0N/A/*
1879N/A * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
0N/A * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
0N/A *
0N/A * This code is free software; you can redistribute it and/or modify it
0N/A * under the terms of the GNU General Public License version 2 only, as
0N/A * published by the Free Software Foundation.
0N/A *
0N/A * This code is distributed in the hope that it will be useful, but WITHOUT
0N/A * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
0N/A * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
0N/A * version 2 for more details (a copy is included in the LICENSE file that
0N/A * accompanied this code).
0N/A *
0N/A * You should have received a copy of the GNU General Public License version
0N/A * 2 along with this work; if not, write to the Free Software Foundation,
0N/A * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
0N/A *
1472N/A * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
1472N/A * or visit www.oracle.com if you need additional information or have any
1472N/A * questions.
0N/A *
0N/A */
0N/A
1879N/A#ifndef SHARE_VM_OPTO_CFGNODE_HPP
1879N/A#define SHARE_VM_OPTO_CFGNODE_HPP
1879N/A
1879N/A#include "opto/multnode.hpp"
1879N/A#include "opto/node.hpp"
1879N/A#include "opto/opcodes.hpp"
1879N/A#include "opto/type.hpp"
1879N/A
0N/A// Portions of code courtesy of Clifford Click
0N/A
0N/A// Optimization - Graph Style
0N/A
0N/Aclass Matcher;
0N/Aclass Node;
0N/Aclass RegionNode;
0N/Aclass TypeNode;
0N/Aclass PhiNode;
0N/Aclass GotoNode;
0N/Aclass MultiNode;
0N/Aclass MultiBranchNode;
0N/Aclass IfNode;
0N/Aclass PCTableNode;
0N/Aclass JumpNode;
0N/Aclass CatchNode;
0N/Aclass NeverBranchNode;
0N/Aclass ProjNode;
0N/Aclass CProjNode;
0N/Aclass IfTrueNode;
0N/Aclass IfFalseNode;
0N/Aclass CatchProjNode;
0N/Aclass JProjNode;
0N/Aclass JumpProjNode;
0N/Aclass SCMemProjNode;
0N/Aclass PhaseIdealLoop;
0N/A
0N/A//------------------------------RegionNode-------------------------------------
0N/A// The class of RegionNodes, which can be mapped to basic blocks in the
0N/A// program. Their inputs point to Control sources. PhiNodes (described
0N/A// below) have an input point to a RegionNode. Merged data inputs to PhiNodes
0N/A// correspond 1-to-1 with RegionNode inputs. The zero input of a PhiNode is
0N/A// the RegionNode, and the zero input of the RegionNode is itself.
0N/Aclass RegionNode : public Node {
0N/Apublic:
0N/A // Node layout (parallels PhiNode):
0N/A enum { Region, // Generally points to self.
0N/A Control // Control arcs are [1..len)
0N/A };
0N/A
0N/A RegionNode( uint required ) : Node(required) {
0N/A init_class_id(Class_Region);
0N/A init_req(0,this);
0N/A }
0N/A
0N/A Node* is_copy() const {
0N/A const Node* r = _in[Region];
0N/A if (r == NULL)
0N/A return nonnull_req();
0N/A return NULL; // not a copy!
0N/A }
0N/A PhiNode* has_phi() const; // returns an arbitrary phi user, or NULL
0N/A PhiNode* has_unique_phi() const; // returns the unique phi user, or NULL
0N/A // Is this region node unreachable from root?
0N/A bool is_unreachable_region(PhaseGVN *phase) const;
0N/A virtual int Opcode() const;
0N/A virtual bool pinned() const { return (const Node *)in(0) == this; }
0N/A virtual bool is_CFG () const { return true; }
0N/A virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash
0N/A virtual bool depends_only_on_test() const { return false; }
0N/A virtual const Type *bottom_type() const { return Type::CONTROL; }
0N/A virtual const Type *Value( PhaseTransform *phase ) const;
0N/A virtual Node *Identity( PhaseTransform *phase );
0N/A virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
0N/A virtual const RegMask &out_RegMask() const;
4132N/A bool try_clean_mem_phi(PhaseGVN *phase);
0N/A};
0N/A
0N/A//------------------------------JProjNode--------------------------------------
0N/A// jump projection for node that produces multiple control-flow paths
0N/Aclass JProjNode : public ProjNode {
0N/A public:
0N/A JProjNode( Node* ctrl, uint idx ) : ProjNode(ctrl,idx) {}
0N/A virtual int Opcode() const;
0N/A virtual bool is_CFG() const { return true; }
0N/A virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash
0N/A virtual const Node* is_block_proj() const { return in(0); }
0N/A virtual const RegMask& out_RegMask() const;
0N/A virtual uint ideal_reg() const { return 0; }
0N/A};
0N/A
0N/A//------------------------------PhiNode----------------------------------------
0N/A// PhiNodes merge values from different Control paths. Slot 0 points to the
0N/A// controlling RegionNode. Other slots map 1-for-1 with incoming control flow
0N/A// paths to the RegionNode. For speed reasons (to avoid another pass) we
0N/A// can turn PhiNodes into copys in-place by NULL'ing out their RegionNode
0N/A// input in slot 0.
0N/Aclass PhiNode : public TypeNode {
0N/A const TypePtr* const _adr_type; // non-null only for Type::MEMORY nodes.
64N/A const int _inst_id; // Instance id of the memory slice.
64N/A const int _inst_index; // Alias index of the instance memory slice.
64N/A // Array elements references have the same alias_idx but different offset.
64N/A const int _inst_offset; // Offset of the instance memory slice.
0N/A // Size is bigger to hold the _adr_type field.
0N/A virtual uint hash() const; // Check the type
0N/A virtual uint cmp( const Node &n ) const;
0N/A virtual uint size_of() const { return sizeof(*this); }
0N/A
0N/A // Determine if CMoveNode::is_cmove_id can be used at this join point.
0N/A Node* is_cmove_id(PhaseTransform* phase, int true_path);
0N/A
0N/Apublic:
0N/A // Node layout (parallels RegionNode):
0N/A enum { Region, // Control input is the Phi's region.
0N/A Input // Input values are [1..len)
0N/A };
0N/A
64N/A PhiNode( Node *r, const Type *t, const TypePtr* at = NULL,
223N/A const int iid = TypeOopPtr::InstanceTop,
64N/A const int iidx = Compile::AliasIdxTop,
64N/A const int ioffs = Type::OffsetTop )
64N/A : TypeNode(t,r->req()),
64N/A _adr_type(at),
64N/A _inst_id(iid),
64N/A _inst_index(iidx),
64N/A _inst_offset(ioffs)
64N/A {
0N/A init_class_id(Class_Phi);
0N/A init_req(0, r);
0N/A verify_adr_type();
0N/A }
0N/A // create a new phi with in edges matching r and set (initially) to x
0N/A static PhiNode* make( Node* r, Node* x );
0N/A // extra type arguments override the new phi's bottom_type and adr_type
0N/A static PhiNode* make( Node* r, Node* x, const Type *t, const TypePtr* at = NULL );
0N/A // create a new phi with narrowed memory type
0N/A PhiNode* slice_memory(const TypePtr* adr_type) const;
74N/A PhiNode* split_out_instance(const TypePtr* at, PhaseIterGVN *igvn) const;
0N/A // like make(r, x), but does not initialize the in edges to x
0N/A static PhiNode* make_blank( Node* r, Node* x );
0N/A
0N/A // Accessors
0N/A RegionNode* region() const { Node* r = in(Region); assert(!r || r->is_Region(), ""); return (RegionNode*)r; }
0N/A
0N/A Node* is_copy() const {
0N/A // The node is a real phi if _in[0] is a Region node.
0N/A DEBUG_ONLY(const Node* r = _in[Region];)
0N/A assert(r != NULL && r->is_Region(), "Not valid control");
0N/A return NULL; // not a copy!
0N/A }
0N/A
400N/A bool is_tripcount() const;
400N/A
64N/A // Determine a unique non-trivial input, if any.
64N/A // Ignore casts if it helps. Return NULL on failure.
64N/A Node* unique_input(PhaseTransform *phase);
64N/A
0N/A // Check for a simple dead loop.
0N/A enum LoopSafety { Safe = 0, Unsafe, UnsafeLoop };
0N/A LoopSafety simple_data_loop_check(Node *in) const;
0N/A // Is it unsafe data loop? It becomes a dead loop if this phi node removed.
0N/A bool is_unsafe_data_reference(Node *in) const;
4132N/A int is_diamond_phi(bool check_control_only = false) const;
0N/A virtual int Opcode() const;
0N/A virtual bool pinned() const { return in(0) != 0; }
0N/A virtual const TypePtr *adr_type() const { verify_adr_type(true); return _adr_type; }
64N/A
64N/A const int inst_id() const { return _inst_id; }
64N/A const int inst_index() const { return _inst_index; }
64N/A const int inst_offset() const { return _inst_offset; }
64N/A bool is_same_inst_field(const Type* tp, int id, int index, int offset) {
64N/A return type()->basic_type() == tp->basic_type() &&
64N/A inst_id() == id &&
64N/A inst_index() == index &&
64N/A inst_offset() == offset &&
64N/A type()->higher_equal(tp);
64N/A }
64N/A
0N/A virtual const Type *Value( PhaseTransform *phase ) const;
0N/A virtual Node *Identity( PhaseTransform *phase );
0N/A virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
0N/A virtual const RegMask &out_RegMask() const;
0N/A virtual const RegMask &in_RegMask(uint) const;
0N/A#ifndef PRODUCT
0N/A virtual void dump_spec(outputStream *st) const;
0N/A#endif
0N/A#ifdef ASSERT
0N/A void verify_adr_type(VectorSet& visited, const TypePtr* at) const;
0N/A void verify_adr_type(bool recursive = false) const;
0N/A#else //ASSERT
0N/A void verify_adr_type(bool recursive = false) const {}
0N/A#endif //ASSERT
0N/A};
0N/A
0N/A//------------------------------GotoNode---------------------------------------
0N/A// GotoNodes perform direct branches.
0N/Aclass GotoNode : public Node {
0N/Apublic:
2667N/A GotoNode( Node *control ) : Node(control) {}
0N/A virtual int Opcode() const;
0N/A virtual bool pinned() const { return true; }
0N/A virtual bool is_CFG() const { return true; }
0N/A virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash
0N/A virtual const Node *is_block_proj() const { return this; }
0N/A virtual bool depends_only_on_test() const { return false; }
0N/A virtual const Type *bottom_type() const { return Type::CONTROL; }
0N/A virtual const Type *Value( PhaseTransform *phase ) const;
0N/A virtual Node *Identity( PhaseTransform *phase );
0N/A virtual const RegMask &out_RegMask() const;
0N/A};
0N/A
0N/A//------------------------------CProjNode--------------------------------------
0N/A// control projection for node that produces multiple control-flow paths
0N/Aclass CProjNode : public ProjNode {
0N/Apublic:
0N/A CProjNode( Node *ctrl, uint idx ) : ProjNode(ctrl,idx) {}
0N/A virtual int Opcode() const;
0N/A virtual bool is_CFG() const { return true; }
0N/A virtual uint hash() const { return NO_HASH; } // CFG nodes do not hash
0N/A virtual const Node *is_block_proj() const { return in(0); }
0N/A virtual const RegMask &out_RegMask() const;
0N/A virtual uint ideal_reg() const { return 0; }
0N/A};
0N/A
0N/A//---------------------------MultiBranchNode-----------------------------------
0N/A// This class defines a MultiBranchNode, a MultiNode which yields multiple
0N/A// control values. These are distinguished from other types of MultiNodes
0N/A// which yield multiple values, but control is always and only projection #0.
0N/Aclass MultiBranchNode : public MultiNode {
0N/Apublic:
0N/A MultiBranchNode( uint required ) : MultiNode(required) {
0N/A init_class_id(Class_MultiBranch);
0N/A }
127N/A // returns required number of users to be well formed.
127N/A virtual int required_outcnt() const = 0;
0N/A};
0N/A
0N/A//------------------------------IfNode-----------------------------------------
0N/A// Output selected Control, based on a boolean test
0N/Aclass IfNode : public MultiBranchNode {
0N/A // Size is bigger to hold the probability field. However, _prob does not
0N/A // change the semantics so it does not appear in the hash & cmp functions.
0N/A virtual uint size_of() const { return sizeof(*this); }
0N/Apublic:
0N/A
0N/A // Degrees of branch prediction probability by order of magnitude:
0N/A // PROB_UNLIKELY_1e(N) is a 1 in 1eN chance.
0N/A // PROB_LIKELY_1e(N) is a 1 - PROB_UNLIKELY_1e(N)
0N/A#define PROB_UNLIKELY_MAG(N) (1e- ## N ## f)
0N/A#define PROB_LIKELY_MAG(N) (1.0f-PROB_UNLIKELY_MAG(N))
0N/A
0N/A // Maximum and minimum branch prediction probabilties
0N/A // 1 in 1,000,000 (magnitude 6)
0N/A //
0N/A // Although PROB_NEVER == PROB_MIN and PROB_ALWAYS == PROB_MAX
0N/A // they are used to distinguish different situations:
0N/A //
0N/A // The name PROB_MAX (PROB_MIN) is for probabilities which correspond to
0N/A // very likely (unlikely) but with a concrete possibility of a rare
0N/A // contrary case. These constants would be used for pinning
0N/A // measurements, and as measures for assertions that have high
0N/A // confidence, but some evidence of occasional failure.
0N/A //
0N/A // The name PROB_ALWAYS (PROB_NEVER) is to stand for situations for which
0N/A // there is no evidence at all that the contrary case has ever occurred.
0N/A
0N/A#define PROB_NEVER PROB_UNLIKELY_MAG(6)
0N/A#define PROB_ALWAYS PROB_LIKELY_MAG(6)
0N/A
0N/A#define PROB_MIN PROB_UNLIKELY_MAG(6)
0N/A#define PROB_MAX PROB_LIKELY_MAG(6)
0N/A
0N/A // Static branch prediction probabilities
0N/A // 1 in 10 (magnitude 1)
0N/A#define PROB_STATIC_INFREQUENT PROB_UNLIKELY_MAG(1)
0N/A#define PROB_STATIC_FREQUENT PROB_LIKELY_MAG(1)
0N/A
0N/A // Fair probability 50/50
0N/A#define PROB_FAIR (0.5f)
0N/A
0N/A // Unknown probability sentinel
0N/A#define PROB_UNKNOWN (-1.0f)
0N/A
0N/A // Probability "constructors", to distinguish as a probability any manifest
0N/A // constant without a names
0N/A#define PROB_LIKELY(x) ((float) (x))
0N/A#define PROB_UNLIKELY(x) (1.0f - (float)(x))
0N/A
0N/A // Other probabilities in use, but without a unique name, are documented
0N/A // here for lack of a better place:
0N/A //
0N/A // 1 in 1000 probabilities (magnitude 3):
0N/A // threshold for converting to conditional move
0N/A // likelihood of null check failure if a null HAS been seen before
0N/A // likelihood of slow path taken in library calls
0N/A //
0N/A // 1 in 10,000 probabilities (magnitude 4):
0N/A // threshold for making an uncommon trap probability more extreme
0N/A // threshold for for making a null check implicit
0N/A // likelihood of needing a gc if eden top moves during an allocation
0N/A // likelihood of a predicted call failure
0N/A //
0N/A // 1 in 100,000 probabilities (magnitude 5):
0N/A // threshold for ignoring counts when estimating path frequency
0N/A // likelihood of FP clipping failure
0N/A // likelihood of catching an exception from a try block
0N/A // likelihood of null check failure if a null has NOT been seen before
0N/A //
0N/A // Magic manifest probabilities such as 0.83, 0.7, ... can be found in
0N/A // gen_subtype_check() and catch_inline_exceptions().
0N/A
0N/A float _prob; // Probability of true path being taken.
0N/A float _fcnt; // Frequency counter
0N/A IfNode( Node *control, Node *b, float p, float fcnt )
0N/A : MultiBranchNode(2), _prob(p), _fcnt(fcnt) {
0N/A init_class_id(Class_If);
0N/A init_req(0,control);
0N/A init_req(1,b);
0N/A }
0N/A virtual int Opcode() const;
0N/A virtual bool pinned() const { return true; }
0N/A virtual const Type *bottom_type() const { return TypeTuple::IFBOTH; }
0N/A virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
0N/A virtual const Type *Value( PhaseTransform *phase ) const;
127N/A virtual int required_outcnt() const { return 2; }
0N/A virtual const RegMask &out_RegMask() const;
0N/A void dominated_by(Node* prev_dom, PhaseIterGVN* igvn);
0N/A int is_range_check(Node* &range, Node* &index, jint &offset);
17N/A Node* fold_compares(PhaseGVN* phase);
0N/A static Node* up_one_dom(Node* curr, bool linear_only = false);
0N/A
17N/A // Takes the type of val and filters it through the test represented
17N/A // by if_proj and returns a more refined type if one is produced.
17N/A // Returns NULL is it couldn't improve the type.
17N/A static const TypeInt* filtered_int_type(PhaseGVN* phase, Node* val, Node* if_proj);
17N/A
0N/A#ifndef PRODUCT
0N/A virtual void dump_spec(outputStream *st) const;
0N/A#endif
0N/A};
0N/A
0N/Aclass IfTrueNode : public CProjNode {
0N/Apublic:
0N/A IfTrueNode( IfNode *ifnode ) : CProjNode(ifnode,1) {
0N/A init_class_id(Class_IfTrue);
0N/A }
0N/A virtual int Opcode() const;
0N/A virtual Node *Identity( PhaseTransform *phase );
0N/A};
0N/A
0N/Aclass IfFalseNode : public CProjNode {
0N/Apublic:
0N/A IfFalseNode( IfNode *ifnode ) : CProjNode(ifnode,0) {
0N/A init_class_id(Class_IfFalse);
0N/A }
0N/A virtual int Opcode() const;
0N/A virtual Node *Identity( PhaseTransform *phase );
0N/A};
0N/A
0N/A
0N/A//------------------------------PCTableNode------------------------------------
0N/A// Build an indirect branch table. Given a control and a table index,
0N/A// control is passed to the Projection matching the table index. Used to
0N/A// implement switch statements and exception-handling capabilities.
0N/A// Undefined behavior if passed-in index is not inside the table.
0N/Aclass PCTableNode : public MultiBranchNode {
0N/A virtual uint hash() const; // Target count; table size
0N/A virtual uint cmp( const Node &n ) const;
0N/A virtual uint size_of() const { return sizeof(*this); }
0N/A
0N/Apublic:
0N/A const uint _size; // Number of targets
0N/A
0N/A PCTableNode( Node *ctrl, Node *idx, uint size ) : MultiBranchNode(2), _size(size) {
0N/A init_class_id(Class_PCTable);
0N/A init_req(0, ctrl);
0N/A init_req(1, idx);
0N/A }
0N/A virtual int Opcode() const;
0N/A virtual const Type *Value( PhaseTransform *phase ) const;
0N/A virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
0N/A virtual const Type *bottom_type() const;
0N/A virtual bool pinned() const { return true; }
127N/A virtual int required_outcnt() const { return _size; }
0N/A};
0N/A
0N/A//------------------------------JumpNode---------------------------------------
0N/A// Indirect branch. Uses PCTable above to implement a switch statement.
0N/A// It emits as a table load and local branch.
0N/Aclass JumpNode : public PCTableNode {
0N/Apublic:
0N/A JumpNode( Node* control, Node* switch_val, uint size) : PCTableNode(control, switch_val, size) {
0N/A init_class_id(Class_Jump);
0N/A }
0N/A virtual int Opcode() const;
0N/A virtual const RegMask& out_RegMask() const;
0N/A virtual const Node* is_block_proj() const { return this; }
0N/A};
0N/A
0N/Aclass JumpProjNode : public JProjNode {
0N/A virtual uint hash() const;
0N/A virtual uint cmp( const Node &n ) const;
0N/A virtual uint size_of() const { return sizeof(*this); }
0N/A
0N/A private:
0N/A const int _dest_bci;
0N/A const uint _proj_no;
0N/A const int _switch_val;
0N/A public:
0N/A JumpProjNode(Node* jumpnode, uint proj_no, int dest_bci, int switch_val)
0N/A : JProjNode(jumpnode, proj_no), _dest_bci(dest_bci), _proj_no(proj_no), _switch_val(switch_val) {
0N/A init_class_id(Class_JumpProj);
0N/A }
0N/A
0N/A virtual int Opcode() const;
0N/A virtual const Type* bottom_type() const { return Type::CONTROL; }
0N/A int dest_bci() const { return _dest_bci; }
0N/A int switch_val() const { return _switch_val; }
0N/A uint proj_no() const { return _proj_no; }
0N/A#ifndef PRODUCT
0N/A virtual void dump_spec(outputStream *st) const;
0N/A#endif
0N/A};
0N/A
0N/A//------------------------------CatchNode--------------------------------------
0N/A// Helper node to fork exceptions. "Catch" catches any exceptions thrown by
0N/A// a just-prior call. Looks like a PCTableNode but emits no code - just the
0N/A// table. The table lookup and branch is implemented by RethrowNode.
0N/Aclass CatchNode : public PCTableNode {
0N/Apublic:
0N/A CatchNode( Node *ctrl, Node *idx, uint size ) : PCTableNode(ctrl,idx,size){
0N/A init_class_id(Class_Catch);
0N/A }
0N/A virtual int Opcode() const;
0N/A virtual const Type *Value( PhaseTransform *phase ) const;
0N/A};
0N/A
0N/A// CatchProjNode controls which exception handler is targetted after a call.
0N/A// It is passed in the bci of the target handler, or no_handler_bci in case
0N/A// the projection doesn't lead to an exception handler.
0N/Aclass CatchProjNode : public CProjNode {
0N/A virtual uint hash() const;
0N/A virtual uint cmp( const Node &n ) const;
0N/A virtual uint size_of() const { return sizeof(*this); }
0N/A
0N/Aprivate:
0N/A const int _handler_bci;
0N/A
0N/Apublic:
0N/A enum {
0N/A fall_through_index = 0, // the fall through projection index
0N/A catch_all_index = 1, // the projection index for catch-alls
0N/A no_handler_bci = -1 // the bci for fall through or catch-all projs
0N/A };
0N/A
0N/A CatchProjNode(Node* catchnode, uint proj_no, int handler_bci)
0N/A : CProjNode(catchnode, proj_no), _handler_bci(handler_bci) {
0N/A init_class_id(Class_CatchProj);
0N/A assert(proj_no != fall_through_index || handler_bci < 0, "fall through case must have bci < 0");
0N/A }
0N/A
0N/A virtual int Opcode() const;
0N/A virtual Node *Identity( PhaseTransform *phase );
0N/A virtual const Type *bottom_type() const { return Type::CONTROL; }
0N/A int handler_bci() const { return _handler_bci; }
0N/A bool is_handler_proj() const { return _handler_bci >= 0; }
0N/A#ifndef PRODUCT
0N/A virtual void dump_spec(outputStream *st) const;
0N/A#endif
0N/A};
0N/A
0N/A
0N/A//---------------------------------CreateExNode--------------------------------
0N/A// Helper node to create the exception coming back from a call
0N/Aclass CreateExNode : public TypeNode {
0N/Apublic:
0N/A CreateExNode(const Type* t, Node* control, Node* i_o) : TypeNode(t, 2) {
0N/A init_req(0, control);
0N/A init_req(1, i_o);
0N/A }
0N/A virtual int Opcode() const;
0N/A virtual Node *Identity( PhaseTransform *phase );
0N/A virtual bool pinned() const { return true; }
0N/A uint match_edge(uint idx) const { return 0; }
0N/A virtual uint ideal_reg() const { return Op_RegP; }
0N/A};
0N/A
0N/A//------------------------------NeverBranchNode-------------------------------
0N/A// The never-taken branch. Used to give the appearance of exiting infinite
0N/A// loops to those algorithms that like all paths to be reachable. Encodes
0N/A// empty.
0N/Aclass NeverBranchNode : public MultiBranchNode {
0N/Apublic:
0N/A NeverBranchNode( Node *ctrl ) : MultiBranchNode(1) { init_req(0,ctrl); }
0N/A virtual int Opcode() const;
0N/A virtual bool pinned() const { return true; };
0N/A virtual const Type *bottom_type() const { return TypeTuple::IFBOTH; }
127N/A virtual const Type *Value( PhaseTransform *phase ) const;
127N/A virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
127N/A virtual int required_outcnt() const { return 2; }
0N/A virtual void emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const { }
0N/A virtual uint size(PhaseRegAlloc *ra_) const { return 0; }
0N/A#ifndef PRODUCT
0N/A virtual void format( PhaseRegAlloc *, outputStream *st ) const;
0N/A#endif
0N/A};
1879N/A
1879N/A#endif // SHARE_VM_OPTO_CFGNODE_HPP