collectedHeap.cpp revision 1472
/*
* Copyright (c) 2001, 2009, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*
*/
# include "incls/_precompiled.incl"
# include "incls/_collectedHeap.cpp.incl"
#ifdef ASSERT
int CollectedHeap::_fire_out_of_memory_count = 0;
#endif
size_t CollectedHeap::_filler_array_max_size = 0;
// Memory state functions.
CollectedHeap::CollectedHeap()
{
const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
const size_t elements_per_word = HeapWordSize / sizeof(jint);
_filler_array_max_size = align_object_size(filler_array_hdr_size() +
max_len * elements_per_word);
_barrier_set = NULL;
_is_gc_active = false;
_total_collections = _total_full_collections = 0;
_gc_cause = _gc_lastcause = GCCause::_no_gc;
NOT_PRODUCT(_promotion_failure_alot_count = 0;)
NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
if (UsePerfData) {
EXCEPTION_MARK;
// create the gc cause jvmstat counters
_perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
80, GCCause::to_string(_gc_cause), CHECK);
_perf_gc_lastcause =
PerfDataManager::create_string_variable(SUN_GC, "lastCause",
80, GCCause::to_string(_gc_lastcause), CHECK);
}
_defer_initial_card_mark = false; // strengthened by subclass in pre_initialize() below.
}
void CollectedHeap::pre_initialize() {
// Used for ReduceInitialCardMarks (when COMPILER2 is used);
// otherwise remains unused.
#ifdef COMPILER2
_defer_initial_card_mark = ReduceInitialCardMarks && can_elide_tlab_store_barriers()
&& (DeferInitialCardMark || card_mark_must_follow_store());
#else
assert(_defer_initial_card_mark == false, "Who would set it?");
#endif
}
#ifndef PRODUCT
void CollectedHeap::check_for_bad_heap_word_value(HeapWord* addr, size_t size) {
if (CheckMemoryInitialization && ZapUnusedHeapArea) {
for (size_t slot = 0; slot < size; slot += 1) {
assert((*(intptr_t*) (addr + slot)) != ((intptr_t) badHeapWordVal),
"Found badHeapWordValue in post-allocation check");
}
}
}
void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
{
if (CheckMemoryInitialization && ZapUnusedHeapArea) {
for (size_t slot = 0; slot < size; slot += 1) {
assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal),
"Found non badHeapWordValue in pre-allocation check");
}
}
}
#endif // PRODUCT
#ifdef ASSERT
void CollectedHeap::check_for_valid_allocation_state() {
Thread *thread = Thread::current();
// How to choose between a pending exception and a potential
// OutOfMemoryError? Don't allow pending exceptions.
// This is a VM policy failure, so how do we exhaustively test it?
assert(!thread->has_pending_exception(),
"shouldn't be allocating with pending exception");
if (StrictSafepointChecks) {
assert(thread->allow_allocation(),
"Allocation done by thread for which allocation is blocked "
"by No_Allocation_Verifier!");
// Allocation of an oop can always invoke a safepoint,
// hence, the true argument
thread->check_for_valid_safepoint_state(true);
}
}
#endif
HeapWord* CollectedHeap::allocate_from_tlab_slow(Thread* thread, size_t size) {
// Retain tlab and allocate object in shared space if
// the amount free in the tlab is too large to discard.
if (thread->tlab().free() > thread->tlab().refill_waste_limit()) {
thread->tlab().record_slow_allocation(size);
return NULL;
}
// Discard tlab and allocate a new one.
// To minimize fragmentation, the last TLAB may be smaller than the rest.
size_t new_tlab_size = thread->tlab().compute_size(size);
thread->tlab().clear_before_allocation();
if (new_tlab_size == 0) {
return NULL;
}
// Allocate a new TLAB...
HeapWord* obj = Universe::heap()->allocate_new_tlab(new_tlab_size);
if (obj == NULL) {
return NULL;
}
if (ZeroTLAB) {
// ..and clear it.
Copy::zero_to_words(obj, new_tlab_size);
} else {
// ...and clear just the allocated object.
Copy::zero_to_words(obj, size);
}
thread->tlab().fill(obj, obj + size, new_tlab_size);
return obj;
}
void CollectedHeap::flush_deferred_store_barrier(JavaThread* thread) {
MemRegion deferred = thread->deferred_card_mark();
if (!deferred.is_empty()) {
assert(_defer_initial_card_mark, "Otherwise should be empty");
{
// Verify that the storage points to a parsable object in heap
DEBUG_ONLY(oop old_obj = oop(deferred.start());)
assert(is_in(old_obj), "Not in allocated heap");
assert(!can_elide_initializing_store_barrier(old_obj),
"Else should have been filtered in new_store_pre_barrier()");
assert(!is_in_permanent(old_obj), "Sanity: not expected");
assert(old_obj->is_oop(true), "Not an oop");
assert(old_obj->is_parsable(), "Will not be concurrently parsable");
assert(deferred.word_size() == (size_t)(old_obj->size()),
"Mismatch: multiple objects?");
}
BarrierSet* bs = barrier_set();
assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
bs->write_region(deferred);
// "Clear" the deferred_card_mark field
thread->set_deferred_card_mark(MemRegion());
}
assert(thread->deferred_card_mark().is_empty(), "invariant");
}
// Helper for ReduceInitialCardMarks. For performance,
// compiled code may elide card-marks for initializing stores
// to a newly allocated object along the fast-path. We
// compensate for such elided card-marks as follows:
// (a) Generational, non-concurrent collectors, such as
// GenCollectedHeap(ParNew,DefNew,Tenured) and
// ParallelScavengeHeap(ParallelGC, ParallelOldGC)
// need the card-mark if and only if the region is
// in the old gen, and do not care if the card-mark
// succeeds or precedes the initializing stores themselves,
// so long as the card-mark is completed before the next
// scavenge. For all these cases, we can do a card mark
// at the point at which we do a slow path allocation
// in the old gen, i.e. in this call.
// (b) GenCollectedHeap(ConcurrentMarkSweepGeneration) requires
// in addition that the card-mark for an old gen allocated
// object strictly follow any associated initializing stores.
// In these cases, the memRegion remembered below is
// used to card-mark the entire region either just before the next
// slow-path allocation by this thread or just before the next scavenge or
// CMS-associated safepoint, whichever of these events happens first.
// (The implicit assumption is that the object has been fully
// initialized by this point, a fact that we assert when doing the
// card-mark.)
// (c) G1CollectedHeap(G1) uses two kinds of write barriers. When a
// G1 concurrent marking is in progress an SATB (pre-write-)barrier is
// is used to remember the pre-value of any store. Initializing
// stores will not need this barrier, so we need not worry about
// compensating for the missing pre-barrier here. Turning now
// to the post-barrier, we note that G1 needs a RS update barrier
// which simply enqueues a (sequence of) dirty cards which may
// optionally be refined by the concurrent update threads. Note
// that this barrier need only be applied to a non-young write,
// but, like in CMS, because of the presence of concurrent refinement
// (much like CMS' precleaning), must strictly follow the oop-store.
// Thus, using the same protocol for maintaining the intended
// invariants turns out, serendepitously, to be the same for both
// G1 and CMS.
//
// For any future collector, this code should be reexamined with
// that specific collector in mind, and the documentation above suitably
// extended and updated.
oop CollectedHeap::new_store_pre_barrier(JavaThread* thread, oop new_obj) {
// If a previous card-mark was deferred, flush it now.
flush_deferred_store_barrier(thread);
if (can_elide_initializing_store_barrier(new_obj)) {
// The deferred_card_mark region should be empty
// following the flush above.
assert(thread->deferred_card_mark().is_empty(), "Error");
} else {
MemRegion mr((HeapWord*)new_obj, new_obj->size());
assert(!mr.is_empty(), "Error");
if (_defer_initial_card_mark) {
// Defer the card mark
thread->set_deferred_card_mark(mr);
} else {
// Do the card mark
BarrierSet* bs = barrier_set();
assert(bs->has_write_region_opt(), "No write_region() on BarrierSet");
bs->write_region(mr);
}
}
return new_obj;
}
size_t CollectedHeap::filler_array_hdr_size() {
return size_t(arrayOopDesc::header_size(T_INT));
}
size_t CollectedHeap::filler_array_min_size() {
return align_object_size(filler_array_hdr_size());
}
size_t CollectedHeap::filler_array_max_size() {
return _filler_array_max_size;
}
#ifdef ASSERT
void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
{
assert(words >= min_fill_size(), "too small to fill");
assert(words % MinObjAlignment == 0, "unaligned size");
assert(Universe::heap()->is_in_reserved(start), "not in heap");
assert(Universe::heap()->is_in_reserved(start + words - 1), "not in heap");
}
void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
{
if (ZapFillerObjects && zap) {
Copy::fill_to_words(start + filler_array_hdr_size(),
words - filler_array_hdr_size(), 0XDEAFBABE);
}
}
#endif // ASSERT
void
CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
{
assert(words >= filler_array_min_size(), "too small for an array");
assert(words <= filler_array_max_size(), "too big for a single object");
const size_t payload_size = words - filler_array_hdr_size();
const size_t len = payload_size * HeapWordSize / sizeof(jint);
// Set the length first for concurrent GC.
((arrayOop)start)->set_length((int)len);
post_allocation_setup_common(Universe::intArrayKlassObj(), start, words);
DEBUG_ONLY(zap_filler_array(start, words, zap);)
}
void
CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
{
assert(words <= filler_array_max_size(), "too big for a single object");
if (words >= filler_array_min_size()) {
fill_with_array(start, words, zap);
} else if (words > 0) {
assert(words == min_fill_size(), "unaligned size");
post_allocation_setup_common(SystemDictionary::Object_klass(), start,
words);
}
}
void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
{
DEBUG_ONLY(fill_args_check(start, words);)
HandleMark hm; // Free handles before leaving.
fill_with_object_impl(start, words, zap);
}
void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
{
DEBUG_ONLY(fill_args_check(start, words);)
HandleMark hm; // Free handles before leaving.
#ifdef _LP64
// A single array can fill ~8G, so multiple objects are needed only in 64-bit.
// First fill with arrays, ensuring that any remaining space is big enough to
// fill. The remainder is filled with a single object.
const size_t min = min_fill_size();
const size_t max = filler_array_max_size();
while (words > max) {
const size_t cur = words - max >= min ? max : max - min;
fill_with_array(start, cur, zap);
start += cur;
words -= cur;
}
#endif
fill_with_object_impl(start, words, zap);
}
HeapWord* CollectedHeap::allocate_new_tlab(size_t size) {
guarantee(false, "thread-local allocation buffers not supported");
return NULL;
}
void CollectedHeap::ensure_parsability(bool retire_tlabs) {
// The second disjunct in the assertion below makes a concession
// for the start-up verification done while the VM is being
// created. Callers be careful that you know that mutators
// aren't going to interfere -- for instance, this is permissible
// if we are still single-threaded and have either not yet
// started allocating (nothing much to verify) or we have
// started allocating but are now a full-fledged JavaThread
// (and have thus made our TLAB's) available for filling.
assert(SafepointSynchronize::is_at_safepoint() ||
!is_init_completed(),
"Should only be called at a safepoint or at start-up"
" otherwise concurrent mutator activity may make heap "
" unparsable again");
const bool use_tlab = UseTLAB;
const bool deferred = _defer_initial_card_mark;
// The main thread starts allocating via a TLAB even before it
// has added itself to the threads list at vm boot-up.
assert(!use_tlab || Threads::first() != NULL,
"Attempt to fill tlabs before main thread has been added"
" to threads list is doomed to failure!");
for (JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
if (use_tlab) thread->tlab().make_parsable(retire_tlabs);
#ifdef COMPILER2
// The deferred store barriers must all have been flushed to the
// card-table (or other remembered set structure) before GC starts
// processing the card-table (or other remembered set).
if (deferred) flush_deferred_store_barrier(thread);
#else
assert(!deferred, "Should be false");
assert(thread->deferred_card_mark().is_empty(), "Should be empty");
#endif
}
}
void CollectedHeap::accumulate_statistics_all_tlabs() {
if (UseTLAB) {
assert(SafepointSynchronize::is_at_safepoint() ||
!is_init_completed(),
"should only accumulate statistics on tlabs at safepoint");
ThreadLocalAllocBuffer::accumulate_statistics_before_gc();
}
}
void CollectedHeap::resize_all_tlabs() {
if (UseTLAB) {
assert(SafepointSynchronize::is_at_safepoint() ||
!is_init_completed(),
"should only resize tlabs at safepoint");
ThreadLocalAllocBuffer::resize_all_tlabs();
}
}
void CollectedHeap::pre_full_gc_dump() {
if (HeapDumpBeforeFullGC) {
TraceTime tt("Heap Dump: ", PrintGCDetails, false, gclog_or_tty);
// We are doing a "major" collection and a heap dump before
// major collection has been requested.
HeapDumper::dump_heap();
}
if (PrintClassHistogramBeforeFullGC) {
TraceTime tt("Class Histogram: ", PrintGCDetails, true, gclog_or_tty);
VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */, false /* ! prologue */);
inspector.doit();
}
}
void CollectedHeap::post_full_gc_dump() {
if (HeapDumpAfterFullGC) {
TraceTime tt("Heap Dump", PrintGCDetails, false, gclog_or_tty);
HeapDumper::dump_heap();
}
if (PrintClassHistogramAfterFullGC) {
TraceTime tt("Class Histogram", PrintGCDetails, true, gclog_or_tty);
VM_GC_HeapInspection inspector(gclog_or_tty, false /* ! full gc */, false /* ! prologue */);
inspector.doit();
}
}