sp-spiral.cpp revision dda97aeba7480d08320ebceecae13b8531db1b81
#define __SP_SPIRAL_C__
/** \file
* <sodipodi:spiral> implementation
*/
/*
* Authors:
* Mitsuru Oka <oka326@parkcity.ne.jp>
* Lauris Kaplinski <lauris@kaplinski.com>
*
* Copyright (C) 1999-2002 Lauris Kaplinski
* Copyright (C) 2000-2001 Ximian, Inc.
*
* Released under GNU GPL, read the file 'COPYING' for more information
*/
#include "config.h"
#include "svg/svg.h"
#include "attributes.h"
#include "display/bezier-utils.h"
#include "display/curve.h"
#include <glibmm/i18n.h>
#include "xml/repr.h"
#include "document.h"
#include "sp-spiral.h"
static void sp_spiral_class_init (SPSpiralClass *klass);
static void sp_spiral_init (SPSpiral *spiral);
static void sp_spiral_build (SPObject * object, SPDocument * document, Inkscape::XML::Node * repr);
static Inkscape::XML::Node *sp_spiral_write (SPObject *object, Inkscape::XML::Node *repr, guint flags);
static void sp_spiral_set (SPObject *object, unsigned int key, const gchar *value);
static void sp_spiral_update (SPObject *object, SPCtx *ctx, guint flags);
static gchar * sp_spiral_description (SPItem * item);
static void sp_spiral_snappoints(SPItem const *item, SnapPointsIter p);
static void sp_spiral_set_shape (SPShape *shape);
static void sp_spiral_update_patheffect (SPLPEItem *lpeitem, bool write);
static NR::Point sp_spiral_get_tangent (SPSpiral const *spiral, gdouble t);
static SPShapeClass *parent_class;
/**
* Register SPSpiral class and return its type number.
*/
GType
sp_spiral_get_type (void)
{
static GType spiral_type = 0;
if (!spiral_type) {
GTypeInfo spiral_info = {
sizeof (SPSpiralClass),
NULL, /* base_init */
NULL, /* base_finalize */
(GClassInitFunc) sp_spiral_class_init,
NULL, /* class_finalize */
NULL, /* class_data */
sizeof (SPSpiral),
16, /* n_preallocs */
(GInstanceInitFunc) sp_spiral_init,
NULL, /* value_table */
};
spiral_type = g_type_register_static (SP_TYPE_SHAPE, "SPSpiral", &spiral_info, (GTypeFlags)0);
}
return spiral_type;
}
/**
* SPSpiral vtable initialization.
*/
static void
sp_spiral_class_init (SPSpiralClass *klass)
{
GObjectClass * gobject_class;
SPObjectClass * sp_object_class;
SPItemClass * item_class;
SPLPEItemClass * lpe_item_class;
SPShapeClass *shape_class;
gobject_class = (GObjectClass *) klass;
sp_object_class = (SPObjectClass *) klass;
item_class = (SPItemClass *) klass;
lpe_item_class = (SPLPEItemClass *) klass;
shape_class = (SPShapeClass *) klass;
parent_class = (SPShapeClass *)g_type_class_ref (SP_TYPE_SHAPE);
sp_object_class->build = sp_spiral_build;
sp_object_class->write = sp_spiral_write;
sp_object_class->set = sp_spiral_set;
sp_object_class->update = sp_spiral_update;
item_class->description = sp_spiral_description;
item_class->snappoints = sp_spiral_snappoints;
lpe_item_class->update_patheffect = sp_spiral_update_patheffect;
shape_class->set_shape = sp_spiral_set_shape;
}
/**
* Callback for SPSpiral object initialization.
*/
static void
sp_spiral_init (SPSpiral * spiral)
{
spiral->cx = 0.0;
spiral->cy = 0.0;
spiral->exp = 1.0;
spiral->revo = 3.0;
spiral->rad = 1.0;
spiral->arg = 0.0;
spiral->t0 = 0.0;
}
/**
* Virtual build: set spiral properties from corresponding repr.
*/
static void
sp_spiral_build (SPObject * object, SPDocument * document, Inkscape::XML::Node * repr)
{
if (((SPObjectClass *) parent_class)->build)
((SPObjectClass *) parent_class)->build (object, document, repr);
sp_object_read_attr (object, "sodipodi:cx");
sp_object_read_attr (object, "sodipodi:cy");
sp_object_read_attr (object, "sodipodi:expansion");
sp_object_read_attr (object, "sodipodi:revolution");
sp_object_read_attr (object, "sodipodi:radius");
sp_object_read_attr (object, "sodipodi:argument");
sp_object_read_attr (object, "sodipodi:t0");
}
/**
* Virtual write: write spiral attributes to corresponding repr.
*/
static Inkscape::XML::Node *
sp_spiral_write (SPObject *object, Inkscape::XML::Node *repr, guint flags)
{
SPSpiral *spiral = SP_SPIRAL (object);
if ((flags & SP_OBJECT_WRITE_BUILD) && !repr) {
Inkscape::XML::Document *xml_doc = sp_document_repr_doc(SP_OBJECT_DOCUMENT(object));
repr = xml_doc->createElement("svg:path");
}
if (flags & SP_OBJECT_WRITE_EXT) {
/* Fixme: we may replace these attributes by
* sodipodi:spiral="cx cy exp revo rad arg t0"
*/
repr->setAttribute("sodipodi:type", "spiral");
sp_repr_set_svg_double(repr, "sodipodi:cx", spiral->cx);
sp_repr_set_svg_double(repr, "sodipodi:cy", spiral->cy);
sp_repr_set_svg_double(repr, "sodipodi:expansion", spiral->exp);
sp_repr_set_svg_double(repr, "sodipodi:revolution", spiral->revo);
sp_repr_set_svg_double(repr, "sodipodi:radius", spiral->rad);
sp_repr_set_svg_double(repr, "sodipodi:argument", spiral->arg);
sp_repr_set_svg_double(repr, "sodipodi:t0", spiral->t0);
}
// make sure the curve is rebuilt with all up-to-date parameters
sp_spiral_set_shape ((SPShape *) spiral);
//Duplicate the path
SPCurve *curve = ((SPShape *) spiral)->curve;
//Nulls might be possible if this called iteratively
if ( !curve ) {
//g_warning("sp_spiral_write(): No path to copy\n");
return NULL;
}
NArtBpath const *bpath = SP_CURVE_BPATH(curve);
if ( !bpath ) {
//g_warning("sp_spiral_write(): No path to copy\n");
return NULL;
}
char *d = sp_svg_write_path ( bpath );
repr->setAttribute("d", d);
g_free (d);
if (((SPObjectClass *) (parent_class))->write)
((SPObjectClass *) (parent_class))->write (object, repr, flags | SP_SHAPE_WRITE_PATH);
return repr;
}
/**
* Virtual set: change spiral object attribute.
*/
static void
sp_spiral_set (SPObject *object, unsigned int key, const gchar *value)
{
SPSpiral *spiral;
SPShape *shape;
spiral = SP_SPIRAL (object);
shape = SP_SHAPE (object);
/// \todo fixme: we should really collect updates
switch (key) {
case SP_ATTR_SODIPODI_CX:
if (!sp_svg_length_read_computed_absolute (value, &spiral->cx)) {
spiral->cx = 0.0;
}
object->requestDisplayUpdate(SP_OBJECT_MODIFIED_FLAG);
break;
case SP_ATTR_SODIPODI_CY:
if (!sp_svg_length_read_computed_absolute (value, &spiral->cy)) {
spiral->cy = 0.0;
}
object->requestDisplayUpdate(SP_OBJECT_MODIFIED_FLAG);
break;
case SP_ATTR_SODIPODI_EXPANSION:
if (value) {
/** \todo
* FIXME: check that value looks like a (finite)
* number. Create a routine that uses strtod, and
* accepts a default value (if strtod finds an error).
* N.B. atof/sscanf/strtod consider "nan" and "inf"
* to be valid numbers.
*/
spiral->exp = g_ascii_strtod (value, NULL);
spiral->exp = CLAMP (spiral->exp, 0.0, 1000.0);
} else {
spiral->exp = 1.0;
}
object->requestDisplayUpdate(SP_OBJECT_MODIFIED_FLAG);
break;
case SP_ATTR_SODIPODI_REVOLUTION:
if (value) {
spiral->revo = g_ascii_strtod (value, NULL);
spiral->revo = CLAMP (spiral->revo, 0.05, 1024.0);
} else {
spiral->revo = 3.0;
}
object->requestDisplayUpdate(SP_OBJECT_MODIFIED_FLAG);
break;
case SP_ATTR_SODIPODI_RADIUS:
if (!sp_svg_length_read_computed_absolute (value, &spiral->rad)) {
spiral->rad = MAX (spiral->rad, 0.001);
}
object->requestDisplayUpdate(SP_OBJECT_MODIFIED_FLAG);
break;
case SP_ATTR_SODIPODI_ARGUMENT:
if (value) {
spiral->arg = g_ascii_strtod (value, NULL);
/** \todo
* FIXME: We still need some bounds on arg, for
* numerical reasons. E.g., we don't want inf or NaN,
* nor near-infinite numbers. I'm inclined to take
* modulo 2*pi. If so, then change the knot editors,
* which use atan2 - revo*2*pi, which typically
* results in very negative arg.
*/
} else {
spiral->arg = 0.0;
}
object->requestDisplayUpdate(SP_OBJECT_MODIFIED_FLAG);
break;
case SP_ATTR_SODIPODI_T0:
if (value) {
spiral->t0 = g_ascii_strtod (value, NULL);
spiral->t0 = CLAMP (spiral->t0, 0.0, 0.999);
/** \todo
* Have shared constants for the allowable bounds for
* attributes. There was a bug here where we used -1.0
* as the minimum (which leads to NaN via, e.g.,
* pow(-1.0, 0.5); see sp_spiral_get_xy for
* requirements.
*/
} else {
spiral->t0 = 0.0;
}
object->requestDisplayUpdate(SP_OBJECT_MODIFIED_FLAG);
break;
default:
if (((SPObjectClass *) parent_class)->set)
((SPObjectClass *) parent_class)->set (object, key, value);
break;
}
}
/**
* Virtual update callback.
*/
static void
sp_spiral_update (SPObject *object, SPCtx *ctx, guint flags)
{
if (flags & (SP_OBJECT_MODIFIED_FLAG | SP_OBJECT_STYLE_MODIFIED_FLAG | SP_OBJECT_VIEWPORT_MODIFIED_FLAG)) {
sp_shape_set_shape ((SPShape *) object);
}
if (((SPObjectClass *) parent_class)->update)
((SPObjectClass *) parent_class)->update (object, ctx, flags);
}
static void
sp_spiral_update_patheffect(SPLPEItem *lpeitem, bool write)
{
SPShape *shape = (SPShape *) lpeitem;
sp_spiral_set_shape(shape);
if (write) {
Inkscape::XML::Node *repr = SP_OBJECT_REPR(shape);
if ( shape->curve != NULL ) {
NArtBpath const * abp = shape->curve->get_bpath();
if (abp) {
gchar *str = sp_svg_write_path(abp);
repr->setAttribute("d", str);
g_free(str);
} else {
repr->setAttribute("d", "");
}
} else {
repr->setAttribute("d", NULL);
}
}
((SPObject *)shape)->requestDisplayUpdate(SP_OBJECT_MODIFIED_FLAG);
}
/**
* Return textual description of spiral.
*/
static gchar *
sp_spiral_description (SPItem * item)
{
// TRANSLATORS: since turn count isn't an integer, please adjust the
// string as needed to deal with an localized plural forms.
return g_strdup_printf (_("<b>Spiral</b> with %3f turns"), SP_SPIRAL(item)->revo);
}
/**
* Fit beziers together to spiral and draw it.
*
* \pre dstep \> 0.
* \pre is_unit_vector(*hat1).
* \post is_unit_vector(*hat2).
**/
static void
sp_spiral_fit_and_draw (SPSpiral const *spiral,
SPCurve *c,
double dstep,
NR::Point darray[],
NR::Point const &hat1,
NR::Point &hat2,
double *t)
{
#define BEZIER_SIZE 4
#define FITTING_MAX_BEZIERS 4
#define BEZIER_LENGTH (BEZIER_SIZE * FITTING_MAX_BEZIERS)
g_assert (dstep > 0);
g_assert (is_unit_vector (hat1));
NR::Point bezier[BEZIER_LENGTH];
double d;
int depth, i;
for (d = *t, i = 0; i <= SAMPLE_SIZE; d += dstep, i++) {
darray[i] = sp_spiral_get_xy(spiral, d);
/* Avoid useless adjacent dups. (Otherwise we can have all of darray filled with
the same value, which upsets chord_length_parameterize.) */
if ((i != 0)
&& (darray[i] == darray[i - 1])
&& (d < 1.0)) {
i--;
d += dstep;
/** We mustn't increase dstep for subsequent values of
* i: for large spiral.exp values, rate of growth
* increases very rapidly.
*/
/** \todo
* Get the function itself to decide what value of d
* to use next: ensure that we move at least 0.25 *
* stroke width, for example. The derivative (as used
* for get_tangent before normalization) would be
* useful for estimating the appropriate d value. Or
* perhaps just start with a small dstep and scale by
* some small number until we move >= 0.25 *
* stroke_width. Must revert to the original dstep
* value for next iteration to avoid the problem
* mentioned above.
*/
}
}
double const next_t = d - 2 * dstep;
/* == t + (SAMPLE_SIZE - 1) * dstep, in absence of dups. */
hat2 = -sp_spiral_get_tangent (spiral, next_t);
/** \todo
* We should use better algorithm to specify maximum error.
*/
depth = sp_bezier_fit_cubic_full (bezier, NULL, darray, SAMPLE_SIZE,
hat1, hat2,
SPIRAL_TOLERANCE*SPIRAL_TOLERANCE,
FITTING_MAX_BEZIERS);
g_assert(depth * BEZIER_SIZE <= gint(G_N_ELEMENTS(bezier)));
#ifdef SPIRAL_DEBUG
if (*t == spiral->t0 || *t == 1.0)
g_print ("[%s] depth=%d, dstep=%g, t0=%g, t=%g, arg=%g\n",
debug_state, depth, dstep, spiral->t0, *t, spiral->arg);
#endif
if (depth != -1) {
for (i = 0; i < 4*depth; i += 4) {
c->curveto(bezier[i + 1],
bezier[i + 2],
bezier[i + 3]);
}
} else {
#ifdef SPIRAL_VERBOSE
g_print ("cant_fit_cubic: t=%g\n", *t);
#endif
for (i = 1; i < SAMPLE_SIZE; i++)
c->lineto(darray[i]);
}
*t = next_t;
g_assert (is_unit_vector (hat2));
}
static void
sp_spiral_set_shape (SPShape *shape)
{
NR::Point darray[SAMPLE_SIZE + 1];
double t;
SPSpiral *spiral = SP_SPIRAL(shape);
SP_OBJECT (spiral)->requestModified(SP_OBJECT_MODIFIED_FLAG);
SPCurve *c = new SPCurve ();
#ifdef SPIRAL_VERBOSE
g_print ("cx=%g, cy=%g, exp=%g, revo=%g, rad=%g, arg=%g, t0=%g\n",
spiral->cx,
spiral->cy,
spiral->exp,
spiral->revo,
spiral->rad,
spiral->arg,
spiral->t0);
#endif
/* Initial moveto. */
c->moveto(sp_spiral_get_xy(spiral, spiral->t0));
double const tstep = SAMPLE_STEP / spiral->revo;
double const dstep = tstep / (SAMPLE_SIZE - 1);
NR::Point hat1 = sp_spiral_get_tangent (spiral, spiral->t0);
NR::Point hat2;
for (t = spiral->t0; t < (1.0 - tstep);) {
sp_spiral_fit_and_draw (spiral, c, dstep, darray, hat1, hat2, &t);
hat1 = -hat2;
}
if ((1.0 - t) > SP_EPSILON)
sp_spiral_fit_and_draw (spiral, c, (1.0 - t)/(SAMPLE_SIZE - 1.0),
darray, hat1, hat2, &t);
sp_lpe_item_perform_path_effect(SP_LPE_ITEM (spiral), c);
sp_shape_set_curve_insync ((SPShape *) spiral, c, TRUE);
c->unref();
}
/**
* Set spiral properties and update display.
*/
void
sp_spiral_position_set (SPSpiral *spiral,
gdouble cx,
gdouble cy,
gdouble exp,
gdouble revo,
gdouble rad,
gdouble arg,
gdouble t0)
{
g_return_if_fail (spiral != NULL);
g_return_if_fail (SP_IS_SPIRAL (spiral));
/** \todo
* Consider applying CLAMP or adding in-bounds assertions for
* some of these parameters.
*/
spiral->cx = cx;
spiral->cy = cy;
spiral->exp = exp;
spiral->revo = revo;
spiral->rad = MAX (rad, 0.001);
spiral->arg = arg;
spiral->t0 = CLAMP(t0, 0.0, 0.999);
((SPObject *)spiral)->requestDisplayUpdate(SP_OBJECT_MODIFIED_FLAG);
}
/**
* Virtual snappoints callback.
*/
static void sp_spiral_snappoints(SPItem const *item, SnapPointsIter p)
{
if (((SPItemClass *) parent_class)->snappoints) {
((SPItemClass *) parent_class)->snappoints (item, p);
}
}
/**
* Return one of the points on the spiral.
*
* \param t specifies how far along the spiral.
* \pre \a t in [0.0, 2.03]. (It doesn't make sense for t to be much more
* than 1.0, though some callers go slightly beyond 1.0 for curve-fitting
* purposes.)
*/
NR::Point sp_spiral_get_xy (SPSpiral const *spiral, gdouble t)
{
g_assert (spiral != NULL);
g_assert (SP_IS_SPIRAL(spiral));
g_assert (spiral->exp >= 0.0);
/* Otherwise we get NaN for t==0. */
g_assert (spiral->exp <= 1000.0);
/* Anything much more results in infinities. Even allowing 1000 is somewhat overkill. */
g_assert (t >= 0.0);
/* Any callers passing -ve t will have a bug for non-integral values of exp. */
double const rad = spiral->rad * pow(t, (double) spiral->exp);
double const arg = 2.0 * M_PI * spiral->revo * t + spiral->arg;
return NR::Point(rad * cos (arg) + spiral->cx,
rad * sin (arg) + spiral->cy);
}
/**
* Returns the derivative of sp_spiral_get_xy with respect to t,
* scaled to a unit vector.
*
* \pre spiral != 0.
* \pre 0 \<= t.
* \pre p != NULL.
* \post is_unit_vector(*p).
*/
static NR::Point
sp_spiral_get_tangent (SPSpiral const *spiral, gdouble t)
{
NR::Point ret(1.0, 0.0);
g_return_val_if_fail (( ( spiral != NULL )
&& SP_IS_SPIRAL(spiral) ),
ret);
g_assert (t >= 0.0);
g_assert (spiral->exp >= 0.0);
/* See above for comments on these assertions. */
double const t_scaled = 2.0 * M_PI * spiral->revo * t;
double const arg = t_scaled + spiral->arg;
double const s = sin (arg);
double const c = cos (arg);
if (spiral->exp == 0.0) {
ret = NR::Point(-s, c);
} else if (t_scaled == 0.0) {
ret = NR::Point(c, s);
} else {
NR::Point unrotated(spiral->exp, t_scaled);
double const s_len = L2 (unrotated);
g_assert (s_len != 0);
/** \todo
* Check that this isn't being too hopeful of the hypot
* function. E.g. test with numbers around 2**-1070
* (denormalized numbers), preferably on a few different
* platforms. However, njh says that the usual implementation
* does handle both very big and very small numbers.
*/
unrotated /= s_len;
/* ret = spiral->exp * (c, s) + t_scaled * (-s, c);
alternatively ret = (spiral->exp, t_scaled) * (( c, s),
(-s, c)).*/
ret = NR::Point(dot(unrotated, NR::Point(c, -s)),
dot(unrotated, NR::Point(s, c)));
/* ret should already be approximately normalized: the
matrix ((c, -s), (s, c)) is orthogonal (it just
rotates by arg), and unrotated has been normalized,
so ret is already of unit length other than numerical
error in the above matrix multiplication. */
/** \todo
* I haven't checked how important it is for ret to be very
* near unit length; we could get rid of the below.
*/
ret.normalize();
/* Proof that ret length is non-zero: see above. (Should be near 1.) */
}
g_assert (is_unit_vector (ret));
return ret;
}
/**
* Compute rad and/or arg for point on spiral.
*/
void
sp_spiral_get_polar (SPSpiral const *spiral, gdouble t, gdouble *rad, gdouble *arg)
{
g_return_if_fail (spiral != NULL);
g_return_if_fail (SP_IS_SPIRAL(spiral));
if (rad)
*rad = spiral->rad * pow(t, (double) spiral->exp);
if (arg)
*arg = 2.0 * M_PI * spiral->revo * t + spiral->arg;
}
/**
* Return true if spiral has properties that make it invalid.
*/
bool
sp_spiral_is_invalid (SPSpiral const *spiral)
{
gdouble rad;
sp_spiral_get_polar (spiral, 0.0, &rad, NULL);
if (rad < 0.0 || rad > SP_HUGE) {
g_print ("rad(t=0)=%g\n", rad);
return TRUE;
}
sp_spiral_get_polar (spiral, 1.0, &rad, NULL);
if (rad < 0.0 || rad > SP_HUGE) {
g_print ("rad(t=1)=%g\n", rad);
return TRUE;
}
return FALSE;
}
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=99 :