taskqueue.hpp revision 907
/*
* Copyright 2001-2009 Sun Microsystems, Inc. All Rights Reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
* CA 95054 USA or visit www.sun.com if you need additional information or
* have any questions.
*
*/
class TaskQueueSuper: public CHeapObj {
protected:
// Internal type for indexing the queue; also used for the tag.
typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
// The first free element after the last one pushed (mod N).
volatile uint _bottom;
enum {
N = 1 << NOT_LP64(14) LP64_ONLY(17), // Queue size: 16K or 128K
MOD_N_MASK = N - 1 // To compute x mod N efficiently.
};
class Age {
public:
Age(size_t data = 0) { _data = data; }
Age(const Age& age) { _data = age._data; }
Age(idx_t top, idx_t tag) { _fields._top = top; _fields._tag = tag; }
Age get() const volatile { return _data; }
void set(Age age) volatile { _data = age._data; }
idx_t top() const volatile { return _fields._top; }
idx_t tag() const volatile { return _fields._tag; }
// Increment top; if it wraps, increment tag also.
void increment() {
_fields._top = increment_index(_fields._top);
if (_fields._top == 0) ++_fields._tag;
}
Age cmpxchg(const Age new_age, const Age old_age) volatile {
return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
(volatile intptr_t *)&_data,
(intptr_t)old_age._data);
}
bool operator ==(const Age& other) const { return _data == other._data; }
private:
struct fields {
idx_t _top;
idx_t _tag;
};
union {
size_t _data;
fields _fields;
};
};
volatile Age _age;
// These both operate mod N.
static uint increment_index(uint ind) {
return (ind + 1) & MOD_N_MASK;
}
static uint decrement_index(uint ind) {
return (ind - 1) & MOD_N_MASK;
}
// Returns a number in the range [0..N). If the result is "N-1", it should be
// interpreted as 0.
uint dirty_size(uint bot, uint top) {
return (bot - top) & MOD_N_MASK;
}
// Returns the size corresponding to the given "bot" and "top".
uint size(uint bot, uint top) {
uint sz = dirty_size(bot, top);
// Has the queue "wrapped", so that bottom is less than top? There's a
// complicated special case here. A pair of threads could perform pop_local
// and pop_global operations concurrently, starting from a state in which
// _bottom == _top+1. The pop_local could succeed in decrementing _bottom,
// and the pop_global in incrementing _top (in which case the pop_global
// will be awarded the contested queue element.) The resulting state must
// be interpreted as an empty queue. (We only need to worry about one such
// event: only the queue owner performs pop_local's, and several concurrent
// threads attempting to perform the pop_global will all perform the same
// CAS, and only one can succeed.) Any stealing thread that reads after
// either the increment or decrement will see an empty queue, and will not
// join the competitors. The "sz == -1 || sz == N-1" state will not be
// modified by concurrent queues, so the owner thread can reset the state to
// _bottom == top so subsequent pushes will be performed normally.
return (sz == N - 1) ? 0 : sz;
}
public:
TaskQueueSuper() : _bottom(0), _age() {}
// Return "true" if the TaskQueue contains any tasks.
bool peek();
// Return an estimate of the number of elements in the queue.
// The "careful" version admits the possibility of pop_local/pop_global
// races.
uint size() {
return size(_bottom, _age.top());
}
uint dirty_size() {
return dirty_size(_bottom, _age.top());
}
void set_empty() {
_bottom = 0;
_age.set(0);
}
// Maximum number of elements allowed in the queue. This is two less
// than the actual queue size, for somewhat complicated reasons.
uint max_elems() { return N - 2; }
};
template<class E> class GenericTaskQueue: public TaskQueueSuper {
private:
// Slow paths for push, pop_local. (pop_global has no fast path.)
bool push_slow(E t, uint dirty_n_elems);
bool pop_local_slow(uint localBot, Age oldAge);
public:
// Initializes the queue to empty.
GenericTaskQueue();
void initialize();
// Push the task "t" on the queue. Returns "false" iff the queue is
// full.
inline bool push(E t);
// If succeeds in claiming a task (from the 'local' end, that is, the
// most recently pushed task), returns "true" and sets "t" to that task.
// Otherwise, the queue is empty and returns false.
inline bool pop_local(E& t);
// If succeeds in claiming a task (from the 'global' end, that is, the
// least recently pushed task), returns "true" and sets "t" to that task.
// Otherwise, the queue is empty and returns false.
bool pop_global(E& t);
// Delete any resource associated with the queue.
~GenericTaskQueue();
// apply the closure to all elements in the task queue
void oops_do(OopClosure* f);
private:
// Element array.
volatile E* _elems;
};
template<class E>
GenericTaskQueue<E>::GenericTaskQueue():TaskQueueSuper() {
assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
}
template<class E>
void GenericTaskQueue<E>::initialize() {
_elems = NEW_C_HEAP_ARRAY(E, N);
guarantee(_elems != NULL, "Allocation failed.");
}
template<class E>
void GenericTaskQueue<E>::oops_do(OopClosure* f) {
// tty->print_cr("START OopTaskQueue::oops_do");
uint iters = size();
uint index = _bottom;
for (uint i = 0; i < iters; ++i) {
index = decrement_index(index);
// tty->print_cr(" doing entry %d," INTPTR_T " -> " INTPTR_T,
// index, &_elems[index], _elems[index]);
E* t = (E*)&_elems[index]; // cast away volatility
oop* p = (oop*)t;
assert((*t)->is_oop_or_null(), "Not an oop or null");
f->do_oop(p);
}
// tty->print_cr("END OopTaskQueue::oops_do");
}
template<class E>
bool GenericTaskQueue<E>::push_slow(E t, uint dirty_n_elems) {
if (dirty_n_elems == N - 1) {
// Actually means 0, so do the push.
uint localBot = _bottom;
_elems[localBot] = t;
_bottom = increment_index(localBot);
return true;
}
return false;
}
template<class E>
bool GenericTaskQueue<E>::
pop_local_slow(uint localBot, Age oldAge) {
// This queue was observed to contain exactly one element; either this
// thread will claim it, or a competing "pop_global". In either case,
// the queue will be logically empty afterwards. Create a new Age value
// that represents the empty queue for the given value of "_bottom". (We
// must also increment "tag" because of the case where "bottom == 1",
// "top == 0". A pop_global could read the queue element in that case,
// then have the owner thread do a pop followed by another push. Without
// the incrementing of "tag", the pop_global's CAS could succeed,
// allowing it to believe it has claimed the stale element.)
Age newAge((idx_t)localBot, oldAge.tag() + 1);
// Perhaps a competing pop_global has already incremented "top", in which
// case it wins the element.
if (localBot == oldAge.top()) {
// No competing pop_global has yet incremented "top"; we'll try to
// install new_age, thus claiming the element.
Age tempAge = _age.cmpxchg(newAge, oldAge);
if (tempAge == oldAge) {
// We win.
assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
return true;
}
}
// We lose; a completing pop_global gets the element. But the queue is empty
// and top is greater than bottom. Fix this representation of the empty queue
// to become the canonical one.
_age.set(newAge);
assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
return false;
}
template<class E>
bool GenericTaskQueue<E>::pop_global(E& t) {
Age oldAge = _age.get();
uint localBot = _bottom;
uint n_elems = size(localBot, oldAge.top());
if (n_elems == 0) {
return false;
}
t = _elems[oldAge.top()];
Age newAge(oldAge);
newAge.increment();
Age resAge = _age.cmpxchg(newAge, oldAge);
// Note that using "_bottom" here might fail, since a pop_local might
// have decremented it.
assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
return resAge == oldAge;
}
template<class E>
GenericTaskQueue<E>::~GenericTaskQueue() {
FREE_C_HEAP_ARRAY(E, _elems);
}
// Inherits the typedef of "Task" from above.
class TaskQueueSetSuper: public CHeapObj {
protected:
static int randomParkAndMiller(int* seed0);
public:
// Returns "true" if some TaskQueue in the set contains a task.
virtual bool peek() = 0;
};
template<class E> class GenericTaskQueueSet: public TaskQueueSetSuper {
private:
uint _n;
GenericTaskQueue<E>** _queues;
public:
GenericTaskQueueSet(int n) : _n(n) {
typedef GenericTaskQueue<E>* GenericTaskQueuePtr;
_queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n);
guarantee(_queues != NULL, "Allocation failure.");
for (int i = 0; i < n; i++) {
_queues[i] = NULL;
}
}
bool steal_1_random(uint queue_num, int* seed, E& t);
bool steal_best_of_2(uint queue_num, int* seed, E& t);
bool steal_best_of_all(uint queue_num, int* seed, E& t);
void register_queue(uint i, GenericTaskQueue<E>* q);
GenericTaskQueue<E>* queue(uint n);
// The thread with queue number "queue_num" (and whose random number seed
// is at "seed") is trying to steal a task from some other queue. (It
// may try several queues, according to some configuration parameter.)
// If some steal succeeds, returns "true" and sets "t" the stolen task,
// otherwise returns false.
bool steal(uint queue_num, int* seed, E& t);
bool peek();
};
template<class E>
void GenericTaskQueueSet<E>::register_queue(uint i, GenericTaskQueue<E>* q) {
assert(i < _n, "index out of range.");
_queues[i] = q;
}
template<class E>
GenericTaskQueue<E>* GenericTaskQueueSet<E>::queue(uint i) {
return _queues[i];
}
template<class E>
bool GenericTaskQueueSet<E>::steal(uint queue_num, int* seed, E& t) {
for (uint i = 0; i < 2 * _n; i++)
if (steal_best_of_2(queue_num, seed, t))
return true;
return false;
}
template<class E>
bool GenericTaskQueueSet<E>::steal_best_of_all(uint queue_num, int* seed, E& t) {
if (_n > 2) {
int best_k;
uint best_sz = 0;
for (uint k = 0; k < _n; k++) {
if (k == queue_num) continue;
uint sz = _queues[k]->size();
if (sz > best_sz) {
best_sz = sz;
best_k = k;
}
}
return best_sz > 0 && _queues[best_k]->pop_global(t);
} else if (_n == 2) {
// Just try the other one.
int k = (queue_num + 1) % 2;
return _queues[k]->pop_global(t);
} else {
assert(_n == 1, "can't be zero.");
return false;
}
}
template<class E>
bool GenericTaskQueueSet<E>::steal_1_random(uint queue_num, int* seed, E& t) {
if (_n > 2) {
uint k = queue_num;
while (k == queue_num) k = randomParkAndMiller(seed) % _n;
return _queues[2]->pop_global(t);
} else if (_n == 2) {
// Just try the other one.
int k = (queue_num + 1) % 2;
return _queues[k]->pop_global(t);
} else {
assert(_n == 1, "can't be zero.");
return false;
}
}
template<class E>
bool GenericTaskQueueSet<E>::steal_best_of_2(uint queue_num, int* seed, E& t) {
if (_n > 2) {
uint k1 = queue_num;
while (k1 == queue_num) k1 = randomParkAndMiller(seed) % _n;
uint k2 = queue_num;
while (k2 == queue_num || k2 == k1) k2 = randomParkAndMiller(seed) % _n;
// Sample both and try the larger.
uint sz1 = _queues[k1]->size();
uint sz2 = _queues[k2]->size();
if (sz2 > sz1) return _queues[k2]->pop_global(t);
else return _queues[k1]->pop_global(t);
} else if (_n == 2) {
// Just try the other one.
uint k = (queue_num + 1) % 2;
return _queues[k]->pop_global(t);
} else {
assert(_n == 1, "can't be zero.");
return false;
}
}
template<class E>
bool GenericTaskQueueSet<E>::peek() {
// Try all the queues.
for (uint j = 0; j < _n; j++) {
if (_queues[j]->peek())
return true;
}
return false;
}
// When to terminate from the termination protocol.
class TerminatorTerminator: public CHeapObj {
public:
virtual bool should_exit_termination() = 0;
};
// A class to aid in the termination of a set of parallel tasks using
// TaskQueueSet's for work stealing.
#undef TRACESPINNING
class ParallelTaskTerminator: public StackObj {
private:
int _n_threads;
TaskQueueSetSuper* _queue_set;
int _offered_termination;
#ifdef TRACESPINNING
static uint _total_yields;
static uint _total_spins;
static uint _total_peeks;
#endif
bool peek_in_queue_set();
protected:
virtual void yield();
void sleep(uint millis);
public:
// "n_threads" is the number of threads to be terminated. "queue_set" is a
// queue sets of work queues of other threads.
ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
// The current thread has no work, and is ready to terminate if everyone
// else is. If returns "true", all threads are terminated. If returns
// "false", available work has been observed in one of the task queues,
// so the global task is not complete.
bool offer_termination() {
return offer_termination(NULL);
}
// As above, but it also terminates if the should_exit_termination()
// method of the terminator parameter returns true. If terminator is
// NULL, then it is ignored.
bool offer_termination(TerminatorTerminator* terminator);
// Reset the terminator, so that it may be reused again.
// The caller is responsible for ensuring that this is done
// in an MT-safe manner, once the previous round of use of
// the terminator is finished.
void reset_for_reuse();
#ifdef TRACESPINNING
static uint total_yields() { return _total_yields; }
static uint total_spins() { return _total_spins; }
static uint total_peeks() { return _total_peeks; }
static void print_termination_counts();
#endif
};
#define SIMPLE_STACK 0
template<class E> inline bool GenericTaskQueue<E>::push(E t) {
#if SIMPLE_STACK
uint localBot = _bottom;
if (_bottom < max_elems()) {
_elems[localBot] = t;
_bottom = localBot + 1;
return true;
} else {
return false;
}
#else
uint localBot = _bottom;
assert((localBot >= 0) && (localBot < N), "_bottom out of range.");
idx_t top = _age.top();
uint dirty_n_elems = dirty_size(localBot, top);
assert((dirty_n_elems >= 0) && (dirty_n_elems < N), "n_elems out of range.");
if (dirty_n_elems < max_elems()) {
_elems[localBot] = t;
_bottom = increment_index(localBot);
return true;
} else {
return push_slow(t, dirty_n_elems);
}
#endif
}
template<class E> inline bool GenericTaskQueue<E>::pop_local(E& t) {
#if SIMPLE_STACK
uint localBot = _bottom;
assert(localBot > 0, "precondition.");
localBot--;
t = _elems[localBot];
_bottom = localBot;
return true;
#else
uint localBot = _bottom;
// This value cannot be N-1. That can only occur as a result of
// the assignment to bottom in this method. If it does, this method
// resets the size( to 0 before the next call (which is sequential,
// since this is pop_local.)
uint dirty_n_elems = dirty_size(localBot, _age.top());
assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
if (dirty_n_elems == 0) return false;
localBot = decrement_index(localBot);
_bottom = localBot;
// This is necessary to prevent any read below from being reordered
// before the store just above.
OrderAccess::fence();
t = _elems[localBot];
// This is a second read of "age"; the "size()" above is the first.
// If there's still at least one element in the queue, based on the
// "_bottom" and "age" we've read, then there can be no interference with
// a "pop_global" operation, and we're done.
idx_t tp = _age.top(); // XXX
if (size(localBot, tp) > 0) {
assert(dirty_size(localBot, tp) != N - 1, "sanity");
return true;
} else {
// Otherwise, the queue contained exactly one element; we take the slow
// path.
return pop_local_slow(localBot, _age.get());
}
#endif
}
typedef oop Task;
typedef GenericTaskQueue<Task> OopTaskQueue;
typedef GenericTaskQueueSet<Task> OopTaskQueueSet;
#define COMPRESSED_OOP_MASK 1
// This is a container class for either an oop* or a narrowOop*.
// Both are pushed onto a task queue and the consumer will test is_narrow()
// to determine which should be processed.
class StarTask {
void* _holder; // either union oop* or narrowOop*
public:
StarTask(narrowOop* p) {
assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
_holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
}
StarTask(oop* p) {
assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
_holder = (void*)p;
}
StarTask() { _holder = NULL; }
operator oop*() { return (oop*)_holder; }
operator narrowOop*() {
return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
}
// Operators to preserve const/volatile in assignments required by gcc
void operator=(const volatile StarTask& t) volatile { _holder = t._holder; }
bool is_narrow() const {
return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
}
};
typedef GenericTaskQueue<StarTask> OopStarTaskQueue;
typedef GenericTaskQueueSet<StarTask> OopStarTaskQueueSet;
typedef size_t RegionTask; // index for region
typedef GenericTaskQueue<RegionTask> RegionTaskQueue;
typedef GenericTaskQueueSet<RegionTask> RegionTaskQueueSet;
class RegionTaskQueueWithOverflow: public CHeapObj {
protected:
RegionTaskQueue _region_queue;
GrowableArray<RegionTask>* _overflow_stack;
public:
RegionTaskQueueWithOverflow() : _overflow_stack(NULL) {}
// Initialize both stealable queue and overflow
void initialize();
// Save first to stealable queue and then to overflow
void save(RegionTask t);
// Retrieve first from overflow and then from stealable queue
bool retrieve(RegionTask& region_index);
// Retrieve from stealable queue
bool retrieve_from_stealable_queue(RegionTask& region_index);
// Retrieve from overflow
bool retrieve_from_overflow(RegionTask& region_index);
bool is_empty();
bool stealable_is_empty();
bool overflow_is_empty();
uint stealable_size() { return _region_queue.size(); }
RegionTaskQueue* task_queue() { return &_region_queue; }
};
#define USE_RegionTaskQueueWithOverflow