lpe-powerstroke.cpp revision 742a1b08138aef8fc3c19730ae48e5477ee43fc5
/**
* @file
* PowerStroke LPE implementation. Creates curves with modifiable stroke width.
*/
/* Authors:
* Johan Engelen <j.b.c.engelen@alumnus.utwente.nl>
*
* Copyright (C) 2010-2012 Authors
*
* Released under GNU GPL, read the file 'COPYING' for more information
*/
#include "live_effects/lpe-powerstroke.h"
#include "live_effects/lpe-powerstroke-interpolators.h"
#include "sp-shape.h"
#include "style.h"
#include "display/curve.h"
#include <2geom/path.h>
#include <2geom/piecewise.h>
#include <2geom/sbasis-geometric.h>
#include <2geom/transforms.h>
#include <2geom/bezier-utils.h>
#include <2geom/svg-elliptical-arc.h>
#include <2geom/sbasis-to-bezier.h>
#include <2geom/path-sink.h>
#include <2geom/path-intersection.h>
#include <2geom/crossing.h>
#include <2geom/ellipse.h>
#include <2geom/math-utils.h>
#include <math.h>
#include "spiro.h"
namespace Geom {
// should all be moved to 2geom at some point
/** Find the point where two straight lines cross.
*/
static boost::optional<Point> intersection_point( Point const & origin_a, Point const & vector_a,
Point const & origin_b, Point const & vector_b)
{
Coord denom = cross(vector_b, vector_a);
if (!are_near(denom,0.)){
Coord t = (cross(origin_a,vector_b) + cross(vector_b,origin_b)) / denom;
return origin_a + t * vector_a;
}
return boost::none;
}
static Geom::CubicBezier sbasis_to_cubicbezier(Geom::D2<Geom::SBasis> const & sbasis_in)
{
std::vector<Geom::Point> temp;
sbasis_to_bezier(temp, sbasis_in, 4);
return Geom::CubicBezier( temp );
}
/**
* document this!
* very quick: this finds the ellipse with minimum eccentricity
passing through point P and Q, with tangent PO at P and QO at Q
http://mathforum.org/kb/message.jspa?messageID=7471596&tstart=0
*/
static Ellipse find_ellipse(Point P, Point Q, Point O)
{
Point p = P - O;
Point q = Q - O;
Coord K = 4 * dot(p,q) / (L2sq(p) + L2sq(q));
double cross = p[Y]*q[X] - p[X]*q[Y];
double a = -q[Y]/cross;
double b = q[X]/cross;
double c = (O[X]*q[Y] - O[Y]*q[X])/cross;
double d = p[Y]/cross;
double e = -p[X]/cross;
double f = (-O[X]*p[Y] + O[Y]*p[X])/cross;
// Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0
double A = (a*d*K+d*d+a*a);
double B = (a*e*K+b*d*K+2*d*e+2*a*b);
double C = (b*e*K+e*e+b*b);
double D = (a*f*K+c*d*K+2*d*f-2*d+2*a*c-2*a);
double E = (b*f*K+c*e*K+2*e*f-2*e+2*b*c-2*b);
double F = c*f*K+f*f-2*f+c*c-2*c+1;
return Ellipse(A, B, C, D, E, F);
}
/**
* Refer to: Weisstein, Eric W. "Circle-Circle Intersection."
From MathWorld--A Wolfram Web Resource.
http://mathworld.wolfram.com/Circle-CircleIntersection.html
*
* @return 0 if no intersection
* @return 1 if one circle is contained in the other
* @return 2 if intersections are found (they are written to p0 and p1)
*/
static int circle_circle_intersection(Circle const &circle0, Circle const &circle1,
Point & p0, Point & p1)
{
Point X0 = circle0.center();
double r0 = circle0.ray();
Point X1 = circle1.center();
double r1 = circle1.ray();
/* dx and dy are the vertical and horizontal distances between
* the circle centers.
*/
Point D = X1 - X0;
/* Determine the straight-line distance between the centers. */
double d = L2(D);
/* Check for solvability. */
if (d > (r0 + r1))
{
/* no solution. circles do not intersect. */
return 0;
}
if (d <= fabs(r0 - r1))
{
/* no solution. one circle is contained in the other */
return 1;
}
/* 'point 2' is the point where the line through the circle
* intersection points crosses the line between the circle
* centers.
*/
/* Determine the distance from point 0 to point 2. */
double a = ((r0*r0) - (r1*r1) + (d*d)) / (2.0 * d) ;
/* Determine the coordinates of point 2. */
Point p2 = X0 + D * (a/d);
/* Determine the distance from point 2 to either of the
* intersection points.
*/
double h = std::sqrt((r0*r0) - (a*a));
/* Now determine the offsets of the intersection points from
* point 2.
*/
Point r = (h/d)*rot90(D);
/* Determine the absolute intersection points. */
p0 = p2 + r;
p1 = p2 - r;
return 2;
}
/**
* Find circle that touches inside of the curve, with radius matching the curvature, at time value \c t.
* Because this method internally uses unitTangentAt, t should be smaller than 1.0 (see unitTangentAt).
*/
static Circle touching_circle( D2<SBasis> const &curve, double t, double tol=0.01 )
{
//Piecewise<SBasis> k = curvature(curve, tol);
D2<SBasis> dM=derivative(curve);
if ( are_near(L2sq(dM(t)),0.) ) {
dM=derivative(dM);
}
if ( are_near(L2sq(dM(t)),0.) ) { // try second time
dM=derivative(dM);
}
Piecewise<D2<SBasis> > unitv = unitVector(dM,tol);
Piecewise<SBasis> dMlength = dot(Piecewise<D2<SBasis> >(dM),unitv);
Piecewise<SBasis> k = cross(derivative(unitv),unitv);
k = divide(k,dMlength,tol,3);
double curv = k(t); // note that this value is signed
Geom::Point normal = unitTangentAt(curve, t).cw();
double radius = 1/curv;
Geom::Point center = curve(t) + radius*normal;
return Geom::Circle(center, fabs(radius));
}
} // namespace Geom
namespace Inkscape {
namespace LivePathEffect {
static const Util::EnumData<unsigned> InterpolatorTypeData[] = {
{Geom::Interpolate::INTERP_LINEAR , N_("Linear"), "Linear"},
{Geom::Interpolate::INTERP_CUBICBEZIER , N_("CubicBezierFit"), "CubicBezierFit"},
{Geom::Interpolate::INTERP_CUBICBEZIER_JOHAN , N_("CubicBezierJohan"), "CubicBezierJohan"},
{Geom::Interpolate::INTERP_SPIRO , N_("SpiroInterpolator"), "SpiroInterpolator"},
{Geom::Interpolate::INTERP_CENTRIPETAL_CATMULLROM, N_("Centripetal Catmull-Rom"), "CentripetalCatmullRom"}
};
static const Util::EnumDataConverter<unsigned> InterpolatorTypeConverter(InterpolatorTypeData, sizeof(InterpolatorTypeData)/sizeof(*InterpolatorTypeData));
enum LineCapType {
LINECAP_BUTT,
LINECAP_SQUARE,
LINECAP_ROUND,
LINECAP_PEAK,
LINECAP_ZERO_WIDTH
};
static const Util::EnumData<unsigned> LineCapTypeData[] = {
{LINECAP_BUTT, N_("Butt"), "butt"},
{LINECAP_SQUARE, N_("Square"), "square"},
{LINECAP_ROUND, N_("Round"), "round"},
{LINECAP_PEAK, N_("Peak"), "peak"},
{LINECAP_ZERO_WIDTH, N_("Zero width"), "zerowidth"}
};
static const Util::EnumDataConverter<unsigned> LineCapTypeConverter(LineCapTypeData, sizeof(LineCapTypeData)/sizeof(*LineCapTypeData));
enum LineJoinType {
LINEJOIN_BEVEL,
LINEJOIN_ROUND,
LINEJOIN_EXTRP_MITER,
LINEJOIN_MITER,
LINEJOIN_SPIRO,
LINEJOIN_EXTRP_MITER_ARC
};
static const Util::EnumData<unsigned> LineJoinTypeData[] = {
{LINEJOIN_BEVEL, N_("Beveled"), "bevel"},
{LINEJOIN_ROUND, N_("Rounded"), "round"},
{LINEJOIN_EXTRP_MITER, N_("Extrapolated"), "extrapolated"},
{LINEJOIN_MITER, N_("Miter"), "miter"},
{LINEJOIN_SPIRO, N_("Spiro"), "spiro"},
#ifdef LPE_ENABLE_TEST_EFFECTS
{LINEJOIN_EXTRP_MITER_ARC, N_("Extrapolated arc"), "extrp_arc"},
#endif
};
static const Util::EnumDataConverter<unsigned> LineJoinTypeConverter(LineJoinTypeData, sizeof(LineJoinTypeData)/sizeof(*LineJoinTypeData));
LPEPowerStroke::LPEPowerStroke(LivePathEffectObject *lpeobject) :
Effect(lpeobject),
offset_points(_("Offset points"), _("Offset points"), "offset_points", &wr, this),
sort_points(_("Sort points"), _("Sort offset points according to their time value along the curve"), "sort_points", &wr, this, true),
interpolator_type(_("Interpolator type:"), _("Determines which kind of interpolator will be used to interpolate between stroke width along the path"), "interpolator_type", InterpolatorTypeConverter, &wr, this, Geom::Interpolate::INTERP_CUBICBEZIER_JOHAN),
interpolator_beta(_("Smoothness:"), _("Sets the smoothness for the CubicBezierJohan interpolator; 0 = linear interpolation, 1 = smooth"), "interpolator_beta", &wr, this, 0.2),
start_linecap_type(_("Start cap:"), _("Determines the shape of the path's start"), "start_linecap_type", LineCapTypeConverter, &wr, this, LINECAP_ROUND),
linejoin_type(_("Join:"), _("Determines the shape of the path's corners"), "linejoin_type", LineJoinTypeConverter, &wr, this, LINEJOIN_ROUND),
miter_limit(_("Miter limit:"), _("Maximum length of the miter (in units of stroke width)"), "miter_limit", &wr, this, 4.),
end_linecap_type(_("End cap:"), _("Determines the shape of the path's end"), "end_linecap_type", LineCapTypeConverter, &wr, this, LINECAP_ROUND)
{
show_orig_path = true;
/// @todo offset_points are initialized with empty path, is that bug-save?
interpolator_beta.addSlider(true);
interpolator_beta.param_set_range(0.,1.);
registerParameter( dynamic_cast<Parameter *>(&offset_points) );
registerParameter( dynamic_cast<Parameter *>(&sort_points) );
registerParameter( dynamic_cast<Parameter *>(&interpolator_type) );
registerParameter( dynamic_cast<Parameter *>(&interpolator_beta) );
registerParameter( dynamic_cast<Parameter *>(&start_linecap_type) );
registerParameter( dynamic_cast<Parameter *>(&linejoin_type) );
registerParameter( dynamic_cast<Parameter *>(&miter_limit) );
registerParameter( dynamic_cast<Parameter *>(&end_linecap_type) );
}
LPEPowerStroke::~LPEPowerStroke()
{
}
void
LPEPowerStroke::doOnApply(SPLPEItem const* lpeitem)
{
if (SP_IS_SHAPE(lpeitem)) {
std::vector<Geom::Point> points;
Geom::PathVector const &pathv = SP_SHAPE(lpeitem)->_curve->get_pathvector();
double width = (lpeitem && lpeitem->style) ? lpeitem->style->stroke_width.computed : 1.;
if (pathv.empty()) {
points.push_back( Geom::Point(0.,width) );
points.push_back( Geom::Point(0.5,width) );
points.push_back( Geom::Point(1.,width) );
} else {
Geom::Path const &path = pathv.front();
Geom::Path::size_type const size = path.size_default();
points.push_back( Geom::Point(0.,width) );
points.push_back( Geom::Point(0.5*size,width) );
if (!path.closed()) {
points.push_back( Geom::Point(size,width) );
}
}
offset_points.param_set_and_write_new_value(points);
} else {
g_warning("LPE Powerstroke can only be applied to shapes (not groups).");
}
}
void
LPEPowerStroke::adjustForNewPath(std::vector<Geom::Path> const & path_in)
{
if (!path_in.empty()) {
offset_points.recalculate_controlpoints_for_new_pwd2(path_in[0].toPwSb());
}
}
static bool compare_offsets (Geom::Point first, Geom::Point second)
{
return first[Geom::X] < second[Geom::X];
}
static Geom::Path path_from_piecewise_fix_cusps( Geom::Piecewise<Geom::D2<Geom::SBasis> > const & B,
Geom::Piecewise<Geom::SBasis> const & y, // width path
LineJoinType jointype,
double miter_limit,
double tol=Geom::EPSILON)
{
/* per definition, each discontinuity should be fixed with a join-ending, as defined by linejoin_type
*/
Geom::PathBuilder pb;
if (B.size() == 0) {
return pb.peek().front();
}
Geom::Point start = B[0].at0();
pb.moveTo(start);
build_from_sbasis(pb, B[0], tol, false);
unsigned prev_i = 0;
for (unsigned i=1; i < B.size(); i++) {
// if segment is degenerate, skip it
// the degeneracy/constancy test had to be loosened (eps > 1e-5)
if (B[i].isConstant(1e-4)) {
continue;
}
if (!are_near(B[prev_i].at1(), B[i].at0(), tol) )
{ // discontinuity found, so fix it :-)
double width = y( B.cuts[i] );
Geom::Point tang1 = -unitTangentAt(reverse(B[prev_i]),0.); // = unitTangentAt(B[prev_i],1);
Geom::Point tang2 = unitTangentAt(B[i],0);
Geom::Point discontinuity_vec = B[i].at0() - B[prev_i].at1();
bool on_outside = ( dot(tang1, discontinuity_vec) >= 0. );
if (on_outside) {
// we are on the outside: add some type of join!
switch (jointype) {
case LINEJOIN_ROUND: {
/* for constant width paths, the rounding is a circular arc (rx == ry),
for non-constant width paths, the rounding can be done with an ellipse but is hard and ambiguous.
The elliptical arc should go through the discontinuity's start and end points (of course!)
and also should match the discontinuity tangents at those start and end points.
To resolve the ambiguity, the elliptical arc with minimal eccentricity should be chosen.
A 2Geom method was created to do exactly this :)
*/
boost::optional<Geom::Point> O = intersection_point( B[prev_i].at1(), tang1,
B[i].at0(), tang2 );
if (!O) {
// no center found, i.e. 180 degrees round
pb.lineTo(B[i].at0()); // default to bevel for too shallow cusp angles
break;
}
Geom::Ellipse ellipse;
try {
ellipse = find_ellipse(B[prev_i].at1(), B[i].at0(), *O);
}
catch (Geom::LogicalError &e) {
// 2geom did not find a fitting ellipse, this happens for weird thick paths :)
// do bevel, and break
pb.lineTo(B[i].at0());
break;
}
// check if ellipse.ray is within 'sane' range.
if ( ( fabs(ellipse.ray(Geom::X)) > 1e6 ) ||
( fabs(ellipse.ray(Geom::Y)) > 1e6 ) )
{
// do bevel, and break
pb.lineTo(B[i].at0());
break;
}
pb.arcTo( ellipse.ray(Geom::X), ellipse.ray(Geom::Y), ellipse.rot_angle(),
false, width < 0, B[i].at0() );
break;
}
case LINEJOIN_EXTRP_MITER: {
Geom::D2<Geom::SBasis> newcurve1 = B[prev_i] * Geom::reflection(rot90(tang1), B[prev_i].at1());
Geom::CubicBezier bzr1 = sbasis_to_cubicbezier( reverse(newcurve1) );
Geom::D2<Geom::SBasis> newcurve2 = B[i] * Geom::reflection(rot90(tang2), B[i].at0());
Geom::CubicBezier bzr2 = sbasis_to_cubicbezier( reverse(newcurve2) );
Geom::Crossings cross = crossings(bzr1, bzr2);
if (cross.empty()) {
// empty crossing: default to bevel
pb.lineTo(B[i].at0());
} else {
// check size of miter
Geom::Point point_on_path = B[prev_i].at1() - rot90(tang1) * width;
Geom::Coord len = distance(bzr1.pointAt(cross[0].ta), point_on_path);
if (len > fabs(width) * miter_limit) {
// miter too big: default to bevel
pb.lineTo(B[i].at0());
} else {
std::pair<Geom::CubicBezier, Geom::CubicBezier> sub1 = bzr1.subdivide(cross[0].ta);
std::pair<Geom::CubicBezier, Geom::CubicBezier> sub2 = bzr2.subdivide(cross[0].tb);
pb.curveTo(sub1.first[1], sub1.first[2], sub1.first[3]);
pb.curveTo(sub2.second[1], sub2.second[2], sub2.second[3]);
}
}
break;
}
case LINEJOIN_EXTRP_MITER_ARC: {
Geom::Circle circle1 = Geom::touching_circle(reverse(B[prev_i]),0.);
Geom::Circle circle2 = Geom::touching_circle(B[i],0.);
Geom::Point points[2];
int solutions = circle_circle_intersection(circle1, circle2, points[0], points[1]);
if (solutions == 2) {
Geom::Point sol(0.,0.);
if ( dot(tang2,points[0]-B[i].at0()) > 0 ) {
// points[0] is bad, choose points[1]
sol = points[1];
} else if ( dot(tang2,points[1]-B[i].at0()) > 0 ) { // points[0] could be good, now check points[1]
// points[1] is bad, choose points[0]
sol = points[0];
} else {
// both points are good, choose nearest
sol = ( distanceSq(B[i].at0(), points[0]) < distanceSq(B[i].at0(), points[1]) ) ?
points[0] : points[1];
}
Geom::EllipticalArc *arc0 = circle1.arc(B[prev_i].at1(), 0.5*(B[prev_i].at1()+sol), sol, true);
Geom::EllipticalArc *arc1 = circle2.arc(sol, 0.5*(sol+B[i].at0()), B[i].at0(), true);
if (arc0) {
build_from_sbasis(pb,arc0->toSBasis(), tol, false);
delete arc0;
arc0 = NULL;
}
if (arc1) {
build_from_sbasis(pb,arc1->toSBasis(), tol, false);
delete arc1;
arc1 = NULL;
}
break;
} else {
// fall back to miter
boost::optional<Geom::Point> p = intersection_point( B[prev_i].at1(), tang1,
B[i].at0(), tang2 );
if (p) {
// check size of miter
Geom::Point point_on_path = B[prev_i].at1() - rot90(tang1) * width;
Geom::Coord len = distance(*p, point_on_path);
if (len <= fabs(width) * miter_limit) {
// miter OK
pb.lineTo(*p);
}
}
pb.lineTo(B[i].at0());
}
/*else if (solutions == 1) { // one circle is inside the other
// don't know what to do: default to bevel
pb.lineTo(B[i].at0());
} else { // no intersections
// don't know what to do: default to bevel
pb.lineTo(B[i].at0());
} */
break;
}
case LINEJOIN_MITER: {
boost::optional<Geom::Point> p = intersection_point( B[prev_i].at1(), tang1,
B[i].at0(), tang2 );
if (p) {
// check size of miter
Geom::Point point_on_path = B[prev_i].at1() - rot90(tang1) * width;
Geom::Coord len = distance(*p, point_on_path);
if (len <= fabs(width) * miter_limit) {
// miter OK
pb.lineTo(*p);
}
}
pb.lineTo(B[i].at0());
break;
}
case LINEJOIN_SPIRO: {
Geom::Point direction = B[i].at0() - B[prev_i].at1();
double tang1_sign = dot(direction,tang1);
double tang2_sign = dot(direction,tang2);
Spiro::spiro_cp *controlpoints = g_new (Spiro::spiro_cp, 4);
controlpoints[0].x = (B[prev_i].at1() - tang1_sign*tang1)[Geom::X];
controlpoints[0].y = (B[prev_i].at1() - tang1_sign*tang1)[Geom::Y];
controlpoints[0].ty = '{';
controlpoints[1].x = B[prev_i].at1()[Geom::X];
controlpoints[1].y = B[prev_i].at1()[Geom::Y];
controlpoints[1].ty = ']';
controlpoints[2].x = B[i].at0()[Geom::X];
controlpoints[2].y = B[i].at0()[Geom::Y];
controlpoints[2].ty = '[';
controlpoints[3].x = (B[i].at0() + tang2_sign*tang2)[Geom::X];
controlpoints[3].y = (B[i].at0() + tang2_sign*tang2)[Geom::Y];
controlpoints[3].ty = '}';
Geom::Path spiro;
Spiro::spiro_run(controlpoints, 4, spiro);
pb.append(spiro.portion(1,spiro.size_open()-1), Geom::Path::STITCH_DISCONTINUOUS);
break;
}
case LINEJOIN_BEVEL:
default:
pb.lineTo(B[i].at0());
break;
}
build_from_sbasis(pb, B[i], tol, false);
} else {
// we are on inside of corner!
Geom::Path bzr1 = path_from_sbasis( B[prev_i], tol );
Geom::Path bzr2 = path_from_sbasis( B[i], tol );
Geom::Crossings cross = crossings(bzr1, bzr2);
if (cross.size() != 1) {
// empty crossing or too many crossings: default to bevel
pb.lineTo(B[i].at0());
pb.append(bzr2, Geom::Path::STITCH_DISCONTINUOUS);
} else {
// :-) quick hack:
for (unsigned i=0; i < bzr1.size_open(); ++i) {
pb.backspace();
}
pb.append( bzr1.portion(0, cross[0].ta), Geom::Path::STITCH_DISCONTINUOUS );
pb.append( bzr2.portion(cross[0].tb, bzr2.size_open()), Geom::Path::STITCH_DISCONTINUOUS );
}
}
} else {
build_from_sbasis(pb, B[i], tol, false);
}
prev_i = i;
}
pb.flush();
return pb.peek().front();
}
std::vector<Geom::Path>
LPEPowerStroke::doEffect_path (std::vector<Geom::Path> const & path_in)
{
using namespace Geom;
std::vector<Geom::Path> path_out;
if (path_in.empty()) {
return path_out;
}
// for now, only regard first subpath and ignore the rest
Geom::Piecewise<Geom::D2<Geom::SBasis> > pwd2_in = path_in[0].toPwSb();
Piecewise<D2<SBasis> > der = derivative(pwd2_in);
Piecewise<D2<SBasis> > n = rot90(unitVector(der));
offset_points.set_pwd2(pwd2_in, n);
LineCapType end_linecap = static_cast<LineCapType>(end_linecap_type.get_value());
LineCapType start_linecap = static_cast<LineCapType>(start_linecap_type.get_value());
std::vector<Geom::Point> ts = offset_points.data();
if (ts.empty()) {
return path_out;
}
if (sort_points) {
sort(ts.begin(), ts.end(), compare_offsets);
}
if (path_in[0].closed()) {
// add extra points for interpolation between first and last point
Point first_point = ts.front();
Point last_point = ts.back();
ts.insert(ts.begin(), last_point - Point(pwd2_in.domain().extent() ,0));
ts.push_back( first_point + Point(pwd2_in.domain().extent() ,0) );
} else {
// add width data for first and last point on the path
// depending on cap type, these first and last points have width zero or take the width from the closest width point.
ts.insert(ts.begin(), Point( pwd2_in.domain().min(),
(start_linecap==LINECAP_ZERO_WIDTH) ? 0. : ts.front()[Geom::Y]) );
ts.push_back( Point( pwd2_in.domain().max(),
(end_linecap==LINECAP_ZERO_WIDTH) ? 0. : ts.back()[Geom::Y]) );
}
// create stroke path where points (x,y) := (t, offset)
Geom::Interpolate::Interpolator *interpolator = Geom::Interpolate::Interpolator::create(static_cast<Geom::Interpolate::InterpolatorType>(interpolator_type.get_value()));
if (Geom::Interpolate::CubicBezierJohan *johan = dynamic_cast<Geom::Interpolate::CubicBezierJohan*>(interpolator)) {
johan->setBeta(interpolator_beta);
}
Geom::Path strokepath = interpolator->interpolateToPath(ts);
delete interpolator;
D2<Piecewise<SBasis> > patternd2 = make_cuts_independent(strokepath.toPwSb());
Piecewise<SBasis> x = Piecewise<SBasis>(patternd2[0]);
Piecewise<SBasis> y = Piecewise<SBasis>(patternd2[1]);
// find time values for which x lies outside path domain
// and only take portion of x and y that lies within those time values
std::vector< double > rtsmin = roots (x - pwd2_in.domain().min());
std::vector< double > rtsmax = roots (x - pwd2_in.domain().max());
if ( !rtsmin.empty() && !rtsmax.empty() ) {
x = portion(x, rtsmin.at(0), rtsmax.at(0));
y = portion(y, rtsmin.at(0), rtsmax.at(0));
}
LineJoinType jointype = static_cast<LineJoinType>(linejoin_type.get_value());
Piecewise<D2<SBasis> > pwd2_out = compose(pwd2_in,x) + y*compose(n,x);
Piecewise<D2<SBasis> > mirrorpath = reverse(compose(pwd2_in,x) - y*compose(n,x));
Geom::Path fixed_path = path_from_piecewise_fix_cusps( pwd2_out, y, jointype, miter_limit, LPE_CONVERSION_TOLERANCE);
Geom::Path fixed_mirrorpath = path_from_piecewise_fix_cusps( mirrorpath, reverse(y), jointype, miter_limit, LPE_CONVERSION_TOLERANCE);
if (path_in[0].closed()) {
fixed_path.close(true);
path_out.push_back(fixed_path);
fixed_mirrorpath.close(true);
path_out.push_back(fixed_mirrorpath);
} else {
// add linecaps...
switch (end_linecap) {
case LINECAP_ZERO_WIDTH:
// do nothing
break;
case LINECAP_PEAK:
{
Geom::Point end_deriv = -unitTangentAt( reverse(pwd2_in.segs.back()), 0.);
double radius = 0.5 * distance(pwd2_out.lastValue(), mirrorpath.firstValue());
Geom::Point midpoint = 0.5*(pwd2_out.lastValue() + mirrorpath.firstValue()) + radius*end_deriv;
fixed_path.appendNew<LineSegment>(midpoint);
fixed_path.appendNew<LineSegment>(mirrorpath.firstValue());
break;
}
case LINECAP_SQUARE:
{
Geom::Point end_deriv = -unitTangentAt( reverse(pwd2_in.segs.back()), 0.);
double radius = 0.5 * distance(pwd2_out.lastValue(), mirrorpath.firstValue());
fixed_path.appendNew<LineSegment>( pwd2_out.lastValue() + radius*end_deriv );
fixed_path.appendNew<LineSegment>( mirrorpath.firstValue() + radius*end_deriv );
fixed_path.appendNew<LineSegment>( mirrorpath.firstValue() );
break;
}
case LINECAP_BUTT:
{
fixed_path.appendNew<LineSegment>( mirrorpath.firstValue() );
break;
}
case LINECAP_ROUND:
default:
{
double radius1 = 0.5 * distance(pwd2_out.lastValue(), mirrorpath.firstValue());
fixed_path.appendNew<SVGEllipticalArc>( radius1, radius1, M_PI/2., false, y.lastValue() < 0, mirrorpath.firstValue() );
break;
}
}
fixed_path.append(fixed_mirrorpath, Geom::Path::STITCH_DISCONTINUOUS);
switch (start_linecap) {
case LINECAP_ZERO_WIDTH:
// do nothing
break;
case LINECAP_PEAK:
{
Geom::Point start_deriv = unitTangentAt( pwd2_in.segs.front(), 0.);
double radius = 0.5 * distance(pwd2_out.firstValue(), mirrorpath.lastValue());
Geom::Point midpoint = 0.5*(mirrorpath.lastValue() + pwd2_out.firstValue()) - radius*start_deriv;
fixed_path.appendNew<LineSegment>( midpoint );
fixed_path.appendNew<LineSegment>( pwd2_out.firstValue() );
break;
}
case LINECAP_SQUARE:
{
Geom::Point start_deriv = unitTangentAt( pwd2_in.segs.front(), 0.);
double radius = 0.5 * distance(pwd2_out.firstValue(), mirrorpath.lastValue());
fixed_path.appendNew<LineSegment>( mirrorpath.lastValue() - radius*start_deriv );
fixed_path.appendNew<LineSegment>( pwd2_out.firstValue() - radius*start_deriv );
fixed_path.appendNew<LineSegment>( pwd2_out.firstValue() );
break;
}
case LINECAP_BUTT:
{
fixed_path.appendNew<LineSegment>( pwd2_out.firstValue() );
break;
}
case LINECAP_ROUND:
default:
{
double radius2 = 0.5 * distance(pwd2_out.firstValue(), mirrorpath.lastValue());
fixed_path.appendNew<SVGEllipticalArc>( radius2, radius2, M_PI/2., false, y.firstValue() < 0, pwd2_out.firstValue() );
break;
}
}
fixed_path.close(true);
path_out.push_back(fixed_path);
}
return path_out;
}
/* ######################## */
} //namespace LivePathEffect
} /* namespace Inkscape */
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :