0N/A/*
3643N/A * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
0N/A * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
0N/A *
0N/A * This code is free software; you can redistribute it and/or modify it
0N/A * under the terms of the GNU General Public License version 2 only, as
0N/A * published by the Free Software Foundation.
0N/A *
0N/A * This code is distributed in the hope that it will be useful, but WITHOUT
0N/A * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
0N/A * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
0N/A * version 2 for more details (a copy is included in the LICENSE file that
0N/A * accompanied this code).
0N/A *
0N/A * You should have received a copy of the GNU General Public License version
0N/A * 2 along with this work; if not, write to the Free Software Foundation,
0N/A * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
0N/A *
1472N/A * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
1472N/A * or visit www.oracle.com if you need additional information or have any
1472N/A * questions.
0N/A *
0N/A */
0N/A
1879N/A#include "precompiled.hpp"
1879N/A#include "classfile/systemDictionary.hpp"
1879N/A#include "classfile/vmSymbols.hpp"
1879N/A#include "gc_interface/collectedHeap.inline.hpp"
1879N/A#include "memory/oopFactory.hpp"
1879N/A#include "memory/resourceArea.hpp"
1879N/A#include "oops/instanceKlass.hpp"
1879N/A#include "oops/klass.inline.hpp"
1879N/A#include "oops/klassOop.hpp"
1879N/A#include "oops/oop.inline.hpp"
1879N/A#include "oops/oop.inline2.hpp"
1879N/A#include "runtime/atomic.hpp"
4141N/A#include "trace/traceMacros.hpp"
0N/A
2062N/Avoid Klass::set_name(Symbol* n) {
2062N/A _name = n;
2062N/A if (_name != NULL) _name->increment_refcount();
2062N/A}
0N/A
0N/Abool Klass::is_subclass_of(klassOop k) const {
0N/A // Run up the super chain and check
0N/A klassOop t = as_klassOop();
0N/A
0N/A if (t == k) return true;
0N/A t = Klass::cast(t)->super();
0N/A
0N/A while (t != NULL) {
0N/A if (t == k) return true;
0N/A t = Klass::cast(t)->super();
0N/A }
0N/A return false;
0N/A}
0N/A
0N/Abool Klass::search_secondary_supers(klassOop k) const {
0N/A // Put some extra logic here out-of-line, before the search proper.
0N/A // This cuts down the size of the inline method.
0N/A
0N/A // This is necessary, since I am never in my own secondary_super list.
0N/A if (this->as_klassOop() == k)
0N/A return true;
0N/A // Scan the array-of-objects for a match
0N/A int cnt = secondary_supers()->length();
0N/A for (int i = 0; i < cnt; i++) {
0N/A if (secondary_supers()->obj_at(i) == k) {
0N/A ((Klass*)this)->set_secondary_super_cache(k);
0N/A return true;
0N/A }
0N/A }
0N/A return false;
0N/A}
0N/A
0N/A// Return self, except for abstract classes with exactly 1
0N/A// implementor. Then return the 1 concrete implementation.
0N/AKlass *Klass::up_cast_abstract() {
0N/A Klass *r = this;
0N/A while( r->is_abstract() ) { // Receiver is abstract?
0N/A Klass *s = r->subklass(); // Check for exactly 1 subklass
0N/A if( !s || s->next_sibling() ) // Oops; wrong count; give up
0N/A return this; // Return 'this' as a no-progress flag
0N/A r = s; // Loop till find concrete class
0N/A }
0N/A return r; // Return the 1 concrete class
0N/A}
0N/A
605N/A// Find LCA in class hierarchy
0N/AKlass *Klass::LCA( Klass *k2 ) {
0N/A Klass *k1 = this;
0N/A while( 1 ) {
0N/A if( k1->is_subtype_of(k2->as_klassOop()) ) return k2;
0N/A if( k2->is_subtype_of(k1->as_klassOop()) ) return k1;
0N/A k1 = k1->super()->klass_part();
0N/A k2 = k2->super()->klass_part();
0N/A }
0N/A}
0N/A
0N/A
0N/Avoid Klass::check_valid_for_instantiation(bool throwError, TRAPS) {
0N/A ResourceMark rm(THREAD);
0N/A THROW_MSG(throwError ? vmSymbols::java_lang_InstantiationError()
0N/A : vmSymbols::java_lang_InstantiationException(), external_name());
0N/A}
0N/A
0N/A
0N/Avoid Klass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) {
0N/A THROW(vmSymbols::java_lang_ArrayStoreException());
0N/A}
0N/A
0N/A
0N/Avoid Klass::initialize(TRAPS) {
0N/A ShouldNotReachHere();
0N/A}
0N/A
0N/Abool Klass::compute_is_subtype_of(klassOop k) {
0N/A assert(k->is_klass(), "argument must be a class");
0N/A return is_subclass_of(k);
0N/A}
0N/A
0N/A
2062N/AmethodOop Klass::uncached_lookup_method(Symbol* name, Symbol* signature) const {
0N/A#ifdef ASSERT
0N/A tty->print_cr("Error: uncached_lookup_method called on a klass oop."
0N/A " Likely error: reflection method does not correctly"
0N/A " wrap return value in a mirror object.");
0N/A#endif
0N/A ShouldNotReachHere();
0N/A return NULL;
0N/A}
0N/A
0N/AklassOop Klass::base_create_klass_oop(KlassHandle& klass, int size,
0N/A const Klass_vtbl& vtbl, TRAPS) {
0N/A size = align_object_size(size);
0N/A // allocate and initialize vtable
0N/A Klass* kl = (Klass*) vtbl.allocate_permanent(klass, size, CHECK_NULL);
0N/A klassOop k = kl->as_klassOop();
0N/A
0N/A { // Preinitialize supertype information.
0N/A // A later call to initialize_supers() may update these settings:
0N/A kl->set_super(NULL);
0N/A for (juint i = 0; i < Klass::primary_super_limit(); i++) {
0N/A kl->_primary_supers[i] = NULL;
0N/A }
0N/A kl->set_secondary_supers(NULL);
0N/A oop_store_without_check((oop*) &kl->_primary_supers[0], k);
3042N/A kl->set_super_check_offset(in_bytes(primary_supers_offset()));
0N/A }
0N/A
0N/A kl->set_java_mirror(NULL);
0N/A kl->set_modifier_flags(0);
0N/A kl->set_layout_helper(Klass::_lh_neutral_value);
0N/A kl->set_name(NULL);
0N/A AccessFlags af;
0N/A af.set_flags(0);
0N/A kl->set_access_flags(af);
0N/A kl->set_subklass(NULL);
0N/A kl->set_next_sibling(NULL);
0N/A kl->set_alloc_count(0);
0N/A kl->set_alloc_size(0);
4432N/A TRACE_INIT_ID(kl);
0N/A
0N/A kl->set_prototype_header(markOopDesc::prototype());
0N/A kl->set_biased_lock_revocation_count(0);
0N/A kl->set_last_biased_lock_bulk_revocation_time(0);
0N/A
0N/A return k;
0N/A}
0N/A
0N/AKlassHandle Klass::base_create_klass(KlassHandle& klass, int size,
0N/A const Klass_vtbl& vtbl, TRAPS) {
0N/A klassOop ek = base_create_klass_oop(klass, size, vtbl, THREAD);
0N/A return KlassHandle(THREAD, ek);
0N/A}
0N/A
0N/Avoid Klass_vtbl::post_new_init_klass(KlassHandle& klass,
3643N/A klassOop new_klass) const {
0N/A assert(!new_klass->klass_part()->null_vtbl(), "Not a complete klass");
3643N/A CollectedHeap::post_allocation_install_obj_klass(klass, new_klass);
0N/A}
0N/A
0N/Avoid* Klass_vtbl::operator new(size_t ignored, KlassHandle& klass,
0N/A int size, TRAPS) {
0N/A // The vtable pointer is installed during the execution of
0N/A // constructors in the call to permanent_obj_allocate(). Delay
0N/A // the installation of the klass pointer into the new klass "k"
0N/A // until after the vtable pointer has been installed (i.e., until
0N/A // after the return of permanent_obj_allocate().
0N/A klassOop k =
0N/A (klassOop) CollectedHeap::permanent_obj_allocate_no_klass_install(klass,
0N/A size, CHECK_NULL);
0N/A return k->klass_part();
0N/A}
0N/A
0N/Ajint Klass::array_layout_helper(BasicType etype) {
0N/A assert(etype >= T_BOOLEAN && etype <= T_OBJECT, "valid etype");
0N/A // Note that T_ARRAY is not allowed here.
0N/A int hsize = arrayOopDesc::base_offset_in_bytes(etype);
29N/A int esize = type2aelembytes(etype);
0N/A bool isobj = (etype == T_OBJECT);
0N/A int tag = isobj ? _lh_array_tag_obj_value : _lh_array_tag_type_value;
0N/A int lh = array_layout_helper(tag, hsize, etype, exact_log2(esize));
0N/A
0N/A assert(lh < (int)_lh_neutral_value, "must look like an array layout");
0N/A assert(layout_helper_is_javaArray(lh), "correct kind");
0N/A assert(layout_helper_is_objArray(lh) == isobj, "correct kind");
0N/A assert(layout_helper_is_typeArray(lh) == !isobj, "correct kind");
0N/A assert(layout_helper_header_size(lh) == hsize, "correct decode");
0N/A assert(layout_helper_element_type(lh) == etype, "correct decode");
0N/A assert(1 << layout_helper_log2_element_size(lh) == esize, "correct decode");
0N/A
0N/A return lh;
0N/A}
0N/A
0N/Abool Klass::can_be_primary_super_slow() const {
0N/A if (super() == NULL)
0N/A return true;
0N/A else if (super()->klass_part()->super_depth() >= primary_super_limit()-1)
0N/A return false;
0N/A else
0N/A return true;
0N/A}
0N/A
0N/Avoid Klass::initialize_supers(klassOop k, TRAPS) {
0N/A if (FastSuperclassLimit == 0) {
0N/A // None of the other machinery matters.
0N/A set_super(k);
0N/A return;
0N/A }
0N/A if (k == NULL) {
0N/A set_super(NULL);
0N/A oop_store_without_check((oop*) &_primary_supers[0], (oop) this->as_klassOop());
0N/A assert(super_depth() == 0, "Object must already be initialized properly");
1142N/A } else if (k != super() || k == SystemDictionary::Object_klass()) {
1142N/A assert(super() == NULL || super() == SystemDictionary::Object_klass(),
0N/A "initialize this only once to a non-trivial value");
0N/A set_super(k);
0N/A Klass* sup = k->klass_part();
0N/A int sup_depth = sup->super_depth();
0N/A juint my_depth = MIN2(sup_depth + 1, (int)primary_super_limit());
0N/A if (!can_be_primary_super_slow())
0N/A my_depth = primary_super_limit();
0N/A for (juint i = 0; i < my_depth; i++) {
0N/A oop_store_without_check((oop*) &_primary_supers[i], (oop) sup->_primary_supers[i]);
0N/A }
0N/A klassOop *super_check_cell;
0N/A if (my_depth < primary_super_limit()) {
0N/A oop_store_without_check((oop*) &_primary_supers[my_depth], (oop) this->as_klassOop());
0N/A super_check_cell = &_primary_supers[my_depth];
0N/A } else {
0N/A // Overflow of the primary_supers array forces me to be secondary.
0N/A super_check_cell = &_secondary_super_cache;
0N/A }
0N/A set_super_check_offset((address)super_check_cell - (address) this->as_klassOop());
0N/A
0N/A#ifdef ASSERT
0N/A {
0N/A juint j = super_depth();
0N/A assert(j == my_depth, "computed accessor gets right answer");
0N/A klassOop t = as_klassOop();
0N/A while (!Klass::cast(t)->can_be_primary_super()) {
0N/A t = Klass::cast(t)->super();
0N/A j = Klass::cast(t)->super_depth();
0N/A }
0N/A for (juint j1 = j+1; j1 < primary_super_limit(); j1++) {
0N/A assert(primary_super_of_depth(j1) == NULL, "super list padding");
0N/A }
0N/A while (t != NULL) {
0N/A assert(primary_super_of_depth(j) == t, "super list initialization");
0N/A t = Klass::cast(t)->super();
0N/A --j;
0N/A }
0N/A assert(j == (juint)-1, "correct depth count");
0N/A }
0N/A#endif
0N/A }
0N/A
0N/A if (secondary_supers() == NULL) {
0N/A KlassHandle this_kh (THREAD, this);
0N/A
0N/A // Now compute the list of secondary supertypes.
0N/A // Secondaries can occasionally be on the super chain,
0N/A // if the inline "_primary_supers" array overflows.
0N/A int extras = 0;
0N/A klassOop p;
0N/A for (p = super(); !(p == NULL || p->klass_part()->can_be_primary_super()); p = p->klass_part()->super()) {
0N/A ++extras;
0N/A }
0N/A
0N/A // Compute the "real" non-extra secondaries.
0N/A objArrayOop secondary_oops = compute_secondary_supers(extras, CHECK);
0N/A objArrayHandle secondaries (THREAD, secondary_oops);
0N/A
0N/A // Store the extra secondaries in the first array positions:
0N/A int fillp = extras;
0N/A for (p = this_kh->super(); !(p == NULL || p->klass_part()->can_be_primary_super()); p = p->klass_part()->super()) {
0N/A int i; // Scan for overflow primaries being duplicates of 2nd'arys
0N/A
0N/A // This happens frequently for very deeply nested arrays: the
0N/A // primary superclass chain overflows into the secondary. The
0N/A // secondary list contains the element_klass's secondaries with
0N/A // an extra array dimension added. If the element_klass's
0N/A // secondary list already contains some primary overflows, they
0N/A // (with the extra level of array-ness) will collide with the
0N/A // normal primary superclass overflows.
0N/A for( i = extras; i < secondaries->length(); i++ )
0N/A if( secondaries->obj_at(i) == p )
0N/A break;
0N/A if( i < secondaries->length() )
0N/A continue; // It's a dup, don't put it in
0N/A secondaries->obj_at_put(--fillp, p);
0N/A }
0N/A // See if we had some dup's, so the array has holes in it.
0N/A if( fillp > 0 ) {
0N/A // Pack the array. Drop the old secondaries array on the floor
0N/A // and let GC reclaim it.
0N/A objArrayOop s2 = oopFactory::new_system_objArray(secondaries->length() - fillp, CHECK);
0N/A for( int i = 0; i < s2->length(); i++ )
0N/A s2->obj_at_put( i, secondaries->obj_at(i+fillp) );
0N/A secondaries = objArrayHandle(THREAD, s2);
0N/A }
0N/A
0N/A #ifdef ASSERT
0N/A if (secondaries() != Universe::the_array_interfaces_array()) {
0N/A // We must not copy any NULL placeholders left over from bootstrap.
0N/A for (int j = 0; j < secondaries->length(); j++) {
0N/A assert(secondaries->obj_at(j) != NULL, "correct bootstrapping order");
0N/A }
0N/A }
0N/A #endif
0N/A
0N/A this_kh->set_secondary_supers(secondaries());
0N/A }
0N/A}
0N/A
0N/AobjArrayOop Klass::compute_secondary_supers(int num_extra_slots, TRAPS) {
0N/A assert(num_extra_slots == 0, "override for complex klasses");
0N/A return Universe::the_empty_system_obj_array();
0N/A}
0N/A
0N/A
0N/AKlass* Klass::subklass() const {
0N/A return _subklass == NULL ? NULL : Klass::cast(_subklass);
0N/A}
0N/A
0N/AinstanceKlass* Klass::superklass() const {
0N/A assert(super() == NULL || super()->klass_part()->oop_is_instance(), "must be instance klass");
0N/A return _super == NULL ? NULL : instanceKlass::cast(_super);
0N/A}
0N/A
0N/AKlass* Klass::next_sibling() const {
0N/A return _next_sibling == NULL ? NULL : Klass::cast(_next_sibling);
0N/A}
0N/A
0N/Avoid Klass::set_subklass(klassOop s) {
0N/A assert(s != as_klassOop(), "sanity check");
0N/A oop_store_without_check((oop*)&_subklass, s);
0N/A}
0N/A
0N/Avoid Klass::set_next_sibling(klassOop s) {
0N/A assert(s != as_klassOop(), "sanity check");
0N/A oop_store_without_check((oop*)&_next_sibling, s);
0N/A}
0N/A
0N/Avoid Klass::append_to_sibling_list() {
0N/A debug_only(if (!SharedSkipVerify) as_klassOop()->verify();)
0N/A // add ourselves to superklass' subklass list
0N/A instanceKlass* super = superklass();
0N/A if (super == NULL) return; // special case: class Object
0N/A assert(SharedSkipVerify ||
0N/A (!super->is_interface() // interfaces cannot be supers
0N/A && (super->superklass() == NULL || !is_interface())),
0N/A "an interface can only be a subklass of Object");
0N/A klassOop prev_first_subklass = super->subklass_oop();
0N/A if (prev_first_subklass != NULL) {
0N/A // set our sibling to be the superklass' previous first subklass
0N/A set_next_sibling(prev_first_subklass);
0N/A }
0N/A // make ourselves the superklass' first subklass
0N/A super->set_subklass(as_klassOop());
0N/A debug_only(if (!SharedSkipVerify) as_klassOop()->verify();)
0N/A}
0N/A
0N/Avoid Klass::remove_from_sibling_list() {
0N/A // remove receiver from sibling list
0N/A instanceKlass* super = superklass();
1142N/A assert(super != NULL || as_klassOop() == SystemDictionary::Object_klass(), "should have super");
0N/A if (super == NULL) return; // special case: class Object
0N/A if (super->subklass() == this) {
0N/A // first subklass
0N/A super->set_subklass(_next_sibling);
0N/A } else {
0N/A Klass* sib = super->subklass();
0N/A while (sib->next_sibling() != this) {
0N/A sib = sib->next_sibling();
0N/A };
0N/A sib->set_next_sibling(_next_sibling);
0N/A }
0N/A}
0N/A
0N/Avoid Klass::follow_weak_klass_links( BoolObjectClosure* is_alive, OopClosure* keep_alive) {
0N/A // This klass is alive but the subklass and siblings are not followed/updated.
0N/A // We update the subklass link and the subklass' sibling links here.
0N/A // Our own sibling link will be updated by our superclass (which must be alive
0N/A // since we are).
0N/A assert(is_alive->do_object_b(as_klassOop()), "just checking, this should be live");
0N/A if (ClassUnloading) {
0N/A klassOop sub = subklass_oop();
0N/A if (sub != NULL && !is_alive->do_object_b(sub)) {
0N/A // first subklass not alive, find first one alive
0N/A do {
0N/A#ifndef PRODUCT
0N/A if (TraceClassUnloading && WizardMode) {
0N/A ResourceMark rm;
0N/A tty->print_cr("[Unlinking class (subclass) %s]", sub->klass_part()->external_name());
0N/A }
0N/A#endif
0N/A sub = sub->klass_part()->next_sibling_oop();
0N/A } while (sub != NULL && !is_alive->do_object_b(sub));
0N/A set_subklass(sub);
0N/A }
0N/A // now update the subklass' sibling list
0N/A while (sub != NULL) {
0N/A klassOop next = sub->klass_part()->next_sibling_oop();
0N/A if (next != NULL && !is_alive->do_object_b(next)) {
0N/A // first sibling not alive, find first one alive
0N/A do {
0N/A#ifndef PRODUCT
0N/A if (TraceClassUnloading && WizardMode) {
0N/A ResourceMark rm;
0N/A tty->print_cr("[Unlinking class (sibling) %s]", next->klass_part()->external_name());
0N/A }
0N/A#endif
0N/A next = next->klass_part()->next_sibling_oop();
0N/A } while (next != NULL && !is_alive->do_object_b(next));
0N/A sub->klass_part()->set_next_sibling(next);
0N/A }
0N/A sub = next;
0N/A }
0N/A } else {
0N/A // Always follow subklass and sibling link. This will prevent any klasses from
0N/A // being unloaded (all classes are transitively linked from java.lang.Object).
0N/A keep_alive->do_oop(adr_subklass());
0N/A keep_alive->do_oop(adr_next_sibling());
0N/A }
0N/A}
0N/A
0N/A
0N/Avoid Klass::remove_unshareable_info() {
0N/A if (oop_is_instance()) {
0N/A instanceKlass* ik = (instanceKlass*)this;
0N/A if (ik->is_linked()) {
0N/A ik->unlink_class();
0N/A }
0N/A }
2342N/A // Clear the Java vtable if the oop has one.
2342N/A // The vtable isn't shareable because it's in the wrong order wrt the methods
2342N/A // once the method names get moved and resorted.
2342N/A klassVtable* vt = vtable();
2342N/A if (vt != NULL) {
2342N/A assert(oop_is_instance() || oop_is_array(), "nothing else has vtable");
2342N/A vt->clear_vtable();
2342N/A }
0N/A set_subklass(NULL);
0N/A set_next_sibling(NULL);
0N/A}
0N/A
0N/A
2062N/Avoid Klass::shared_symbols_iterate(SymbolClosure* closure) {
2062N/A closure->do_symbol(&_name);
2062N/A}
2062N/A
2062N/A
0N/AklassOop Klass::array_klass_or_null(int rank) {
0N/A EXCEPTION_MARK;
0N/A // No exception can be thrown by array_klass_impl when called with or_null == true.
0N/A // (In anycase, the execption mark will fail if it do so)
0N/A return array_klass_impl(true, rank, THREAD);
0N/A}
0N/A
0N/A
0N/AklassOop Klass::array_klass_or_null() {
0N/A EXCEPTION_MARK;
0N/A // No exception can be thrown by array_klass_impl when called with or_null == true.
0N/A // (In anycase, the execption mark will fail if it do so)
0N/A return array_klass_impl(true, THREAD);
0N/A}
0N/A
0N/A
0N/AklassOop Klass::array_klass_impl(bool or_null, int rank, TRAPS) {
0N/A fatal("array_klass should be dispatched to instanceKlass, objArrayKlass or typeArrayKlass");
0N/A return NULL;
0N/A}
0N/A
0N/A
0N/AklassOop Klass::array_klass_impl(bool or_null, TRAPS) {
0N/A fatal("array_klass should be dispatched to instanceKlass, objArrayKlass or typeArrayKlass");
0N/A return NULL;
0N/A}
0N/A
0N/A
0N/Avoid Klass::with_array_klasses_do(void f(klassOop k)) {
0N/A f(as_klassOop());
0N/A}
0N/A
0N/A
0N/Aconst char* Klass::external_name() const {
431N/A if (oop_is_instance()) {
431N/A instanceKlass* ik = (instanceKlass*) this;
431N/A if (ik->is_anonymous()) {
2263N/A assert(EnableInvokeDynamic, "");
431N/A intptr_t hash = ik->java_mirror()->identity_hash();
431N/A char hash_buf[40];
431N/A sprintf(hash_buf, "/" UINTX_FORMAT, (uintx)hash);
431N/A size_t hash_len = strlen(hash_buf);
431N/A
431N/A size_t result_len = name()->utf8_length();
431N/A char* result = NEW_RESOURCE_ARRAY(char, result_len + hash_len + 1);
431N/A name()->as_klass_external_name(result, (int) result_len + 1);
431N/A assert(strlen(result) == result_len, "");
431N/A strcpy(result + result_len, hash_buf);
431N/A assert(strlen(result) == result_len + hash_len, "");
431N/A return result;
431N/A }
431N/A }
1039N/A if (name() == NULL) return "<unknown>";
0N/A return name()->as_klass_external_name();
0N/A}
0N/A
0N/A
1039N/Aconst char* Klass::signature_name() const {
1039N/A if (name() == NULL) return "<unknown>";
0N/A return name()->as_C_string();
0N/A}
0N/A
0N/A// Unless overridden, modifier_flags is 0.
0N/Ajint Klass::compute_modifier_flags(TRAPS) const {
0N/A return 0;
0N/A}
0N/A
0N/Aint Klass::atomic_incr_biased_lock_revocation_count() {
0N/A return (int) Atomic::add(1, &_biased_lock_revocation_count);
0N/A}
0N/A
0N/A// Unless overridden, jvmti_class_status has no flags set.
0N/Ajint Klass::jvmti_class_status() const {
0N/A return 0;
0N/A}
0N/A
0N/A// Printing
0N/A
0N/Avoid Klass::oop_print_on(oop obj, outputStream* st) {
0N/A ResourceMark rm;
0N/A // print title
0N/A st->print_cr("%s ", internal_name());
0N/A obj->print_address_on(st);
0N/A
0N/A if (WizardMode) {
0N/A // print header
0N/A obj->mark()->print_on(st);
0N/A }
0N/A
0N/A // print class
0N/A st->print(" - klass: ");
0N/A obj->klass()->print_value_on(st);
0N/A st->cr();
0N/A}
0N/A
0N/Avoid Klass::oop_print_value_on(oop obj, outputStream* st) {
0N/A // print title
0N/A ResourceMark rm; // Cannot print in debug mode without this
0N/A st->print("%s", internal_name());
0N/A obj->print_address_on(st);
0N/A}
0N/A
0N/A// Verification
0N/A
0N/Avoid Klass::oop_verify_on(oop obj, outputStream* st) {
0N/A guarantee(obj->is_oop(), "should be oop");
0N/A guarantee(obj->klass()->is_perm(), "should be in permspace");
0N/A guarantee(obj->klass()->is_klass(), "klass field is not a klass");
0N/A}
0N/A
0N/A#ifndef PRODUCT
0N/A
0N/Avoid Klass::verify_vtable_index(int i) {
0N/A assert(oop_is_instance() || oop_is_array(), "only instanceKlass and arrayKlass have vtables");
0N/A if (oop_is_instance()) {
0N/A assert(i>=0 && i<((instanceKlass*)this)->vtable_length()/vtableEntry::size(), "index out of bounds");
0N/A } else {
0N/A assert(i>=0 && i<((arrayKlass*)this)->vtable_length()/vtableEntry::size(), "index out of bounds");
0N/A }
0N/A}
0N/A
0N/A#endif