0N/A/*
0N/A * reserved comment block
0N/A * DO NOT REMOVE OR ALTER!
0N/A */
0N/A/*
0N/A * jfdctflt.c
0N/A *
0N/A * Copyright (C) 1994-1996, Thomas G. Lane.
0N/A * This file is part of the Independent JPEG Group's software.
0N/A * For conditions of distribution and use, see the accompanying README file.
0N/A *
0N/A * This file contains a floating-point implementation of the
0N/A * forward DCT (Discrete Cosine Transform).
0N/A *
0N/A * This implementation should be more accurate than either of the integer
0N/A * DCT implementations. However, it may not give the same results on all
0N/A * machines because of differences in roundoff behavior. Speed will depend
0N/A * on the hardware's floating point capacity.
0N/A *
0N/A * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
0N/A * on each column. Direct algorithms are also available, but they are
0N/A * much more complex and seem not to be any faster when reduced to code.
0N/A *
0N/A * This implementation is based on Arai, Agui, and Nakajima's algorithm for
0N/A * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
0N/A * Japanese, but the algorithm is described in the Pennebaker & Mitchell
0N/A * JPEG textbook (see REFERENCES section in file README). The following code
0N/A * is based directly on figure 4-8 in P&M.
0N/A * While an 8-point DCT cannot be done in less than 11 multiplies, it is
0N/A * possible to arrange the computation so that many of the multiplies are
0N/A * simple scalings of the final outputs. These multiplies can then be
0N/A * folded into the multiplications or divisions by the JPEG quantization
0N/A * table entries. The AA&N method leaves only 5 multiplies and 29 adds
0N/A * to be done in the DCT itself.
0N/A * The primary disadvantage of this method is that with a fixed-point
0N/A * implementation, accuracy is lost due to imprecise representation of the
0N/A * scaled quantization values. However, that problem does not arise if
0N/A * we use floating point arithmetic.
0N/A */
0N/A
0N/A#define JPEG_INTERNALS
0N/A#include "jinclude.h"
0N/A#include "jpeglib.h"
0N/A#include "jdct.h" /* Private declarations for DCT subsystem */
0N/A
0N/A#ifdef DCT_FLOAT_SUPPORTED
0N/A
0N/A
0N/A/*
0N/A * This module is specialized to the case DCTSIZE = 8.
0N/A */
0N/A
0N/A#if DCTSIZE != 8
0N/A Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
0N/A#endif
0N/A
0N/A
0N/A/*
0N/A * Perform the forward DCT on one block of samples.
0N/A */
0N/A
0N/AGLOBAL(void)
0N/Ajpeg_fdct_float (FAST_FLOAT * data)
0N/A{
0N/A FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
0N/A FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
0N/A FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
0N/A FAST_FLOAT *dataptr;
0N/A int ctr;
0N/A
0N/A /* Pass 1: process rows. */
0N/A
0N/A dataptr = data;
0N/A for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
0N/A tmp0 = dataptr[0] + dataptr[7];
0N/A tmp7 = dataptr[0] - dataptr[7];
0N/A tmp1 = dataptr[1] + dataptr[6];
0N/A tmp6 = dataptr[1] - dataptr[6];
0N/A tmp2 = dataptr[2] + dataptr[5];
0N/A tmp5 = dataptr[2] - dataptr[5];
0N/A tmp3 = dataptr[3] + dataptr[4];
0N/A tmp4 = dataptr[3] - dataptr[4];
0N/A
0N/A /* Even part */
0N/A
0N/A tmp10 = tmp0 + tmp3; /* phase 2 */
0N/A tmp13 = tmp0 - tmp3;
0N/A tmp11 = tmp1 + tmp2;
0N/A tmp12 = tmp1 - tmp2;
0N/A
0N/A dataptr[0] = tmp10 + tmp11; /* phase 3 */
0N/A dataptr[4] = tmp10 - tmp11;
0N/A
0N/A z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
0N/A dataptr[2] = tmp13 + z1; /* phase 5 */
0N/A dataptr[6] = tmp13 - z1;
0N/A
0N/A /* Odd part */
0N/A
0N/A tmp10 = tmp4 + tmp5; /* phase 2 */
0N/A tmp11 = tmp5 + tmp6;
0N/A tmp12 = tmp6 + tmp7;
0N/A
0N/A /* The rotator is modified from fig 4-8 to avoid extra negations. */
0N/A z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
0N/A z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
0N/A z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
0N/A z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
0N/A
0N/A z11 = tmp7 + z3; /* phase 5 */
0N/A z13 = tmp7 - z3;
0N/A
0N/A dataptr[5] = z13 + z2; /* phase 6 */
0N/A dataptr[3] = z13 - z2;
0N/A dataptr[1] = z11 + z4;
0N/A dataptr[7] = z11 - z4;
0N/A
0N/A dataptr += DCTSIZE; /* advance pointer to next row */
0N/A }
0N/A
0N/A /* Pass 2: process columns. */
0N/A
0N/A dataptr = data;
0N/A for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
0N/A tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
0N/A tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
0N/A tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
0N/A tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
0N/A tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
0N/A tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
0N/A tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
0N/A tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
0N/A
0N/A /* Even part */
0N/A
0N/A tmp10 = tmp0 + tmp3; /* phase 2 */
0N/A tmp13 = tmp0 - tmp3;
0N/A tmp11 = tmp1 + tmp2;
0N/A tmp12 = tmp1 - tmp2;
0N/A
0N/A dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
0N/A dataptr[DCTSIZE*4] = tmp10 - tmp11;
0N/A
0N/A z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
0N/A dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
0N/A dataptr[DCTSIZE*6] = tmp13 - z1;
0N/A
0N/A /* Odd part */
0N/A
0N/A tmp10 = tmp4 + tmp5; /* phase 2 */
0N/A tmp11 = tmp5 + tmp6;
0N/A tmp12 = tmp6 + tmp7;
0N/A
0N/A /* The rotator is modified from fig 4-8 to avoid extra negations. */
0N/A z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
0N/A z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
0N/A z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
0N/A z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
0N/A
0N/A z11 = tmp7 + z3; /* phase 5 */
0N/A z13 = tmp7 - z3;
0N/A
0N/A dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
0N/A dataptr[DCTSIZE*3] = z13 - z2;
0N/A dataptr[DCTSIZE*1] = z11 + z4;
0N/A dataptr[DCTSIZE*7] = z11 - z4;
0N/A
0N/A dataptr++; /* advance pointer to next column */
0N/A }
0N/A}
0N/A
0N/A#endif /* DCT_FLOAT_SUPPORTED */
0N/A