node.cpp revision 70d31ae8a7a27e57cfcdc921ea0d2f47c92442a4
/** @file
* Editable node - implementation
*/
/* Authors:
* Krzysztof Kosiński <tweenk.pl@gmail.com>
*
* Copyright (C) 2009 Authors
* Released under GNU GPL, read the file 'COPYING' for more information
*/
#include <iostream>
#include <stdexcept>
#include <boost/utility.hpp>
#include <glib.h>
#include <glib/gi18n.h>
#include <2geom/bezier-utils.h>
#include <2geom/transforms.h>
#include "display/sp-ctrlline.h"
#include "display/sp-canvas.h"
#include "display/sp-canvas-util.h"
#include "desktop.h"
#include "desktop-handles.h"
#include "preferences.h"
#include "snap.h"
#include "snap-preferences.h"
#include "sp-metrics.h"
#include "sp-namedview.h"
#include "ui/tool/control-point-selection.h"
#include "ui/tool/event-utils.h"
#include "ui/tool/multi-path-manipulator.h"
#include "ui/tool/node.h"
#include "ui/tool/path-manipulator.h"
namespace Inkscape {
namespace UI {
static SelectableControlPoint::ColorSet node_colors = {
{
{0xbfbfbf00, 0x000000ff}, // normal fill, stroke
{0xff000000, 0x000000ff}, // mouseover fill, stroke
{0xff000000, 0x000000ff} // clicked fill, stroke
},
{0x0000ffff, 0x000000ff}, // normal fill, stroke when selected
{0xff000000, 0x000000ff}, // mouseover fill, stroke when selected
{0xff000000, 0x000000ff} // clicked fill, stroke when selected
};
static ControlPoint::ColorSet handle_colors = {
{0xffffffff, 0x000000ff}, // normal fill, stroke
{0xff000000, 0x000000ff}, // mouseover fill, stroke
{0xff000000, 0x000000ff} // clicked fill, stroke
};
std::ostream &operator<<(std::ostream &out, NodeType type)
{
switch(type) {
case NODE_CUSP: out << 'c'; break;
case NODE_SMOOTH: out << 's'; break;
case NODE_AUTO: out << 'a'; break;
case NODE_SYMMETRIC: out << 'z'; break;
default: out << 'b'; break;
}
return out;
}
/** Computes an unit vector of the direction from first to second control point */
static Geom::Point direction(Geom::Point const &first, Geom::Point const &second) {
return Geom::unit_vector(second - first);
}
/**
* @class Handle
* Represents a control point of a cubic Bezier curve in a path.
*/
double Handle::_saved_length = 0.0;
bool Handle::_drag_out = false;
Handle::Handle(NodeSharedData const &data, Geom::Point const &initial_pos, Node *parent)
: ControlPoint(data.desktop, initial_pos, Gtk::ANCHOR_CENTER, SP_CTRL_SHAPE_CIRCLE, 7.0,
&handle_colors, data.handle_group)
, _parent(parent)
, _degenerate(true)
{
_cset = &handle_colors;
_handle_line = sp_canvas_item_new(data.handle_line_group, SP_TYPE_CTRLLINE, NULL);
setVisible(false);
signal_grabbed.connect(
sigc::bind_return(
sigc::hide(
sigc::mem_fun(*this, &Handle::_grabbedHandler)),
false));
signal_dragged.connect(
sigc::hide<0>(
sigc::mem_fun(*this, &Handle::_draggedHandler)));
signal_ungrabbed.connect(
sigc::hide(sigc::mem_fun(*this, &Handle::_ungrabbedHandler)));
}
Handle::~Handle()
{
sp_canvas_item_hide(_handle_line);
gtk_object_destroy(GTK_OBJECT(_handle_line));
}
void Handle::setVisible(bool v)
{
ControlPoint::setVisible(v);
if (v) sp_canvas_item_show(_handle_line);
else sp_canvas_item_hide(_handle_line);
}
void Handle::move(Geom::Point const &new_pos)
{
Handle *other, *towards, *towards_second;
Node *node_towards; // node in direction of this handle
Node *node_away; // node in the opposite direction
if (this == &_parent->_front) {
other = &_parent->_back;
node_towards = _parent->_next();
node_away = _parent->_prev();
towards = node_towards ? &node_towards->_back : 0;
towards_second = node_towards ? &node_towards->_front : 0;
} else {
other = &_parent->_front;
node_towards = _parent->_prev();
node_away = _parent->_next();
towards = node_towards ? &node_towards->_front : 0;
towards_second = node_towards ? &node_towards->_back : 0;
}
if (Geom::are_near(new_pos, _parent->position())) {
// The handle becomes degenerate. If the segment between it and the node
// in its direction becomes linear and there are smooth nodes
// at its ends, make their handles colinear with the segment
if (towards && towards->isDegenerate()) {
if (node_towards->type() == NODE_SMOOTH) {
towards_second->setDirection(*_parent, *node_towards);
}
if (_parent->type() == NODE_SMOOTH) {
other->setDirection(*node_towards, *_parent);
}
}
setPosition(new_pos);
return;
}
if (_parent->type() == NODE_SMOOTH && Node::_is_line_segment(_parent, node_away)) {
// restrict movement to the line joining the nodes
Geom::Point direction = _parent->position() - node_away->position();
Geom::Point delta = new_pos - _parent->position();
// project the relative position on the direction line
Geom::Point new_delta = (Geom::dot(delta, direction)
/ Geom::L2sq(direction)) * direction;
setRelativePos(new_delta);
return;
}
switch (_parent->type()) {
case NODE_AUTO:
_parent->setType(NODE_SMOOTH, false);
// fall through - auto nodes degrade into smooth nodes
case NODE_SMOOTH: {
/* for smooth nodes, we need to rotate the other handle so that it's colinear
* with the dragged one while conserving length. */
other->setDirection(new_pos, *_parent);
} break;
case NODE_SYMMETRIC:
// for symmetric nodes, place the other handle on the opposite side
other->setRelativePos(-(new_pos - _parent->position()));
break;
default: break;
}
setPosition(new_pos);
}
void Handle::setPosition(Geom::Point const &p)
{
ControlPoint::setPosition(p);
sp_ctrlline_set_coords(SP_CTRLLINE(_handle_line), _parent->position(), position());
// update degeneration info and visibility
if (Geom::are_near(position(), _parent->position()))
_degenerate = true;
else _degenerate = false;
if (_parent->_handles_shown && _parent->visible() && !_degenerate) {
setVisible(true);
} else {
setVisible(false);
}
// If both handles become degenerate, convert to parent cusp node
if (_parent->isDegenerate()) {
_parent->setType(NODE_CUSP, false);
}
}
void Handle::setLength(double len)
{
if (isDegenerate()) return;
Geom::Point dir = Geom::unit_vector(relativePos());
setRelativePos(dir * len);
}
void Handle::retract()
{
setPosition(_parent->position());
}
void Handle::setDirection(Geom::Point const &from, Geom::Point const &to)
{
setDirection(to - from);
}
void Handle::setDirection(Geom::Point const &dir)
{
Geom::Point unitdir = Geom::unit_vector(dir);
setRelativePos(unitdir * length());
}
char const *Handle::handle_type_to_localized_string(NodeType type)
{
switch(type) {
case NODE_CUSP: return _("Cusp node handle");
case NODE_SMOOTH: return _("Smooth node handle");
case NODE_SYMMETRIC: return _("Symmetric node handle");
case NODE_AUTO: return _("Auto-smooth node handle");
default: return "";
}
}
void Handle::_grabbedHandler()
{
_saved_length = _drag_out ? 0 : length();
}
void Handle::_draggedHandler(Geom::Point &new_pos, GdkEventMotion *event)
{
Geom::Point parent_pos = _parent->position();
// with Alt, preserve length
if (held_alt(*event)) {
new_pos = parent_pos + Geom::unit_vector(new_pos - parent_pos) * _saved_length;
}
// with Ctrl, constrain to M_PI/rotationsnapsperpi increments.
if (held_control(*event)) {
Inkscape::Preferences *prefs = Inkscape::Preferences::get();
int snaps = 2 * prefs->getIntLimited("/options/rotationsnapsperpi/value", 12, 1, 1000);
Geom::Point origin = _last_drag_origin();
Geom::Point rel_origin = origin - parent_pos;
new_pos = parent_pos + Geom::constrain_angle(Geom::Point(0,0), new_pos - parent_pos, snaps,
_drag_out ? Geom::Point(1,0) : Geom::unit_vector(rel_origin));
}
signal_update.emit();
}
void Handle::_ungrabbedHandler()
{
// hide the handle if it's less than dragtolerance away from the node
Inkscape::Preferences *prefs = Inkscape::Preferences::get();
int drag_tolerance = prefs->getIntLimited("/options/dragtolerance/value", 0, 0, 100);
Geom::Point dist = _desktop->d2w(_parent->position()) - _desktop->d2w(position());
if (dist.length() <= drag_tolerance) {
move(_parent->position());
}
_drag_out = false;
}
static double snap_increment_degrees() {
Inkscape::Preferences *prefs = Inkscape::Preferences::get();
int snaps = prefs->getIntLimited("/options/rotationsnapsperpi/value", 12, 1, 1000);
return 180.0 / snaps;
}
Glib::ustring Handle::_getTip(unsigned state)
{
if (state_held_alt(state)) {
if (state_held_control(state)) {
return format_tip(C_("Path handle tip",
"<b>Ctrl+Alt</b>: preserve length and snap rotation angle to %f° increments"),
snap_increment_degrees());
} else {
return C_("Path handle tip",
"<b>Alt:</b> preserve handle length while dragging");
}
} else {
if (state_held_control(state)) {
return format_tip(C_("Path handle tip",
"<b>Ctrl:</b> snap rotation angle to %f° increments, click to retract"),
snap_increment_degrees());
}
}
switch (_parent->type()) {
case NODE_AUTO:
return C_("Path handle tip",
"<b>Auto node handle:</b> drag to convert to smooth node");
default:
return format_tip(C_("Path handle tip", "<b>%s:</b> drag to shape the curve"),
handle_type_to_localized_string(_parent->type()));
}
}
Glib::ustring Handle::_getDragTip(GdkEventMotion *event)
{
Geom::Point dist = position() - _last_drag_origin();
// report angle in mathematical convention
double angle = Geom::angle_between(Geom::Point(-1,0), position() - _parent->position());
angle += M_PI; // angle is (-M_PI...M_PI] - offset by +pi and scale to 0...360
angle *= 360.0 / (2 * M_PI);
GString *x = SP_PX_TO_METRIC_STRING(dist[Geom::X], _desktop->namedview->getDefaultMetric());
GString *y = SP_PX_TO_METRIC_STRING(dist[Geom::Y], _desktop->namedview->getDefaultMetric());
GString *len = SP_PX_TO_METRIC_STRING(length(), _desktop->namedview->getDefaultMetric());
Glib::ustring ret = format_tip(C_("Path handle tip",
"Move by %s, %s; angle %.2f°, length %s"), x->str, y->str, angle, len->str);
g_string_free(x, TRUE);
g_string_free(y, TRUE);
g_string_free(len, TRUE);
return ret;
}
/**
* @class Node
* Represents a curve endpoint in an editable path.
*/
Node::Node(NodeSharedData const &data, Geom::Point const &initial_pos)
: SelectableControlPoint(data.desktop, initial_pos, Gtk::ANCHOR_CENTER,
SP_CTRL_SHAPE_DIAMOND, 9.0, *data.selection, &node_colors, data.node_group)
, _front(data, initial_pos, this)
, _back(data, initial_pos, this)
, _type(NODE_CUSP)
, _handles_shown(false)
{
// NOTE we do not set type here, because the handles are still degenerate
// connect to own grabbed signal - dragging out handles
signal_grabbed.connect(
sigc::mem_fun(*this, &Node::_grabbedHandler));
signal_dragged.connect( sigc::hide<0>(
sigc::mem_fun(*this, &Node::_draggedHandler)));
}
// NOTE: not using iterators won't make this much quicker because iterators can be 100% inlined.
Node *Node::_next()
{
NodeList::iterator n = NodeList::get_iterator(this).next();
if (n) return n.ptr();
return NULL;
}
Node *Node::_prev()
{
NodeList::iterator p = NodeList::get_iterator(this).prev();
if (p) return p.ptr();
return NULL;
}
void Node::move(Geom::Point const &new_pos)
{
// move handles when the node moves.
Geom::Point old_pos = position();
Geom::Point delta = new_pos - position();
setPosition(new_pos);
_front.setPosition(_front.position() + delta);
_back.setPosition(_back.position() + delta);
// if the node has a smooth handle after a line segment, it should be kept colinear
// with the segment
_fixNeighbors(old_pos, new_pos);
}
void Node::transform(Geom::Matrix const &m)
{
Geom::Point old_pos = position();
setPosition(position() * m);
_front.setPosition(_front.position() * m);
_back.setPosition(_back.position() * m);
/* Affine transforms keep handle invariants for smooth and symmetric nodes,
* but smooth nodes at ends of linear segments and auto nodes need special treatment */
_fixNeighbors(old_pos, position());
}
Geom::Rect Node::bounds()
{
Geom::Rect b(position(), position());
b.expandTo(_front.position());
b.expandTo(_back.position());
return b;
}
void Node::_fixNeighbors(Geom::Point const &old_pos, Geom::Point const &new_pos)
{
/* This method restores handle invariants for neighboring nodes,
* and invariants that are based on positions of those nodes for this one. */
/* Fix auto handles */
if (_type == NODE_AUTO) _updateAutoHandles();
if (old_pos != new_pos) {
if (_next() && _next()->_type == NODE_AUTO) _next()->_updateAutoHandles();
if (_prev() && _prev()->_type == NODE_AUTO) _prev()->_updateAutoHandles();
}
/* Fix smooth handles at the ends of linear segments.
* Rotate the appropriate handle to be colinear with the segment.
* If there is a smooth node at the other end of the segment, rotate it too. */
Handle *handle, *other_handle;
Node *other;
if (_is_line_segment(this, _next())) {
handle = &_back;
other = _next();
other_handle = &_next()->_front;
} else if (_is_line_segment(_prev(), this)) {
handle = &_front;
other = _prev();
other_handle = &_prev()->_back;
} else return;
if (_type == NODE_SMOOTH && !handle->isDegenerate()) {
handle->setDirection(other->position(), new_pos);
}
// also update the handle on the other end of the segment
if (other->_type == NODE_SMOOTH && !other_handle->isDegenerate()) {
other_handle->setDirection(new_pos, other->position());
}
}
void Node::_updateAutoHandles()
{
// Recompute the position of automatic handles.
// For endnodes, retract both handles. (It's only possible to create an end auto node
// through the XML editor.)
if (isEndNode()) {
_front.retract();
_back.retract();
return;
}
// Auto nodes automaticaly adjust their handles to give an appearance of smoothness,
// no matter what their surroundings are.
Geom::Point vec_next = _next()->position() - position();
Geom::Point vec_prev = _prev()->position() - position();
double len_next = vec_next.length(), len_prev = vec_prev.length();
if (len_next > 0 && len_prev > 0) {
// "dir" is an unit vector perpendicular to the bisector of the angle created
// by the previous node, this auto node and the next node.
Geom::Point dir = Geom::unit_vector((len_prev / len_next) * vec_next - vec_prev);
// Handle lengths are equal to 1/3 of the distance from the adjacent node.
_back.setRelativePos(-dir * (len_prev / 3));
_front.setRelativePos(dir * (len_next / 3));
} else {
// If any of the adjacent nodes coincides, retract both handles.
_front.retract();
_back.retract();
}
}
void Node::showHandles(bool v)
{
_handles_shown = v;
if (!_front.isDegenerate()) _front.setVisible(v);
if (!_back.isDegenerate()) _back.setVisible(v);
}
/** Sets the node type and optionally restores the invariants associated with the given type.
* @param type The type to set
* @param update_handles Whether to restore invariants associated with the given type.
* Passing false is useful e.g. wen initially creating the path,
* and when making cusp nodes during some node algorithms.
* Pass true when used in response to an UI node type button.
*/
void Node::setType(NodeType type, bool update_handles)
{
if (type == NODE_PICK_BEST) {
pickBestType();
updateState(); // The size of the control might have changed
return;
}
// if update_handles is true, adjust handle positions to match the node type
// handle degenerate handles appropriately
if (update_handles) {
switch (type) {
case NODE_CUSP:
// if the existing type is also NODE_CUSP, retract handles
if (_type == NODE_CUSP) {
_front.retract();
_back.retract();
}
break;
case NODE_AUTO:
// auto handles make no sense for endnodes
if (isEndNode()) return;
_updateAutoHandles();
break;
case NODE_SMOOTH: {
// rotate handles to be colinear
// for degenerate nodes set positions like auto handles
bool prev_line = _is_line_segment(_prev(), this);
bool next_line = _is_line_segment(this, _next());
if (isDegenerate()) {
_updateAutoHandles();
} else if (_front.isDegenerate()) {
// if the front handle is degenerate and this...next is a line segment,
// make back colinear; otherwise pull out the other handle
// to 1/3 of distance to prev
if (next_line) {
_back.setDirection(*_next(), *this);
} else if (_prev()) {
Geom::Point dir = direction(_back, *this);
_front.setRelativePos((_prev()->position() - position()).length() / 3 * dir);
}
} else if (_back.isDegenerate()) {
if (prev_line) {
_front.setDirection(*_prev(), *this);
} else if (_next()) {
Geom::Point dir = direction(_front, *this);
_back.setRelativePos((_next()->position() - position()).length() / 3 * dir);
}
} else {
// both handles are extended. make colinear while keeping length
// first make back colinear with the vector front ---> back,
// then make front colinear with back ---> node
// (not back ---> front because back's position was changed in the first call)
_back.setDirection(_front, _back);
_front.setDirection(_back, *this);
}
} break;
case NODE_SYMMETRIC:
if (isEndNode()) return; // symmetric handles make no sense for endnodes
if (isDegenerate()) {
// similar to auto handles but set the same length for both
Geom::Point vec_next = _next()->position() - position();
Geom::Point vec_prev = _prev()->position() - position();
double len_next = vec_next.length(), len_prev = vec_prev.length();
double len = (len_next + len_prev) / 6; // take 1/3 of average
if (len == 0) return;
Geom::Point dir = Geom::unit_vector((len_prev / len_next) * vec_next - vec_prev);
_back.setRelativePos(-dir * len);
_front.setRelativePos(dir * len);
} else {
// Both handles are extended. Compute average length, use direction from
// back handle to front handle. This also works correctly for degenerates
double len = (_front.length() + _back.length()) / 2;
Geom::Point dir = direction(_back, _front);
_front.setRelativePos(dir * len);
_back.setRelativePos(-dir * len);
}
break;
default: break;
}
}
_type = type;
_setShape(_node_type_to_shape(type));
updateState();
}
void Node::pickBestType()
{
_type = NODE_CUSP;
bool front_degen = _front.isDegenerate();
bool back_degen = _back.isDegenerate();
bool both_degen = front_degen && back_degen;
bool neither_degen = !front_degen && !back_degen;
do {
// if both handles are degenerate, do nothing
if (both_degen) break;
// if neither are degenerate, check their respective positions
if (neither_degen) {
Geom::Point front_delta = _front.position() - position();
Geom::Point back_delta = _back.position() - position();
// for now do not automatically make nodes symmetric, it can be annoying
/*if (Geom::are_near(front_delta, -back_delta)) {
_type = NODE_SYMMETRIC;
break;
}*/
if (Geom::are_near(Geom::unit_vector(front_delta),
Geom::unit_vector(-back_delta)))
{
_type = NODE_SMOOTH;
break;
}
}
// check whether the handle aligns with the previous line segment.
// we know that if front is degenerate, back isn't, because
// both_degen was false
if (front_degen && _next() && _next()->_back.isDegenerate()) {
Geom::Point segment_delta = Geom::unit_vector(_next()->position() - position());
Geom::Point handle_delta = Geom::unit_vector(_back.position() - position());
if (Geom::are_near(segment_delta, -handle_delta)) {
_type = NODE_SMOOTH;
break;
}
} else if (back_degen && _prev() && _prev()->_front.isDegenerate()) {
Geom::Point segment_delta = Geom::unit_vector(_prev()->position() - position());
Geom::Point handle_delta = Geom::unit_vector(_front.position() - position());
if (Geom::are_near(segment_delta, -handle_delta)) {
_type = NODE_SMOOTH;
break;
}
}
} while (false);
_setShape(_node_type_to_shape(_type));
updateState();
}
bool Node::isEndNode()
{
return !_prev() || !_next();
}
/** Move the node to the bottom of its canvas group. Useful for node break, to ensure that
* the selected nodes are above the unselected ones. */
void Node::sink()
{
sp_canvas_item_move_to_z(_canvas_item, 0);
}
NodeType Node::parse_nodetype(char x)
{
switch (x) {
case 'a': return NODE_AUTO;
case 'c': return NODE_CUSP;
case 's': return NODE_SMOOTH;
case 'z': return NODE_SYMMETRIC;
default: return NODE_PICK_BEST;
}
}
/** Customized event handler to catch scroll events needed for selection grow/shrink. */
bool Node::_eventHandler(GdkEvent *event)
{
static NodeList::iterator origin;
static int dir;
switch (event->type)
{
case GDK_SCROLL:
if (event->scroll.direction == GDK_SCROLL_UP) {
dir = 1;
} else if (event->scroll.direction == GDK_SCROLL_DOWN) {
dir = -1;
} else break;
if (held_control(event->scroll)) {
_selection.spatialGrow(this, dir);
} else {
_linearGrow(dir);
}
return true;
default:
break;
}
return ControlPoint::_eventHandler(event);
}
// TODO Move this to 2Geom
static double bezier_length (Geom::Point a0, Geom::Point a1, Geom::Point a2, Geom::Point a3)
{
double lower = Geom::distance(a0, a3);
double upper = Geom::distance(a0, a1) + Geom::distance(a1, a2) + Geom::distance(a2, a3);
if (upper - lower < Geom::EPSILON) return (lower + upper)/2;
Geom::Point // Casteljau subdivision
b0 = a0,
c0 = a3,
b1 = 0.5*(a0 + a1),
t0 = 0.5*(a1 + a2),
c1 = 0.5*(a2 + a3),
b2 = 0.5*(b1 + t0),
c2 = 0.5*(t0 + c1),
b3 = 0.5*(b2 + c2); // == c3
return bezier_length(b0, b1, b2, b3) + bezier_length(b3, c2, c1, c0);
}
/** Select or deselect a node in this node's subpath based on its path distance from this node.
* @param dir If negative, shrink selection by one node; if positive, grow by one node */
void Node::_linearGrow(int dir)
{
// Interestingly, we do not need any help from PathManipulator when doing linear grow.
// First handle the trivial case of growing over an unselected node.
if (!selected() && dir > 0) {
_selection.insert(this);
return;
}
NodeList::iterator this_iter = NodeList::get_iterator(this);
NodeList::iterator fwd = this_iter, rev = this_iter;
double distance_back = 0, distance_front = 0;
// Linear grow is simple. We find the first unselected nodes in each direction
// and compare the linear distances to them.
if (dir > 0) {
if (!selected()) {
_selection.insert(this);
return;
}
// find first unselected nodes on both sides
while (fwd && fwd->selected()) {
NodeList::iterator n = fwd.next();
distance_front += bezier_length(*fwd, fwd->_front, n->_back, *n);
fwd = n;
if (fwd == this_iter)
// there is no unselected node in this cyclic subpath
return;
}
// do the same for the second direction. Do not check for equality with
// this node, because there is at least one unselected node in the subpath,
// so we are guaranteed to stop.
while (rev && rev->selected()) {
NodeList::iterator p = rev.prev();
distance_back += bezier_length(*rev, rev->_back, p->_front, *p);
rev = p;
}
NodeList::iterator t; // node to select
if (fwd && rev) {
if (distance_front <= distance_back) t = fwd;
else t = rev;
} else {
if (fwd) t = fwd;
if (rev) t = rev;
}
if (t) _selection.insert(t.ptr());
// Linear shrink is more complicated. We need to find the farthest selected node.
// This means we have to check the entire subpath. We go in the direction in which
// the distance we traveled is lower. We do this until we run out of nodes (ends of path)
// or the two iterators meet. On the way, we store the last selected node and its distance
// in each direction (if any). At the end, we choose the one that is farther and deselect it.
} else {
// both iterators that store last selected nodes are initially empty
NodeList::iterator last_fwd, last_rev;
double last_distance_back = 0, last_distance_front = 0;
while (rev || fwd) {
if (fwd && (!rev || distance_front <= distance_back)) {
if (fwd->selected()) {
last_fwd = fwd;
last_distance_front = distance_front;
}
NodeList::iterator n = fwd.next();
if (n) distance_front += bezier_length(*fwd, fwd->_front, n->_back, *n);
fwd = n;
} else if (rev && (!fwd || distance_front > distance_back)) {
if (rev->selected()) {
last_rev = rev;
last_distance_back = distance_back;
}
NodeList::iterator p = rev.prev();
if (p) distance_back += bezier_length(*rev, rev->_back, p->_front, *p);
rev = p;
}
// Check whether we walked the entire cyclic subpath.
// This is initially true because both iterators start from this node,
// so this check cannot go in the while condition.
// When this happens, we need to check the last node, pointed to by the iterators.
if (fwd && fwd == rev) {
if (!fwd->selected()) break;
NodeList::iterator fwdp = fwd.prev(), revn = rev.next();
double df = distance_front + bezier_length(*fwdp, fwdp->_front, fwd->_back, *fwd);
double db = distance_back + bezier_length(*revn, revn->_back, rev->_front, *rev);
if (df > db) {
last_fwd = fwd;
last_distance_front = df;
} else {
last_rev = rev;
last_distance_back = db;
}
break;
}
}
NodeList::iterator t;
if (last_fwd && last_rev) {
if (last_distance_front >= last_distance_back) t = last_fwd;
else t = last_rev;
} else {
if (last_fwd) t = last_fwd;
if (last_rev) t = last_rev;
}
if (t) _selection.erase(t.ptr());
}
}
void Node::_setState(State state)
{
// change node size to match type and selection state
switch (_type) {
case NODE_AUTO:
case NODE_CUSP:
if (selected()) _setSize(11);
else _setSize(9);
break;
default:
if(selected()) _setSize(9);
else _setSize(7);
break;
}
SelectableControlPoint::_setState(state);
}
bool Node::_grabbedHandler(GdkEventMotion *event)
{
// Dragging out handles with Shift + drag on a node.
if (!held_shift(*event)) return false;
Handle *h;
Geom::Point evp = event_point(*event);
Geom::Point rel_evp = evp - _last_click_event_point();
// This should work even if dragtolerance is zero and evp coincides with node position.
double angle_next = HUGE_VAL;
double angle_prev = HUGE_VAL;
bool has_degenerate = false;
// determine which handle to drag out based on degeneration and the direction of drag
if (_front.isDegenerate() && _next()) {
Geom::Point next_relpos = _desktop->d2w(_next()->position())
- _desktop->d2w(position());
angle_next = fabs(Geom::angle_between(rel_evp, next_relpos));
has_degenerate = true;
}
if (_back.isDegenerate() && _prev()) {
Geom::Point prev_relpos = _desktop->d2w(_prev()->position())
- _desktop->d2w(position());
angle_prev = fabs(Geom::angle_between(rel_evp, prev_relpos));
has_degenerate = true;
}
if (!has_degenerate) return false;
h = angle_next < angle_prev ? &_front : &_back;
h->setPosition(_desktop->w2d(evp));
h->setVisible(true);
h->transferGrab(this, event);
Handle::_drag_out = true;
return true;
}
void Node::_draggedHandler(Geom::Point &new_pos, GdkEventMotion *event)
{
// For a note on how snapping is implemented in Inkscape, see snap.h.
SnapManager &sm = _desktop->namedview->snap_manager;
Inkscape::SnapPreferences::PointType t = Inkscape::SnapPreferences::SNAPPOINT_NODE;
bool snap = sm.someSnapperMightSnap();
std::vector< std::pair<Geom::Point, int> > unselected;
if (snap) {
// setup
// TODO we are doing this every time a snap happens. It should once be done only once
// per drag - maybe in the grabbed handler?
// TODO "unselected" must be valid during the snap run, because it is not copied.
// Fix this in snap.h and snap.cpp, then the above.
// Build the list of unselected nodes.
typedef ControlPointSelection::Set Set;
Set nodes = _selection.allPoints();
for (Set::iterator i = nodes.begin(); i != nodes.end(); ++i) {
if (!(*i)->selected()) {
Node *n = static_cast<Node*>(*i);
unselected.push_back(std::make_pair((*i)->position(), (int) n->_snapTargetType()));
}
}
sm.setupIgnoreSelection(_desktop, true, &unselected);
}
if (held_control(*event)) {
Geom::Point origin = _last_drag_origin();
if (held_alt(*event)) {
// with Ctrl+Alt, constrain to handle lines
// project the new position onto a handle line that is closer
Inkscape::Snapper::ConstraintLine line_front(origin, _front.relativePos());
Inkscape::Snapper::ConstraintLine line_back(origin, _back.relativePos());
// TODO: combine these two branches by modifying snap.h / snap.cpp
if (snap) {
Inkscape::SnappedPoint fp, bp;
fp = sm.constrainedSnap(t, position(), _snapSourceType(), line_front);
bp = sm.constrainedSnap(t, position(), _snapSourceType(), line_back);
if (fp.isOtherSnapBetter(bp, false)) {
bp.getPoint(new_pos);
} else {
fp.getPoint(new_pos);
}
} else {
Geom::Point p_front = line_front.projection(new_pos);
Geom::Point p_back = line_back.projection(new_pos);
if (Geom::distance(new_pos, p_front) < Geom::distance(new_pos, p_back)) {
new_pos = p_front;
} else {
new_pos = p_back;
}
}
} else {
// with Ctrl, constrain to axes
// TODO combine the two branches
if (snap) {
Inkscape::SnappedPoint fp, bp;
Inkscape::Snapper::ConstraintLine line_x(origin, Geom::Point(1, 0));
Inkscape::Snapper::ConstraintLine line_y(origin, Geom::Point(0, 1));
fp = sm.constrainedSnap(t, position(), _snapSourceType(), line_x);
bp = sm.constrainedSnap(t, position(), _snapSourceType(), line_y);
if (fp.isOtherSnapBetter(bp, false)) {
fp = bp;
}
fp.getPoint(new_pos);
} else {
Geom::Point origin = _last_drag_origin();
Geom::Point delta = new_pos - origin;
Geom::Dim2 d = (fabs(delta[Geom::X]) < fabs(delta[Geom::Y])) ? Geom::X : Geom::Y;
new_pos[d] = origin[d];
}
}
} else if (snap) {
sm.freeSnapReturnByRef(Inkscape::SnapPreferences::SNAPPOINT_NODE, new_pos, _snapSourceType());
}
}
Inkscape::SnapSourceType Node::_snapSourceType()
{
if (_type == NODE_SMOOTH || _type == NODE_AUTO)
return SNAPSOURCE_NODE_SMOOTH;
return SNAPSOURCE_NODE_CUSP;
}
Inkscape::SnapTargetType Node::_snapTargetType()
{
if (_type == NODE_SMOOTH || _type == NODE_AUTO)
return SNAPTARGET_NODE_SMOOTH;
return SNAPTARGET_NODE_CUSP;
}
Glib::ustring Node::_getTip(unsigned state)
{
if (state_held_shift(state)) {
if ((_next() && _front.isDegenerate()) || (_prev() && _back.isDegenerate())) {
if (state_held_control(state)) {
return format_tip(C_("Path node tip",
"<b>Shift+Ctrl:</b> drag out a handle and snap its angle "
"to %f° increments"), snap_increment_degrees());
}
return C_("Path node tip",
"<b>Shift:</b> drag out a handle, click to toggle selection");
}
return C_("Path node tip", "<b>Shift:</b> click to toggle selection");
}
if (state_held_control(state)) {
if (state_held_alt(state)) {
return C_("Path node tip", "<b>Ctrl+Alt:</b> move along handle lines");
}
return C_("Path node tip",
"<b>Ctrl:</b> move along axes, click to change node type");
}
// assemble tip from node name
char const *nodetype = node_type_to_localized_string(_type);
return format_tip(C_("Path node tip",
"<b>%s:</b> drag to shape the path, click to select this node"), nodetype);
}
Glib::ustring Node::_getDragTip(GdkEventMotion *event)
{
Geom::Point dist = position() - _last_drag_origin();
GString *x = SP_PX_TO_METRIC_STRING(dist[Geom::X], _desktop->namedview->getDefaultMetric());
GString *y = SP_PX_TO_METRIC_STRING(dist[Geom::Y], _desktop->namedview->getDefaultMetric());
Glib::ustring ret = format_tip(C_("Path node tip", "Move by %s, %s"),
x->str, y->str);
g_string_free(x, TRUE);
g_string_free(y, TRUE);
return ret;
}
char const *Node::node_type_to_localized_string(NodeType type)
{
switch (type) {
case NODE_CUSP: return _("Cusp node");
case NODE_SMOOTH: return _("Smooth node");
case NODE_SYMMETRIC: return _("Symmetric node");
case NODE_AUTO: return _("Auto-smooth node");
default: return "";
}
}
/** Determine whether two nodes are joined by a linear segment. */
bool Node::_is_line_segment(Node *first, Node *second)
{
if (!first || !second) return false;
if (first->_next() == second)
return first->_front.isDegenerate() && second->_back.isDegenerate();
if (second->_next() == first)
return second->_front.isDegenerate() && first->_back.isDegenerate();
return false;
}
SPCtrlShapeType Node::_node_type_to_shape(NodeType type)
{
switch(type) {
case NODE_CUSP: return SP_CTRL_SHAPE_DIAMOND;
case NODE_SMOOTH: return SP_CTRL_SHAPE_SQUARE;
case NODE_AUTO: return SP_CTRL_SHAPE_CIRCLE;
case NODE_SYMMETRIC: return SP_CTRL_SHAPE_SQUARE;
default: return SP_CTRL_SHAPE_DIAMOND;
}
}
/**
* @class NodeList
* @brief An editable list of nodes representing a subpath.
*
* It can optionally be cyclic to represent a closed path.
* The list has iterators that act like plain node iterators, but can also be used
* to obtain shared pointers to nodes.
*/
NodeList::NodeList(SubpathList &splist)
: _list(splist)
, _closed(false)
{
this->list = this;
this->next = this;
this->prev = this;
}
NodeList::~NodeList()
{
clear();
}
bool NodeList::empty()
{
return next == this;
}
NodeList::size_type NodeList::size()
{
size_type sz = 0;
for (ListNode *ln = next; ln != this; ln = ln->next) ++sz;
return sz;
}
bool NodeList::closed()
{
return _closed;
}
/** A subpath is degenerate if it has no segments - either one node in an open path
* or no nodes in a closed path */
bool NodeList::degenerate()
{
return closed() ? empty() : ++begin() == end();
}
NodeList::iterator NodeList::before(double t, double *fracpart)
{
double intpart;
*fracpart = std::modf(t, &intpart);
int index = intpart;
iterator ret = begin();
std::advance(ret, index);
return ret;
}
// insert a node before i
NodeList::iterator NodeList::insert(iterator i, Node *x)
{
ListNode *ins = i._node;
x->next = ins;
x->prev = ins->prev;
ins->prev->next = x;
ins->prev = x;
x->ListNode::list = this;
_list.signal_insert_node.emit(x);
return iterator(x);
}
void NodeList::splice(iterator pos, NodeList &list)
{
splice(pos, list, list.begin(), list.end());
}
void NodeList::splice(iterator pos, NodeList &list, iterator i)
{
NodeList::iterator j = i;
++j;
splice(pos, list, i, j);
}
void NodeList::splice(iterator pos, NodeList &list, iterator first, iterator last)
{
ListNode *ins_beg = first._node, *ins_end = last._node, *at = pos._node;
for (ListNode *ln = ins_beg; ln != ins_end; ln = ln->next) {
list._list.signal_remove_node.emit(static_cast<Node*>(ln));
ln->list = this;
_list.signal_insert_node.emit(static_cast<Node*>(ln));
}
ins_beg->prev->next = ins_end;
ins_end->prev->next = at;
at->prev->next = ins_beg;
ListNode *atprev = at->prev;
at->prev = ins_end->prev;
ins_end->prev = ins_beg->prev;
ins_beg->prev = atprev;
}
void NodeList::shift(int n)
{
// 1. make the list perfectly cyclic
next->prev = prev;
prev->next = next;
// 2. find new begin
ListNode *new_begin = next;
if (n > 0) {
for (; n > 0; --n) new_begin = new_begin->next;
} else {
for (; n < 0; ++n) new_begin = new_begin->prev;
}
// 3. relink begin to list
next = new_begin;
prev = new_begin->prev;
new_begin->prev->next = this;
new_begin->prev = this;
}
void NodeList::reverse()
{
for (ListNode *ln = next; ln != this; ln = ln->prev) {
std::swap(ln->next, ln->prev);
Node *node = static_cast<Node*>(ln);
Geom::Point save_pos = node->front()->position();
node->front()->setPosition(node->back()->position());
node->back()->setPosition(save_pos);
}
std::swap(next, prev);
}
void NodeList::clear()
{
for (iterator i = begin(); i != end();) erase (i++);
}
NodeList::iterator NodeList::erase(iterator i)
{
// some gymnastics are required to ensure that the node is valid when deleted;
// otherwise the code that updates handle visibility will break
Node *rm = static_cast<Node*>(i._node);
ListNode *rmnext = rm->next, *rmprev = rm->prev;
++i;
_list.signal_remove_node.emit(rm);
delete rm;
rmprev->next = rmnext;
rmnext->prev = rmprev;
return i;
}
// TODO this method is very ugly!
// converting SubpathList to an intrusive list might allow us to get rid of it
void NodeList::kill()
{
for (SubpathList::iterator i = _list.begin(); i != _list.end(); ++i) {
if (i->get() == this) {
_list.erase(i);
return;
}
}
}
NodeList &NodeList::get(Node *n) {
return *(n->list());
}
NodeList &NodeList::get(iterator const &i) {
return *(i._node->list);
}
/**
* @class SubpathList
* @brief Editable path composed of one or more subpaths
*/
} // namespace UI
} // namespace Inkscape
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=99 :