cmsgmt.c revision 0
0N/A/*
0N/A * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
0N/A *
0N/A * This code is free software; you can redistribute it and/or modify it
0N/A * under the terms of the GNU General Public License version 2 only, as
0N/A * published by the Free Software Foundation. Sun designates this
0N/A * particular file as subject to the "Classpath" exception as provided
0N/A * by Sun in the LICENSE file that accompanied this code.
0N/A *
0N/A * This code is distributed in the hope that it will be useful, but WITHOUT
0N/A * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
0N/A * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
0N/A * version 2 for more details (a copy is included in the LICENSE file that
0N/A * accompanied this code).
0N/A *
0N/A * You should have received a copy of the GNU General Public License version
0N/A * 2 along with this work; if not, write to the Free Software Foundation,
0N/A * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
0N/A *
0N/A * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
0N/A * CA 95054 USA or visit www.sun.com if you need additional information or
0N/A * have any questions.
0N/A */
0N/A
0N/A// This file is available under and governed by the GNU General Public
0N/A// License version 2 only, as published by the Free Software Foundation.
0N/A// However, the following notice accompanied the original version of this
0N/A// file:
0N/A//
0N/A//
0N/A// Little cms
0N/A// Copyright (C) 1998-2006 Marti Maria
0N/A//
0N/A// Permission is hereby granted, free of charge, to any person obtaining
0N/A// a copy of this software and associated documentation files (the "Software"),
0N/A// to deal in the Software without restriction, including without limitation
0N/A// the rights to use, copy, modify, merge, publish, distribute, sublicense,
0N/A// and/or sell copies of the Software, and to permit persons to whom the Software
0N/A// is furnished to do so, subject to the following conditions:
0N/A//
0N/A// The above copyright notice and this permission notice shall be included in
0N/A// all copies or substantial portions of the Software.
0N/A//
0N/A// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
0N/A// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
0N/A// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
0N/A// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
0N/A// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
0N/A// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
0N/A// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
0N/A
0N/A
0N/A#include "lcms.h"
0N/A
0N/A/*
0N/AGamut check by default is a catching of 0xFFFF/0xFFFF/0xFFFF PCS values, used
0N/Ainternally by lcms to hold invalid values. Matrix LUT's, operates in a way that
0N/Aunencodeable values are marked as this combination, if PCS is XYZ, this is a very
0N/Ahigh value since encoding is a 1.15 fixed point, something like 1.9997, 1.9997, 1.9997
0N/Anot a very common color after all. Lab PCS is not to be a problem, since L>100 are truely
0N/Aundefined. There is a posibility than ICC comitee defines L>100 as a valid means
0N/Ato use highlights, then it will be lost.
0N/A
0N/A(1.10 - Actually ICC did it, so this should be checked for full ICC 4.0 support)
0N/A
0N/A*/
0N/A
0N/A
0N/ABOOL _cmsEndPointsBySpace(icColorSpaceSignature Space, WORD **White, WORD **Black,
0N/A int *nOutputs)
0N/A{
0N/A // Only most common spaces
0N/A
0N/A static WORD RGBblack[4] = { 0, 0, 0 };
0N/A static WORD RGBwhite[4] = { 0xffff, 0xffff, 0xffff };
0N/A static WORD CMYKblack[4] = { 0xffff, 0xffff, 0xffff, 0xffff }; // 400% of ink
0N/A static WORD CMYKwhite[4] = { 0, 0, 0, 0 };
0N/A static WORD LABblack[4] = { 0, 0x8000, 0x8000 };
0N/A static WORD LABwhite[4] = { 0xFF00, 0x8000, 0x8000 };
0N/A static WORD CMYblack[4] = { 0xffff, 0xffff, 0xffff };
0N/A static WORD CMYwhite[4] = { 0, 0, 0 };
0N/A static WORD Grayblack[4] = { 0 };
0N/A static WORD GrayWhite[4] = { 0xffff };
0N/A
0N/A switch (Space) {
0N/A
0N/A case icSigGrayData: if (White) *White = GrayWhite;
0N/A if (Black) *Black = Grayblack;
0N/A if (nOutputs) *nOutputs = 1;
0N/A return TRUE;
0N/A
0N/A case icSigRgbData: if (White) *White = RGBwhite;
0N/A if (Black) *Black = RGBblack;
0N/A if (nOutputs) *nOutputs = 3;
0N/A return TRUE;
0N/A
0N/A case icSigLabData: if (White) *White = LABwhite;
0N/A if (Black) *Black = LABblack;
0N/A if (nOutputs) *nOutputs = 3;
0N/A return TRUE;
0N/A
0N/A case icSigCmykData: if (White) *White = CMYKwhite;
0N/A if (Black) *Black = CMYKblack;
0N/A if (nOutputs) *nOutputs = 4;
0N/A return TRUE;
0N/A
0N/A case icSigCmyData: if (White) *White = CMYwhite;
0N/A if (Black) *Black = CMYblack;
0N/A if (nOutputs) *nOutputs = 3;
0N/A return TRUE;
0N/A
0N/A default:;
0N/A }
0N/A
0N/A return FALSE;
0N/A}
0N/A
0N/A
0N/AWORD *_cmsWhiteBySpace(icColorSpaceSignature Space)
0N/A{
0N/A WORD *White= NULL, *Black = NULL;
0N/A int Dummy;
0N/A static WORD Default[MAXCHANNELS];
0N/A
0N/A if (_cmsEndPointsBySpace(Space, &White, &Black, &Dummy))
0N/A return White;
0N/A
0N/A return Default;
0N/A
0N/A}
0N/A
0N/A
0N/A
0N/A
0N/AWORD Clamp_L(Fixed32 in)
0N/A{
0N/A if (in == 0xFFFF) return 0xFFFFU; // Marker
0N/A
0N/A if (in > 0xFF00) return 0xFF00U; // L* = 100.0
0N/A return (WORD) in;
0N/A}
0N/A
0N/A
0N/A#define ENCODE_AB(x) (WORD) (((x) + 128.0) * 256.0 + 0.5)
0N/A
0N/AWORD Clamp_ab(Fixed32 in)
0N/A{
0N/A if (in == 0xFFFF) return 0xFFFFU; // Marker
0N/A
0N/A if (in < 0) return ENCODE_AB(-128.0); // Max negative number
0N/A if (in > 0xFFFF) return ENCODE_AB(+127.9961); // Max positive number
0N/A return (WORD) in;
0N/A}
0N/A
0N/A
0N/A
0N/A// Returns dE on two Lab values
0N/A
0N/Adouble LCMSEXPORT cmsDeltaE(LPcmsCIELab Lab1, LPcmsCIELab Lab2)
0N/A{
0N/A double dL, da, db;
0N/A
0N/A if (Lab1 -> L < 0 ||
0N/A Lab2 -> L < 0) return 65536.;
0N/A
0N/A if (Lab1 -> a < -200 || Lab1 -> a > 200) return 65536.;
0N/A if (Lab1 -> b < -200 || Lab1 -> b > 200) return 65536.;
0N/A
0N/A if (Lab2 -> a < -200 || Lab2 -> a > 200) return 65536.;
0N/A if (Lab2 -> b < -200 || Lab2 -> b > 200) return 65536.;
0N/A
0N/A if (Lab1 ->L == 0 && Lab2 ->L == 0) return 0;
0N/A
0N/A dL = fabs(Lab1 -> L - Lab2 -> L);
0N/A da = fabs(Lab1 -> a - Lab2 -> a);
0N/A db = fabs(Lab1 -> b - Lab2 -> b);
0N/A
0N/A return pow(dL*dL + da * da + db * db, 0.5);
0N/A
0N/A}
0N/A
0N/A
0N/A// Square
0N/Astatic
0N/Adouble Sqr(double v)
0N/A{
0N/A return v * v;
0N/A}
0N/A
0N/A// Return the CIE94 Delta E
0N/Adouble LCMSEXPORT cmsCIE94DeltaE(LPcmsCIELab Lab1, LPcmsCIELab Lab2)
0N/A{
0N/A cmsCIELCh LCh1, LCh2;
0N/A double dE, dL, dC, dh, dhsq;
0N/A double c12, sc, sh;
0N/A
0N/A if (Lab1 ->L == 0 && Lab2 ->L == 0) return 0;
0N/A
0N/A dL = fabs(Lab1 ->L - Lab2 ->L);
0N/A
0N/A cmsLab2LCh(&LCh1, Lab1);
0N/A cmsLab2LCh(&LCh2, Lab2);
0N/A
0N/A dC = fabs(LCh1.C - LCh2.C);
0N/A dE = cmsDeltaE(Lab1, Lab2);
0N/A
0N/A dhsq = Sqr(dE) - Sqr(dL) - Sqr(dC);
0N/A if (dhsq < 0)
0N/A dh = 0;
0N/A else
0N/A dh = pow(dhsq, 0.5);
0N/A
0N/A c12 = sqrt(LCh1.C * LCh2.C);
0N/A
0N/A sc = 1.0 + (0.048 * c12);
0N/A sh = 1.0 + (0.014 * c12);
0N/A
0N/A return sqrt(Sqr(dL) + Sqr(dC) / Sqr(sc) + Sqr(dh) / Sqr(sh));
0N/A}
0N/A
0N/A
0N/A// Auxiliary
0N/A
0N/Astatic
0N/Adouble ComputeLBFD(LPcmsCIELab Lab)
0N/A{
0N/A double yt;
0N/A
0N/A if (Lab->L > 7.996969)
0N/A yt = (Sqr((Lab->L+16)/116)*((Lab->L+16)/116))*100;
0N/A else
0N/A yt = 100 * (Lab->L / 903.3);
0N/A
0N/A return (54.6 * (LOGE * (log(yt + 1.5))) - 9.6);
0N/A}
0N/A
0N/A
0N/A
0N/A// bfd - gets BFD(1:1) difference between Lab1, Lab2
0N/Adouble LCMSEXPORT cmsBFDdeltaE(LPcmsCIELab Lab1, LPcmsCIELab Lab2)
0N/A{
0N/A double lbfd1,lbfd2,AveC,Aveh,dE,deltaL,
0N/A deltaC,deltah,dc,t,g,dh,rh,rc,rt,bfd;
0N/A cmsCIELCh LCh1, LCh2;
0N/A
0N/A
0N/A if (Lab1 ->L == 0 && Lab2 ->L == 0) return 0;
0N/A
0N/A lbfd1 = ComputeLBFD(Lab1);
0N/A lbfd2 = ComputeLBFD(Lab2);
0N/A deltaL = lbfd2 - lbfd1;
0N/A
0N/A cmsLab2LCh(&LCh1, Lab1);
0N/A cmsLab2LCh(&LCh2, Lab2);
0N/A
0N/A deltaC = LCh2.C - LCh1.C;
0N/A AveC = (LCh1.C+LCh2.C)/2;
0N/A Aveh = (LCh1.h+LCh2.h)/2;
0N/A
0N/A dE = cmsDeltaE(Lab1, Lab2);
0N/A
0N/A if (Sqr(dE)>(Sqr(Lab2->L-Lab1->L)+Sqr(deltaC)))
0N/A deltah = sqrt(Sqr(dE)-Sqr(Lab2->L-Lab1->L)-Sqr(deltaC));
0N/A else
0N/A deltah =0;
0N/A
0N/A
0N/A dc = 0.035 * AveC / (1 + 0.00365 * AveC)+0.521;
0N/A g = sqrt(Sqr(Sqr(AveC))/(Sqr(Sqr(AveC))+14000));
0N/A t = 0.627+(0.055*cos((Aveh-254)/(180/M_PI))-
0N/A 0.040*cos((2*Aveh-136)/(180/M_PI))+
0N/A 0.070*cos((3*Aveh-31)/(180/M_PI))+
0N/A 0.049*cos((4*Aveh+114)/(180/M_PI))-
0N/A 0.015*cos((5*Aveh-103)/(180/M_PI)));
0N/A
0N/A dh = dc*(g*t+1-g);
0N/A rh = -0.260*cos((Aveh-308)/(180/M_PI))-
0N/A 0.379*cos((2*Aveh-160)/(180/M_PI))-
0N/A 0.636*cos((3*Aveh+254)/(180/M_PI))+
0N/A 0.226*cos((4*Aveh+140)/(180/M_PI))-
0N/A 0.194*cos((5*Aveh+280)/(180/M_PI));
0N/A
0N/A rc = sqrt((AveC*AveC*AveC*AveC*AveC*AveC)/((AveC*AveC*AveC*AveC*AveC*AveC)+70000000));
0N/A rt = rh*rc;
0N/A
0N/A bfd = sqrt(Sqr(deltaL)+Sqr(deltaC/dc)+Sqr(deltah/dh)+(rt*(deltaC/dc)*(deltah/dh)));
0N/A
0N/A return bfd;
0N/A}
0N/A
0N/A
0N/A// cmc - CMC(1:1) difference between Lab1, Lab2
0N/Adouble LCMSEXPORT cmsCMCdeltaE(LPcmsCIELab Lab1, LPcmsCIELab Lab2)
0N/A{
0N/A double dE,dL,dC,dh,sl,sc,sh,t,f,cmc;
0N/A cmsCIELCh LCh1, LCh2;
0N/A
0N/A if (Lab1 ->L == 0 && Lab2 ->L == 0) return 0;
0N/A
0N/A cmsLab2LCh(&LCh1, Lab1);
0N/A cmsLab2LCh(&LCh2, Lab2);
0N/A
0N/A
0N/A dL = Lab2->L-Lab1->L;
0N/A dC = LCh2.C-LCh1.C;
0N/A
0N/A dE = cmsDeltaE(Lab1, Lab2);
0N/A if (Sqr(dE)>(Sqr(dL)+Sqr(dC)))
0N/A dh = sqrt(Sqr(dE)-Sqr(dL)-Sqr(dC));
0N/A else
0N/A dh =0;
0N/A
0N/A if ((LCh1.h > 164) && (LCh1.h<345))
0N/A t = 0.56 + fabs(0.2 * cos(((LCh1.h + 168)/(180/M_PI))));
0N/A else
0N/A t = 0.36 + fabs(0.4 * cos(((LCh1.h + 35 )/(180/M_PI))));
0N/A
0N/A sc = 0.0638 * LCh1.C / (1 + 0.0131 * LCh1.C) + 0.638;
0N/A sl = 0.040975 * Lab1->L /(1 + 0.01765 * Lab1->L);
0N/A
0N/A if (Lab1->L<16)
0N/A sl = 0.511;
0N/A
0N/A f = sqrt((LCh1.C * LCh1.C * LCh1.C * LCh1.C)/((LCh1.C * LCh1.C * LCh1.C * LCh1.C)+1900));
0N/A sh = sc*(t*f+1-f);
0N/A cmc = sqrt(Sqr(dL/sl)+Sqr(dC/sc)+Sqr(dh/sh));
0N/A
0N/A return cmc;
0N/A}
0N/A
0N/A
0N/A
0N/Astatic
0N/Adouble atan2deg(double b, double a)
0N/A{
0N/A double h;
0N/A
0N/A if (a == 0 && b == 0)
0N/A h = 0;
0N/A else
0N/A h = atan2(a, b);
0N/A
0N/A h *= (180. / M_PI);
0N/A
0N/A while (h > 360.)
0N/A h -= 360.;
0N/A
0N/A while ( h < 0)
0N/A h += 360.;
0N/A
0N/A return h;
0N/A
0N/A}
0N/A
0N/A
0N/Astatic
0N/Adouble RADIANES(double deg)
0N/A{
0N/A return (deg * M_PI) / 180.;
0N/A}
0N/A
0N/A
0N/A// dE2000 The weightings KL, KC and KH can be modified to reflect the relative
0N/A// importance of lightness, chroma and hue in different industrial applications
0N/A
0N/Adouble LCMSEXPORT cmsCIE2000DeltaE(LPcmsCIELab Lab1, LPcmsCIELab Lab2,
0N/A double Kl, double Kc, double Kh)
0N/A{
0N/A double L1 = Lab1->L;
0N/A double a1 = Lab1->a;
0N/A double b1 = Lab1->b;
0N/A double C = sqrt( Sqr(a1) + Sqr(b1) );
0N/A
0N/A double Ls = Lab2 ->L;
0N/A double as = Lab2 ->a;
0N/A double bs = Lab2 ->b;
0N/A double Cs = sqrt( Sqr(as) + Sqr(bs) );
0N/A
0N/A
0N/A double G = 0.5 * ( 1 - sqrt(pow((C + Cs) / 2 , 7.0) / (pow((C + Cs) / 2, 7.0) + pow(25.0, 7.0) ) ));
0N/A
0N/A double a_p = (1 + G ) * a1;
0N/A double b_p = b1;
0N/A double C_p = sqrt( Sqr(a_p) + Sqr(b_p));
0N/A double h_p = atan2deg(a_p, b_p);
0N/A
0N/A
0N/A double a_ps = (1 + G) * as;
0N/A double b_ps = bs;
0N/A double C_ps = sqrt(Sqr(a_ps) + Sqr(b_ps));
0N/A double h_ps = atan2deg(a_ps, b_ps);
0N/A
0N/A
0N/A
0N/A double meanC_p =(C_p + C_ps) / 2;
0N/A
0N/A double meanh_p = fabs(h_ps-h_p) <= 180 ? (h_ps + h_p)/2 : (h_ps+h_p-360)/2;
0N/A
0N/A double delta_h = fabs(h_p - h_ps) <= 180 ? fabs(h_p - h_ps) : 360 - fabs(h_p - h_ps);
0N/A double delta_L = fabs(L1 - Ls);
0N/A double delta_C = fabs(C_p - C_ps);
0N/A
0N/A double delta_H =2 * sqrt(C_ps*C_p) * sin(RADIANES(delta_h) / 2);
0N/A
0N/A double T = 1 - 0.17 * cos(RADIANES(meanh_p-30))
0N/A + 0.24 * cos(RADIANES(2*meanh_p))
0N/A + 0.32 * cos(RADIANES(3*meanh_p + 6))
0N/A - 0.2 * cos(RADIANES(4*meanh_p - 63));
0N/A
0N/A double Sl = 1 + (0.015 * Sqr((Ls + L1) /2- 50) )/ sqrt(20 + Sqr( (Ls+L1)/2 - 50) );
0N/A
0N/A double Sc = 1 + 0.045 * (C_p + C_ps)/2;
0N/A double Sh = 1 + 0.015 * ((C_ps + C_p)/2) * T;
0N/A
0N/A double delta_ro = 30 * exp( -Sqr(((meanh_p - 275 ) / 25)));
0N/A
0N/A double Rc = 2 * sqrt(( pow(meanC_p, 7.0) )/( pow(meanC_p, 7.0) + pow(25.0, 7.0)));
0N/A
0N/A double Rt = -sin(2 * RADIANES(delta_ro)) * Rc;
0N/A
0N/A double deltaE00 = sqrt( Sqr(delta_L /(Sl * Kl)) +
0N/A Sqr(delta_C/(Sc * Kc)) +
0N/A Sqr(delta_H/(Sh * Kh)) +
0N/A Rt*(delta_C/(Sc * Kc)) * (delta_H / (Sh * Kh)));
0N/A
0N/A return deltaE00;
0N/A}
0N/A
0N/A
0N/A
0N/A// Carefully, clamp on CIELab space.
0N/A
0N/Avoid LCMSEXPORT cmsClampLab(LPcmsCIELab Lab, double amax, double amin,
0N/A double bmax, double bmin)
0N/A{
0N/A
0N/A // Whole Luma surface to zero
0N/A
0N/A if (Lab -> L < 0) {
0N/A
0N/A Lab-> L = Lab->a = Lab-> b = 0.0;
0N/A return;
0N/A }
0N/A
0N/A // Clamp white, DISCARD HIGHLIGHTS. This is done
0N/A // in such way because icc spec doesn't allow the
0N/A // use of L>100 as a highlight means.
0N/A
0N/A if (Lab->L > 100)
0N/A Lab -> L = 100;
0N/A
0N/A // Check out gamut prism, on a, b faces
0N/A
0N/A if (Lab -> a < amin || Lab->a > amax||
0N/A Lab -> b < bmin || Lab->b > bmax) {
0N/A
0N/A cmsCIELCh LCh;
0N/A double h, slope;
0N/A
0N/A // Falls outside a, b limits. Transports to LCh space,
0N/A // and then do the clipping
0N/A
0N/A
0N/A if (Lab -> a == 0.0) { // Is hue exactly 90?
0N/A
0N/A // atan will not work, so clamp here
0N/A Lab -> b = Lab->b < 0 ? bmin : bmax;
0N/A return;
0N/A }
0N/A
0N/A cmsLab2LCh(&LCh, Lab);
0N/A
0N/A slope = Lab -> b / Lab -> a;
0N/A h = LCh.h;
0N/A
0N/A // There are 4 zones
0N/A
0N/A if ((h >= 0. && h < 45.) ||
0N/A (h >= 315 && h <= 360.)) {
0N/A
0N/A // clip by amax
0N/A Lab -> a = amax;
0N/A Lab -> b = amax * slope;
0N/A }
0N/A else
0N/A if (h >= 45. && h < 135)
0N/A {
0N/A // clip by bmax
0N/A Lab -> b = bmax;
0N/A Lab -> a = bmax / slope;
0N/A }
0N/A else
0N/A if (h >= 135 && h < 225) {
0N/A // clip by amin
0N/A Lab -> a = amin;
0N/A Lab -> b = amin * slope;
0N/A
0N/A }
0N/A else
0N/A if (h >= 225 && h < 315) {
0N/A // clip by bmin
0N/A Lab -> b = bmin;
0N/A Lab -> a = bmin / slope;
0N/A }
0N/A else
0N/A cmsSignalError(LCMS_ERRC_ABORTED, "Invalid angle");
0N/A
0N/A }
0N/A}
0N/A
0N/A// Several utilities -------------------------------------------------------
0N/A
0N/A// Translate from our colorspace to ICC representation
0N/A
0N/AicColorSpaceSignature LCMSEXPORT _cmsICCcolorSpace(int OurNotation)
0N/A{
0N/A switch (OurNotation) {
0N/A
0N/A case 1:
0N/A case PT_GRAY: return icSigGrayData;
0N/A
0N/A case 2:
0N/A case PT_RGB: return icSigRgbData;
0N/A
0N/A case PT_CMY: return icSigCmyData;
0N/A case PT_CMYK: return icSigCmykData;
0N/A case PT_YCbCr:return icSigYCbCrData;
0N/A case PT_YUV: return icSigLuvData;
0N/A case PT_XYZ: return icSigXYZData;
0N/A case PT_Lab: return icSigLabData;
0N/A case PT_YUVK: return icSigLuvKData;
0N/A case PT_HSV: return icSigHsvData;
0N/A case PT_HLS: return icSigHlsData;
0N/A case PT_Yxy: return icSigYxyData;
0N/A case PT_HiFi: return icSigHexachromeData;
0N/A case PT_HiFi7: return icSigHeptachromeData;
0N/A case PT_HiFi8: return icSigOctachromeData;
0N/A
0N/A case PT_HiFi9: return icSigMCH9Data;
0N/A case PT_HiFi10: return icSigMCHAData;
0N/A case PT_HiFi11: return icSigMCHBData;
0N/A case PT_HiFi12: return icSigMCHCData;
0N/A case PT_HiFi13: return icSigMCHDData;
0N/A case PT_HiFi14: return icSigMCHEData;
0N/A case PT_HiFi15: return icSigMCHFData;
0N/A
0N/A default: return icMaxEnumData;
0N/A }
0N/A}
0N/A
0N/A
0N/Aint LCMSEXPORT _cmsLCMScolorSpace(icColorSpaceSignature ProfileSpace)
0N/A{
0N/A switch (ProfileSpace) {
0N/A
0N/A case icSigGrayData: return PT_GRAY;
0N/A case icSigRgbData: return PT_RGB;
0N/A case icSigCmyData: return PT_CMY;
0N/A case icSigCmykData: return PT_CMYK;
0N/A case icSigYCbCrData:return PT_YCbCr;
0N/A case icSigLuvData: return PT_YUV;
0N/A case icSigXYZData: return PT_XYZ;
0N/A case icSigLabData: return PT_Lab;
0N/A case icSigLuvKData: return PT_YUVK;
0N/A case icSigHsvData: return PT_HSV;
0N/A case icSigHlsData: return PT_HLS;
0N/A case icSigYxyData: return PT_Yxy;
0N/A
0N/A case icSig6colorData:
0N/A case icSigHexachromeData: return PT_HiFi;
0N/A
0N/A case icSigHeptachromeData:
0N/A case icSig7colorData: return PT_HiFi7;
0N/A
0N/A case icSigOctachromeData:
0N/A case icSig8colorData: return PT_HiFi8;
0N/A
0N/A case icSigMCH9Data:
0N/A case icSig9colorData: return PT_HiFi9;
0N/A
0N/A case icSigMCHAData:
0N/A case icSig10colorData: return PT_HiFi10;
0N/A
0N/A case icSigMCHBData:
0N/A case icSig11colorData: return PT_HiFi11;
0N/A
0N/A case icSigMCHCData:
0N/A case icSig12colorData: return PT_HiFi12;
0N/A
0N/A case icSigMCHDData:
0N/A case icSig13colorData: return PT_HiFi13;
0N/A
0N/A case icSigMCHEData:
0N/A case icSig14colorData: return PT_HiFi14;
0N/A
0N/A case icSigMCHFData:
0N/A case icSig15colorData: return PT_HiFi15;
0N/A
0N/A default: return icMaxEnumData;
0N/A }
0N/A}
0N/A
0N/A
0N/Aint LCMSEXPORT _cmsChannelsOf(icColorSpaceSignature ColorSpace)
0N/A{
0N/A
0N/A switch (ColorSpace) {
0N/A
0N/A case icSigGrayData: return 1;
0N/A
0N/A case icSig2colorData: return 2;
0N/A
0N/A case icSigXYZData:
0N/A case icSigLabData:
0N/A case icSigLuvData:
0N/A case icSigYCbCrData:
0N/A case icSigYxyData:
0N/A case icSigRgbData:
0N/A case icSigHsvData:
0N/A case icSigHlsData:
0N/A case icSigCmyData:
0N/A case icSig3colorData: return 3;
0N/A
0N/A case icSigLuvKData:
0N/A case icSigCmykData:
0N/A case icSig4colorData: return 4;
0N/A
0N/A case icSigMCH5Data:
0N/A case icSig5colorData: return 5;
0N/A
0N/A case icSigHexachromeData:
0N/A case icSig6colorData: return 6;
0N/A
0N/A case icSigHeptachromeData:
0N/A case icSig7colorData: return 7;
0N/A
0N/A case icSigOctachromeData:
0N/A case icSig8colorData: return 8;
0N/A
0N/A case icSigMCH9Data:
0N/A case icSig9colorData: return 9;
0N/A
0N/A case icSigMCHAData:
0N/A case icSig10colorData: return 10;
0N/A
0N/A case icSigMCHBData:
0N/A case icSig11colorData: return 11;
0N/A
0N/A case icSigMCHCData:
0N/A case icSig12colorData: return 12;
0N/A
0N/A case icSigMCHDData:
0N/A case icSig13colorData: return 13;
0N/A
0N/A case icSigMCHEData:
0N/A case icSig14colorData: return 14;
0N/A
0N/A case icSigMCHFData:
0N/A case icSig15colorData: return 15;
0N/A
0N/A default: return 3;
0N/A }
0N/A
0N/A}
0N/A
0N/A
0N/A// v2 L=100 is supposed to be placed on 0xFF00. There is no reasonable
0N/A// number of gridpoints that would make exact match. However, a
0N/A// prelinearization of 258 entries, would map 0xFF00 on entry 257.
0N/A// This is almost what we need, unfortunately, the rest of entries
0N/A// should be scaled by (255*257/256) and this is not exact.
0N/A//
0N/A// An intermediate solution would be to use 257 entries. This does not
0N/A// map 0xFF00 exactly on a node, but so close that the dE induced is
0N/A// negligible. AND the rest of curve is exact.
0N/A
0N/Astatic
0N/Avoid CreateLabPrelinearization(LPGAMMATABLE LabTable[])
0N/A{
0N/A int i;
0N/A
0N/A LabTable[0] = cmsAllocGamma(257);
0N/A LabTable[1] = cmsBuildGamma(257, 1.0);
0N/A LabTable[2] = cmsBuildGamma(257, 1.0);
0N/A
0N/A // L* uses 257 entries. Entry 256 holds 0xFFFF, so, the effective range
0N/A // is 0..0xFF00. Last entry (257) is also collapsed to 0xFFFF
0N/A
0N/A // From 0 to 0xFF00
0N/A for (i=0; i < 256; i++)
0N/A LabTable[0]->GammaTable[i] = RGB_8_TO_16(i);
0N/A
0N/A // Repeat last for 0xFFFF
0N/A LabTable[0] ->GammaTable[256] = 0xFFFF;
0N/A}
0N/A
0N/A
0N/A// Used by gamut & softproofing
0N/A
0N/Atypedef struct {
0N/A
0N/A cmsHTRANSFORM hInput; // From whatever input color space. NULL for Lab
0N/A cmsHTRANSFORM hForward, hReverse; // Transforms going from Lab to colorant and back
0N/A double Thereshold; // The thereshold after which is considered out of gamut
0N/A
0N/A } GAMUTCHAIN,FAR* LPGAMUTCHAIN;
0N/A
0N/A// This sampler does compute gamut boundaries by comparing original
0N/A// values with a transform going back and forth. Values above ERR_THERESHOLD
0N/A// of maximum are considered out of gamut.
0N/A
0N/A
0N/A#define ERR_THERESHOLD 5
0N/A
0N/A
0N/Astatic
0N/Aint GamutSampler(register WORD In[], register WORD Out[], register LPVOID Cargo)
0N/A{
0N/A LPGAMUTCHAIN t = (LPGAMUTCHAIN) Cargo;
0N/A WORD Proof[MAXCHANNELS], Check[MAXCHANNELS];
0N/A WORD Proof2[MAXCHANNELS], Check2[MAXCHANNELS];
0N/A cmsCIELab LabIn1, LabOut1;
0N/A cmsCIELab LabIn2, LabOut2;
0N/A double dE1, dE2, ErrorRatio;
0N/A
0N/A // Assume in-gamut by default.
0N/A dE1 = 0.;
0N/A dE2 = 0;
0N/A ErrorRatio = 1.0;
0N/A
0N/A
0N/A // Any input space? I can use In[] no matter channels
0N/A // because is just one pixel
0N/A
0N/A if (t -> hInput != NULL) cmsDoTransform(t -> hInput, In, In, 1);
0N/A
0N/A // converts from PCS to colorant. This always
0N/A // does return in-gamut values,
0N/A cmsDoTransform(t -> hForward, In, Proof, 1);
0N/A
0N/A // Now, do the inverse, from colorant to PCS.
0N/A cmsDoTransform(t -> hReverse, Proof, Check, 1);
0N/A
0N/A
0N/A // Try again, but this time taking Check as input
0N/A cmsDoTransform(t -> hForward, Check, Proof2, 1);
0N/A cmsDoTransform(t -> hReverse, Proof2, Check2, 1);
0N/A
0N/A
0N/A
0N/A // Does the transform returns out-of-gamut?
0N/A if (Check[0] == 0xFFFF &&
0N/A Check[1] == 0xFFFF &&
0N/A Check[2] == 0xFFFF)
0N/A
0N/A Out[0] = 0xFF00; // Out of gamut!
0N/A else {
0N/A
0N/A // Transport encoded values
0N/A cmsLabEncoded2Float(&LabIn1, In);
0N/A cmsLabEncoded2Float(&LabOut1, Check);
0N/A
0N/A // Take difference of direct value
0N/A dE1 = cmsDeltaE(&LabIn1, &LabOut1);
0N/A
0N/A cmsLabEncoded2Float(&LabIn2, Check);
0N/A cmsLabEncoded2Float(&LabOut2, Check2);
0N/A
0N/A // Take difference of converted value
0N/A dE2 = cmsDeltaE(&LabIn2, &LabOut2);
0N/A
0N/A
0N/A // if dE1 is small and dE2 is small, value is likely to be in gamut
0N/A if (dE1 < t->Thereshold && dE2 < t->Thereshold)
0N/A Out[0] = 0;
0N/A else
0N/A // if dE1 is small and dE2 is big, undefined. Assume in gamut
0N/A if (dE1 < t->Thereshold && dE2 > t->Thereshold)
0N/A Out[0] = 0;
0N/A else
0N/A // dE1 is big and dE2 is small, clearly out of gamut
0N/A if (dE1 > t->Thereshold && dE2 < t->Thereshold)
0N/A Out[0] = (WORD) _cmsQuickFloor((dE1 - t->Thereshold) + .5);
0N/A else {
0N/A
0N/A // dE1 is big and dE2 is also big, could be due to perceptual mapping
0N/A // so take error ratio
0N/A if (dE2 == 0.0)
0N/A ErrorRatio = dE1;
0N/A else
0N/A ErrorRatio = dE1 / dE2;
0N/A
0N/A if (ErrorRatio > t->Thereshold)
0N/A Out[0] = (WORD) _cmsQuickFloor((ErrorRatio - t->Thereshold) + .5);
0N/A else
0N/A Out[0] = 0;
0N/A }
0N/A
0N/A }
0N/A
0N/A return TRUE;
0N/A}
0N/A
0N/A
0N/A// Does compute a gamut LUT going back and forth across
0N/A// pcs -> relativ. colorimetric intent -> pcs
0N/A// the dE obtained is then annotated on the LUT.
0N/A// values truely out of gamut, are clipped to dE = 0xFFFE
0N/A// and values changed are supposed to be handled by
0N/A// any gamut remapping, so, are out of gamut as well.
0N/A//
0N/A// **WARNING: This algorithm does assume that gamut
0N/A// remapping algorithms does NOT move in-gamut colors,
0N/A// of course, many perceptual and saturation intents does
0N/A// not work in such way, but relativ. ones should.
0N/A
0N/Astatic
0N/ALPLUT ComputeGamutWithInput(cmsHPROFILE hInput, cmsHPROFILE hProfile, int Intent)
0N/A{
0N/A cmsHPROFILE hLab;
0N/A LPLUT Gamut;
0N/A DWORD dwFormat;
0N/A GAMUTCHAIN Chain;
0N/A int nErrState, nChannels, nGridpoints;
0N/A LPGAMMATABLE Trans[3];
0N/A icColorSpaceSignature ColorSpace;
0N/A
0N/A
0N/A ZeroMemory(&Chain, sizeof(GAMUTCHAIN));
0N/A
0N/A hLab = cmsCreateLabProfile(NULL);
0N/A
0N/A // Safeguard against early abortion
0N/A nErrState = cmsErrorAction(LCMS_ERROR_IGNORE);
0N/A
0N/A // The figure of merit. On matrix-shaper profiles, should be almost zero as
0N/A // the conversion is pretty exact. On LUT based profiles, different resolutions
0N/A // of input and output CLUT may result in differences.
0N/A
0N/A if (!cmsIsIntentSupported(hProfile, Intent, LCMS_USED_AS_INPUT) &&
0N/A !cmsIsIntentSupported(hProfile, Intent, LCMS_USED_AS_OUTPUT))
0N/A
0N/A Chain.Thereshold = 1.0;
0N/A else
0N/A Chain.Thereshold = ERR_THERESHOLD;
0N/A
0N/A ColorSpace = cmsGetColorSpace(hProfile);
0N/A
0N/A // If input profile specified, create a transform from such profile to Lab
0N/A if (hInput != NULL) {
0N/A
0N/A nChannels = _cmsChannelsOf(ColorSpace);
0N/A nGridpoints = _cmsReasonableGridpointsByColorspace(ColorSpace, cmsFLAGS_HIGHRESPRECALC);
0N/A dwFormat = (CHANNELS_SH(nChannels)|BYTES_SH(2));
0N/A
0N/A Chain.hInput = cmsCreateTransform(hInput, dwFormat,
0N/A hLab, TYPE_Lab_16,
0N/A Intent,
0N/A cmsFLAGS_NOTPRECALC);
0N/A }
0N/A else {
0N/A // Input transform=NULL (Lab) Used to compute the gamut tag
0N/A // This table will take 53 points to give some accurancy,
0N/A // 53 * 53 * 53 * 2 = 291K
0N/A
0N/A nChannels = 3; // For Lab
0N/A nGridpoints = 53;
0N/A Chain.hInput = NULL;
0N/A dwFormat = (CHANNELS_SH(_cmsChannelsOf(ColorSpace))|BYTES_SH(2));
0N/A }
0N/A
0N/A
0N/A // Does create the forward step
0N/A Chain.hForward = cmsCreateTransform(hLab, TYPE_Lab_16,
0N/A hProfile, dwFormat,
0N/A INTENT_RELATIVE_COLORIMETRIC,
0N/A cmsFLAGS_NOTPRECALC);
0N/A
0N/A // Does create the backwards step
0N/A Chain.hReverse = cmsCreateTransform(hProfile, dwFormat,
0N/A hLab, TYPE_Lab_16,
0N/A INTENT_RELATIVE_COLORIMETRIC,
0N/A cmsFLAGS_NOTPRECALC);
0N/A
0N/A // Restores error handler previous state
0N/A cmsErrorAction(nErrState);
0N/A
0N/A
0N/A // All ok?
0N/A if (Chain.hForward && Chain.hReverse) {
0N/A
0N/A // Go on, try to compute gamut LUT from PCS.
0N/A // This consist on a single channel containing
0N/A // dE when doing a transform back and forth on
0N/A // the colorimetric intent.
0N/A
0N/A Gamut = cmsAllocLUT();
0N/A Gamut = cmsAlloc3DGrid(Gamut, nGridpoints, nChannels, 1);
0N/A
0N/A // If no input, then this is a gamut tag operated by Lab,
0N/A // so include pertinent prelinearization
0N/A if (hInput == NULL) {
0N/A
0N/A CreateLabPrelinearization(Trans);
0N/A cmsAllocLinearTable(Gamut, Trans, 1);
0N/A cmsFreeGammaTriple(Trans);
0N/A }
0N/A
0N/A
0N/A cmsSample3DGrid(Gamut, GamutSampler, (LPVOID) &Chain, Gamut ->wFlags);
0N/A }
0N/A else
0N/A Gamut = NULL; // Didn't work...
0N/A
0N/A // Free all needed stuff.
0N/A if (Chain.hInput) cmsDeleteTransform(Chain.hInput);
0N/A if (Chain.hForward) cmsDeleteTransform(Chain.hForward);
0N/A if (Chain.hReverse) cmsDeleteTransform(Chain.hReverse);
0N/A
0N/A cmsCloseProfile(hLab);
0N/A
0N/A // And return computed hull
0N/A return Gamut;
0N/A}
0N/A
0N/A
0N/A// Wrapper
0N/A
0N/ALPLUT _cmsComputeGamutLUT(cmsHPROFILE hProfile, int Intent)
0N/A{
0N/A return ComputeGamutWithInput(NULL, hProfile, Intent);
0N/A}
0N/A
0N/A
0N/A// This routine does compute the gamut check CLUT. This CLUT goes from whatever
0N/A// input space to the 0 or != 0 gamut check.
0N/A
0N/ALPLUT _cmsPrecalculateGamutCheck(cmsHTRANSFORM h)
0N/A{
0N/A _LPcmsTRANSFORM p = (_LPcmsTRANSFORM) h;
0N/A
0N/A return ComputeGamutWithInput(p->InputProfile, p ->PreviewProfile, p->Intent);
0N/A}
0N/A
0N/A
0N/A// SoftProofing. Convert from Lab to device, then back to Lab,
0N/A// any gamut remapping is applied
0N/A
0N/Astatic
0N/Aint SoftProofSampler(register WORD In[], register WORD Out[], register LPVOID Cargo)
0N/A{
0N/A LPGAMUTCHAIN t = (LPGAMUTCHAIN) Cargo;
0N/A WORD Colorant[MAXCHANNELS];
0N/A
0N/A // From pcs to colorant
0N/A cmsDoTransform(t -> hForward, In, Colorant, 1);
0N/A
0N/A // Now, do the inverse, from colorant to pcs.
0N/A cmsDoTransform(t -> hReverse, Colorant, Out, 1);
0N/A
0N/A return TRUE;
0N/A}
0N/A
0N/A// Does return Softproofing LUT on desired intent
0N/A
0N/ALPLUT _cmsComputeSoftProofLUT(cmsHPROFILE hProfile, int nIntent)
0N/A{
0N/A cmsHPROFILE hLab;
0N/A LPLUT SoftProof;
0N/A DWORD dwFormat;
0N/A GAMUTCHAIN Chain;
0N/A int nErrState;
0N/A LPGAMMATABLE Trans[3];
0N/A
0N/A
0N/A // LUTs are never abs. colorimetric, is the transform who
0N/A // is responsible of generating white point displacement
0N/A if (nIntent == INTENT_ABSOLUTE_COLORIMETRIC)
0N/A nIntent = INTENT_RELATIVE_COLORIMETRIC;
0N/A
0N/A ZeroMemory(&Chain, sizeof(GAMUTCHAIN));
0N/A
0N/A hLab = cmsCreateLabProfile(NULL);
0N/A
0N/A // ONLY 4 channels
0N/A dwFormat = (CHANNELS_SH(4)|BYTES_SH(2));
0N/A
0N/A // Safeguard against early abortion
0N/A nErrState = cmsErrorAction(LCMS_ERROR_IGNORE);
0N/A
0N/A // Does create the first step
0N/A Chain.hForward = cmsCreateTransform(hLab, TYPE_Lab_16,
0N/A hProfile, dwFormat,
0N/A nIntent,
0N/A cmsFLAGS_NOTPRECALC);
0N/A
0N/A // Does create the last step
0N/A Chain.hReverse = cmsCreateTransform(hProfile, dwFormat,
0N/A hLab, TYPE_Lab_16,
0N/A INTENT_RELATIVE_COLORIMETRIC,
0N/A cmsFLAGS_NOTPRECALC);
0N/A
0N/A // Restores error handler previous state
0N/A cmsErrorAction(nErrState);
0N/A
0N/A // All ok?
0N/A if (Chain.hForward && Chain.hReverse) {
0N/A
0N/A // This is Lab -> Lab, so 33 point should hold anything
0N/A SoftProof = cmsAllocLUT();
0N/A SoftProof = cmsAlloc3DGrid(SoftProof, 33, 3, 3);
0N/A
0N/A CreateLabPrelinearization(Trans);
0N/A cmsAllocLinearTable(SoftProof, Trans, 1);
0N/A cmsFreeGammaTriple(Trans);
0N/A
0N/A cmsSample3DGrid(SoftProof, SoftProofSampler, (LPVOID) &Chain, SoftProof->wFlags);
0N/A }
0N/A else
0N/A SoftProof = NULL; // Didn't work...
0N/A
0N/A // Free all needed stuff.
0N/A if (Chain.hForward) cmsDeleteTransform(Chain.hForward);
0N/A if (Chain.hReverse) cmsDeleteTransform(Chain.hReverse);
0N/A
0N/A cmsCloseProfile(hLab);
0N/A
0N/A return SoftProof;
0N/A}
0N/A
0N/A
0N/Astatic
0N/Aint MostlyLinear(WORD Table[], int nEntries)
0N/A{
0N/A register int i;
0N/A int diff;
0N/A
0N/A for (i=5; i < nEntries; i++) {
0N/A
0N/A diff = abs((int) Table[i] - (int) _cmsQuantizeVal(i, nEntries));
0N/A if (diff > 0x0300)
0N/A return 0;
0N/A }
0N/A
0N/A return 1;
0N/A}
0N/A
0N/A
0N/Astatic
0N/Avoid SlopeLimiting(WORD Table[], int nEntries)
0N/A{
0N/A int At = (int) floor((double) nEntries * 0.02 + 0.5); // Cutoff at 2%
0N/A double Val, Slope;
0N/A int i;
0N/A
0N/A Val = Table[At];
0N/A Slope = Val / At;
0N/A
0N/A for (i=0; i < At; i++)
0N/A Table[i] = (WORD) floor(i * Slope + 0.5);
0N/A
0N/A}
0N/A
0N/A
0N/A// Check for monotonicity.
0N/A
0N/Astatic
0N/ABOOL IsMonotonic(LPGAMMATABLE t)
0N/A{
0N/A int n = t -> nEntries;
0N/A int i, last;
0N/A
0N/A last = t ->GammaTable[n-1];
0N/A
0N/A for (i = n-2; i >= 0; --i) {
0N/A
0N/A if (t ->GammaTable[i] > last)
0N/A
0N/A return FALSE;
0N/A else
0N/A last = t ->GammaTable[i];
0N/A
0N/A }
0N/A
0N/A return TRUE;
0N/A}
0N/A
0N/A// Check for endpoints
0N/A
0N/Astatic
0N/ABOOL HasProperEndpoints(LPGAMMATABLE t)
0N/A{
0N/A if (t ->GammaTable[0] != 0) return FALSE;
0N/A if (t ->GammaTable[t ->nEntries-1] != 0xFFFF) return FALSE;
0N/A
0N/A return TRUE;
0N/A}
0N/A
0N/A
0N/A
0N/A#define PRELINEARIZATION_POINTS 4096
0N/A
0N/A// Fixes the gamma balancing of transform. Thanks to Mike Chaney
0N/A// for pointing this subtle bug.
0N/A
0N/Avoid _cmsComputePrelinearizationTablesFromXFORM(cmsHTRANSFORM h[], int nTransforms, LPLUT Grid)
0N/A{
0N/A LPGAMMATABLE Trans[MAXCHANNELS];
0N/A unsigned int t, i, v;
0N/A int j;
0N/A WORD In[MAXCHANNELS], Out[MAXCHANNELS];
0N/A BOOL lIsSuitable;
0N/A _LPcmsTRANSFORM InputXForm = (_LPcmsTRANSFORM) h[0];
0N/A _LPcmsTRANSFORM OutputXForm = (_LPcmsTRANSFORM) h[nTransforms-1];
0N/A
0N/A
0N/A // First space is *Lab, use our specialized curves for v2 Lab
0N/A
0N/A if (InputXForm ->EntryColorSpace == icSigLabData &&
0N/A OutputXForm->ExitColorSpace != icSigLabData) {
0N/A
0N/A CreateLabPrelinearization(Trans);
0N/A cmsAllocLinearTable(Grid, Trans, 1);
0N/A cmsFreeGammaTriple(Trans);
0N/A return;
0N/A }
0N/A
0N/A
0N/A // Do nothing on all but RGB to RGB transforms
0N/A
0N/A if ((InputXForm ->EntryColorSpace != icSigRgbData) ||
0N/A (OutputXForm->ExitColorSpace != icSigRgbData)) return;
0N/A
0N/A
0N/A for (t = 0; t < Grid -> InputChan; t++)
0N/A Trans[t] = cmsAllocGamma(PRELINEARIZATION_POINTS);
0N/A
0N/A for (i=0; i < PRELINEARIZATION_POINTS; i++) {
0N/A
0N/A v = _cmsQuantizeVal(i, PRELINEARIZATION_POINTS);
0N/A
0N/A for (t=0; t < Grid -> InputChan; t++)
0N/A In[t] = (WORD) v;
0N/A
0N/A cmsDoTransform(h[0], In, Out, 1);
0N/A for (j=1; j < nTransforms; j++)
0N/A cmsDoTransform(h[j], Out, Out, 1);
0N/A
0N/A for (t=0; t < Grid -> InputChan; t++)
0N/A Trans[t] ->GammaTable[i] = Out[t];
0N/A
0N/A }
0N/A
0N/A
0N/A // Check transfer curves
0N/A lIsSuitable = TRUE;
0N/A for (t=0; (lIsSuitable && (t < Grid->InputChan)); t++) {
0N/A
0N/A
0N/A // Exclude if already linear
0N/A if (MostlyLinear(Trans[t]->GammaTable, PRELINEARIZATION_POINTS))
0N/A lIsSuitable = FALSE;
0N/A
0N/A // Exclude if non-monotonic
0N/A if (!IsMonotonic(Trans[t]))
0N/A lIsSuitable = FALSE;
0N/A
0N/A // Exclude if weird endpoints
0N/A if (!HasProperEndpoints(Trans[t]))
0N/A lIsSuitable = FALSE;
0N/A
0N/A // Exclude if transfer function is not smooth enough
0N/A // to be modelled as a gamma function, or the gamma is reversed
0N/A if (cmsEstimateGamma(Trans[t]) < 1.0)
0N/A lIsSuitable = FALSE;
0N/A
0N/A }
0N/A
0N/A if (lIsSuitable) {
0N/A
0N/A for (t = 0; t < Grid ->InputChan; t++)
0N/A SlopeLimiting(Trans[t]->GammaTable, Trans[t]->nEntries);
0N/A }
0N/A
0N/A if (lIsSuitable) cmsAllocLinearTable(Grid, Trans, 1);
0N/A
0N/A
0N/A for (t = 0; t < Grid ->InputChan; t++)
0N/A cmsFreeGamma(Trans[t]);
0N/A
0N/A
0N/A}
0N/A
0N/A
0N/A// Compute K -> L* relationship. Flags may include black point compensation. In this case,
0N/A// the relationship is assumed from the profile with BPC to a black point zero.
0N/Astatic
0N/ALPGAMMATABLE ComputeKToLstar(cmsHPROFILE hProfile, int nPoints, int Intent, DWORD dwFlags)
0N/A{
0N/A LPGAMMATABLE out;
0N/A int i;
0N/A WORD cmyk[4], wLab[3];
0N/A cmsHPROFILE hLab = cmsCreateLabProfile(NULL);
0N/A cmsHTRANSFORM xform = cmsCreateTransform(hProfile, TYPE_CMYK_16,
0N/A hLab, TYPE_Lab_16,
0N/A Intent, (dwFlags|cmsFLAGS_NOTPRECALC));
0N/A
0N/A
0N/A out = cmsAllocGamma(nPoints);
0N/A for (i=0; i < nPoints; i++) {
0N/A
0N/A cmyk[0] = 0;
0N/A cmyk[1] = 0;
0N/A cmyk[2] = 0;
0N/A cmyk[3] = _cmsQuantizeVal(i, nPoints);
0N/A
0N/A cmsDoTransform(xform, cmyk, wLab, 1);
0N/A out->GammaTable[i] = (WORD) (0xFFFF - wLab[0]);
0N/A }
0N/A
0N/A cmsDeleteTransform(xform);
0N/A cmsCloseProfile(hLab);
0N/A
0N/A return out;
0N/A}
0N/A
0N/A
0N/A
0N/A// Compute Black tone curve on a CMYK -> CMYK transform. This is done by
0N/A// using the proof direction on both profiles to find K->L* relationship
0N/A// then joining both curves. dwFlags may include black point compensation.
0N/A
0N/ALPGAMMATABLE _cmsBuildKToneCurve(cmsHTRANSFORM hCMYK2CMYK, int nPoints)
0N/A{
0N/A LPGAMMATABLE in, out;
0N/A LPGAMMATABLE KTone;
0N/A _LPcmsTRANSFORM p = (_LPcmsTRANSFORM) hCMYK2CMYK;
0N/A
0N/A
0N/A // Make sure CMYK -> CMYK
0N/A if (p -> EntryColorSpace != icSigCmykData ||
0N/A p -> ExitColorSpace != icSigCmykData) return NULL;
0N/A
0N/A // Create individual curves. BPC works also as each K to L* is
0N/A // computed as a BPC to zero black point in case of L*
0N/A in = ComputeKToLstar(p ->InputProfile, nPoints, p->Intent, p -> dwOriginalFlags);
0N/A out = ComputeKToLstar(p ->OutputProfile, nPoints, p->Intent, p -> dwOriginalFlags);
0N/A
0N/A // Build the relationship
0N/A KTone = cmsJoinGamma(in, out);
0N/A
0N/A cmsFreeGamma(in); cmsFreeGamma(out);
0N/A
0N/A // Make sure it is monotonic
0N/A
0N/A if (!IsMonotonic(KTone)) {
0N/A
0N/A cmsFreeGamma(KTone);
0N/A return NULL;
0N/A }
0N/A
0N/A
0N/A return KTone;
0N/A}