_t
2N/Agrub_efiemu_finish_boot_services (grub_efi_uintn_t *memory_map_size,
2N/A grub_efi_memory_descriptor_t *memory_map,
2N/A grub_efi_uintn_t *map_key,
2N/A grub_efi_uintn_t *descriptor_size,
2N/A grub_efi_uint32_t *descriptor_version)
2N/A{
2N/A int val = grub_efiemu_get_memory_map (memory_map_size,
2N/A memory_map, map_key,
2N/A descriptor_size,
2N/A descriptor_version);
2N/A if (val == 1)
2N/A return GRUB_ERR_NONE;
2N/A if (val == -1)
2N/A return grub_errno;
2N/A return grub_error (GRUB_ERR_IO, "memory map buffer is too small");
2N/A}
2N/A
2N/A
2N/A/* Free everything */
2N/Agrub_err_t
2N/Agrub_efiemu_mm_unload (void)
2N/A{
2N/A struct grub_efiemu_memrequest *cur, *d;
2N/A for (cur = memrequests; cur;)
2N/A {
2N/A d = cur->next;
2N/A grub_free (cur);
2N/A cur = d;
2N/A }
2N/A memrequests = 0;
2N/A grub_memset (&requested_memory, 0, sizeof (requested_memory));
2N/A grub_free (resident_memory);
2N/A resident_memory = 0;
2N/A grub_free (efiemu_mmap);
2N/A efiemu_mmap = 0;
2N/A mmap_reserved_size = mmap_num = 0;
2N/A return GRUB_ERR_NONE;
2N/A}
2N/A
2N/A/* This function should be called before doing any requests */
2N/Agrub_err_t
2N/Agrub_efiemu_mm_init (void)
2N/A{
2N/A grub_err_t err;
2N/A
2N/A err = grub_efiemu_mm_unload ();
2N/A if (err)
2N/A return err;
2N/A
2N/A grub_efiemu_mmap_init ();
2N/A
2N/A return GRUB_ERR_NONE;
2N/A}
2N/A
2N/A/* Copy host memory map */
2N/Astatic grub_err_t
2N/Agrub_efiemu_mmap_fill (void)
2N/A{
2N/A auto int NESTED_FUNC_ATTR fill_hook (grub_uint64_t, grub_uint64_t,
2N/A grub_memory_type_t);
2N/A int NESTED_FUNC_ATTR fill_hook (grub_uint64_t addr,
2N/A grub_uint64_t size,
2N/A grub_memory_type_t type)
2N/A {
2N/A switch (type)
2N/A {
2N/A case GRUB_MEMORY_AVAILABLE:
2N/A return grub_efiemu_add_to_mmap (addr, size,
2N/A GRUB_EFI_CONVENTIONAL_MEMORY);
2N/A
2N/A case GRUB_MEMORY_ACPI:
2N/A return grub_efiemu_add_to_mmap (addr, size,
2N/A GRUB_EFI_ACPI_RECLAIM_MEMORY);
2N/A
2N/A case GRUB_MEMORY_NVS:
2N/A return grub_efiemu_add_to_mmap (addr, size,
2N/A GRUB_EFI_ACPI_MEMORY_NVS);
2N/A
2N/A default:
2N/A grub_dprintf ("efiemu",
2N/A "Unknown memory type %d. Assuming unusable\n", type);
2N/A case GRUB_MEMORY_RESERVED:
2N/A return grub_efiemu_add_to_mmap (addr, size,
2N/A GRUB_EFI_UNUSABLE_MEMORY);
2N/A }
2N/A }
2N/A
2N/A#ifndef GRUB_MACHINE_EMU
2N/A grub_machine_mmap_iterate (fill_hook);
2N/A#endif
2N/A
2N/A return GRUB_ERR_NONE;
2N/A}
2N/A
2N/Agrub_err_t
2N/Agrub_efiemu_mmap_iterate (grub_memory_hook_t hook)
2N/A{
2N/A unsigned i;
2N/A
2N/A for (i = 0; i < (unsigned) mmap_num; i++)
2N/A switch (efiemu_mmap[i].type)
2N/A {
2N/A case GRUB_EFI_RUNTIME_SERVICES_CODE:
2N/A hook (efiemu_mmap[i].physical_start, efiemu_mmap[i].num_pages * 4096,
2N/A GRUB_MEMORY_CODE);
2N/A break;
2N/A
2N/A case GRUB_EFI_UNUSABLE_MEMORY:
2N/A hook (efiemu_mmap[i].physical_start, efiemu_mmap[i].num_pages * 4096,
2N/A GRUB_MEMORY_BADRAM);
2N/A break;
2N/A
2N/A case GRUB_EFI_RESERVED_MEMORY_TYPE:
2N/A case GRUB_EFI_RUNTIME_SERVICES_DATA:
2N/A case GRUB_EFI_MEMORY_MAPPED_IO:
2N/A case GRUB_EFI_MEMORY_MAPPED_IO_PORT_SPACE:
2N/A case GRUB_EFI_PAL_CODE:
2N/A case GRUB_EFI_MAX_MEMORY_TYPE:
2N/A hook (efiemu_mmap[i].physical_start, efiemu_mmap[i].num_pages * 4096,
2N/A GRUB_MEMORY_RESERVED);
2N/A break;
2N/A
2N/A case GRUB_EFI_LOADER_CODE:
2N/A case GRUB_EFI_LOADER_DATA:
2N/A case GRUB_EFI_BOOT_SERVICES_CODE:
2N/A case GRUB_EFI_BOOT_SERVICES_DATA:
2N/A case GRUB_EFI_CONVENTIONAL_MEMORY:
2N/A hook (efiemu_mmap[i].physical_start, efiemu_mmap[i].num_pages * 4096,
2N/A GRUB_MEMORY_AVAILABLE);
2N/A break;
2N/A
2N/A case GRUB_EFI_ACPI_RECLAIM_MEMORY:
2N/A hook (efiemu_mmap[i].physical_start, efiemu_mmap[i].num_pages * 4096,
2N/A GRUB_MEMORY_ACPI);
2N/A break;
2N/A
2N/A case GRUB_EFI_ACPI_MEMORY_NVS:
2N/A hook (efiemu_mmap[i].physical_start, efiemu_mmap[i].num_pages * 4096,
2N/A GRUB_MEMORY_NVS);
2N/A break;
2N/A }
2N/A
2N/A return 0;
2N/A}
2N/A
2N/A
2N/A/* This function resolves overlapping regions and sorts the memory map
2N/A It uses scanline (sweeping) algorithm
2N/A */
2N/Astatic grub_err_t
2N/Agrub_efiemu_mmap_sort_and_uniq (void)
2N/A{
2N/A /* If same page is used by multiple types it's resolved
2N/A according to priority
2N/A 0 - free memory
2N/A 1 - memory immediately usable after ExitBootServices
2N/A 2 - memory usable after loading ACPI tables
2N/A 3 - efiemu memory
2N/A 4 - unusable memory
2N/A */
2N/A int priority[GRUB_EFI_MAX_MEMORY_TYPE] =
2N/A {
2N/A [GRUB_EFI_RESERVED_MEMORY_TYPE] = 4,
2N/A [GRUB_EFI_LOADER_CODE] = 1,
2N/A [GRUB_EFI_LOADER_DATA] = 1,
2N/A [GRUB_EFI_BOOT_SERVICES_CODE] = 1,
2N/A [GRUB_EFI_BOOT_SERVICES_DATA] = 1,
2N/A [GRUB_EFI_RUNTIME_SERVICES_CODE] = 3,
2N/A [GRUB_EFI_RUNTIME_SERVICES_DATA] = 3,
2N/A [GRUB_EFI_CONVENTIONAL_MEMORY] = 0,
2N/A [GRUB_EFI_UNUSABLE_MEMORY] = 4,
2N/A [GRUB_EFI_ACPI_RECLAIM_MEMORY] = 2,
2N/A [GRUB_EFI_ACPI_MEMORY_NVS] = 3,
2N/A [GRUB_EFI_MEMORY_MAPPED_IO] = 4,
2N/A [GRUB_EFI_MEMORY_MAPPED_IO_PORT_SPACE] = 4,
2N/A [GRUB_EFI_PAL_CODE] = 4
2N/A };
2N/A
2N/A int i, j, k, done;
2N/A
2N/A /* Scanline events */
2N/A struct grub_efiemu_mmap_scan
2N/A {
2N/A /* At which memory address*/
2N/A grub_uint64_t pos;
2N/A /* 0 = region starts, 1 = region ends */
2N/A int type;
2N/A /* Which type of memory region */
2N/A grub_efi_memory_type_t memtype;
2N/A };
2N/A struct grub_efiemu_mmap_scan *scanline_events;
2N/A struct grub_efiemu_mmap_scan t;
2N/A
2N/A /* Previous scanline event */
2N/A grub_uint64_t lastaddr;
2N/A int lasttype;
2N/A /* Current scanline event */
2N/A int curtype;
2N/A /* how many regions of given type overlap at current location */
2N/A int present[GRUB_EFI_MAX_MEMORY_TYPE];
2N/A /* Here is stored the resulting memory map*/
2N/A grub_efi_memory_descriptor_t *result;
2N/A
2N/A /* Initialize variables*/
2N/A grub_memset (present, 0, sizeof (int) * GRUB_EFI_MAX_MEMORY_TYPE);
2N/A scanline_events = (struct grub_efiemu_mmap_scan *)
2N/A grub_malloc (sizeof (struct grub_efiemu_mmap_scan) * 2 * mmap_num);
2N/A
2N/A /* Number of chunks can't increase more than by factor of 2 */
2N/A result = (grub_efi_memory_descriptor_t *)
2N/A grub_malloc (sizeof (grub_efi_memory_descriptor_t) * 2 * mmap_num);
2N/A if (!result || !scanline_events)
2N/A {
2N/A grub_free (result);
2N/A grub_free (scanline_events);
2N/A return grub_error (GRUB_ERR_OUT_OF_MEMORY,
2N/A "couldn't allocate space for new memory map");
2N/A }
2N/A
2N/A /* Register scanline events */
2N/A for (i = 0; i < mmap_num; i++)
2N/A {
2N/A scanline_events[2 * i].pos = efiemu_mmap[i].physical_start;
2N/A scanline_events[2 * i].type = 0;
2N/A scanline_events[2 * i].memtype = efiemu_mmap[i].type;
2N/A scanline_events[2 * i + 1].pos = efiemu_mmap[i].physical_start
2N/A + efiemu_mmap[i].num_pages * GRUB_EFIEMU_PAGESIZE;
2N/A scanline_events[2 * i + 1].type = 1;
2N/A scanline_events[2 * i + 1].memtype = efiemu_mmap[i].type;
2N/A }
2N/A
2N/A /* Primitive bubble sort. It has complexity O(n^2) but since we're
2N/A unlikely to have more than 100 chunks it's probably one of the
2N/A fastest for one purpose */
2N/A done = 1;
2N/A while (done)
2N/A {
2N/A done = 0;
2N/A for (i = 0; i < 2 * mmap_num - 1; i++)
2N/A if (scanline_events[i + 1].pos < scanline_events[i].pos)
2N/A {
2N/A t = scanline_events[i + 1];
2N/A scanline_events[i + 1] = scanline_events[i];
2N/A scanline_events[i] = t;
2N/A done = 1;
2N/A }
2N/A }
2N/A
2N/A /* Pointer in resulting memory map */
2N/A j = 0;
2N/A lastaddr = scanline_events[0].pos;
2N/A lasttype = scanline_events[0].memtype;
2N/A for (i = 0; i < 2 * mmap_num; i++)
2N/A {
2N/A /* Process event */
2N/A if (scanline_events[i].type)
2N/A present[scanline_events[i].memtype]--;
2N/A else
2N/A present[scanline_events[i].memtype]++;
2N/A
2N/A /* Determine current region type */
2N/A curtype = -1;
2N/A for (k = 0; k < GRUB_EFI_MAX_MEMORY_TYPE; k++)
2N/A if (present[k] && (curtype == -1 || priority[k] > priority[curtype]))
2N/A curtype = k;
2N/A
2N/A /* Add memory region to resulting map if necessary */
2N/A if ((curtype == -1 || curtype != lasttype)
2N/A && lastaddr != scanline_events[i].pos
2N/A && lasttype != -1)
2N/A {
2N/A result[j].virtual_start = result[j].physical_start = lastaddr;
2N/A result[j].num_pages = (scanline_events[i].pos - lastaddr)
2N/A / GRUB_EFIEMU_PAGESIZE;
2N/A result[j].type = lasttype;
2N/A
2N/A /* We set runtime attribute on pages we need to be mapped */
2N/A result[j].attribute
2N/A = (lasttype == GRUB_EFI_RUNTIME_SERVICES_CODE
2N/A || lasttype == GRUB_EFI_RUNTIME_SERVICES_DATA)
2N/A ? GRUB_EFI_MEMORY_RUNTIME : 0;
2N/A grub_dprintf ("efiemu",
2N/A "mmap entry: type %d start 0x%llx 0x%llx pages\n",
2N/A result[j].type,
2N/A result[j].physical_start, result[j].num_pages);
2N/A j++;
2N/A }
2N/A
2N/A /* Update last values if necessary */
2N/A if (curtype == -1 || curtype != lasttype)
2N/A {
2N/A lasttype = curtype;
2N/A lastaddr = scanline_events[i].pos;
2N/A }
2N/A }
2N/A
2N/A grub_free (scanline_events);
2N/A
2N/A /* Shrink resulting memory map to really used size and replace efiemu_mmap
2N/A by new value */
2N/A grub_free (efiemu_mmap);
2N/A efiemu_mmap = grub_realloc (result, j * sizeof (*result));
2N/A return GRUB_ERR_NONE;
2N/A}
2N/A
2N/A/* This function is called to switch from first to second phase */
2N/Agrub_err_t
2N/Agrub_efiemu_mm_do_alloc (void)
2N/A{
2N/A grub_err_t err;
2N/A
2N/A /* Preallocate mmap */
2N/A efiemu_mmap = (grub_efi_memory_descriptor_t *)
2N/A grub_malloc (mmap_reserved_size * sizeof (grub_efi_memory_descriptor_t));
2N/A if (!efiemu_mmap)
2N/A {
2N/A grub_efiemu_unload ();
2N/A return grub_error (GRUB_ERR_OUT_OF_MEMORY, "couldn't initialize mmap");
2N/A }
2N/A
2N/A if ((err = efiemu_alloc_requests ()))
2N/A return err;
2N/A if ((err = grub_efiemu_mmap_fill ()))
2N/A return err;
2N/A return grub_efiemu_mmap_sort_and_uniq ();
2N/A}