lpe-powerstroke.cpp revision 427a0e46a67afc9b5bddd9a1568e87a3e15a778e
/**
* @file
* PowerStroke LPE implementation. Creates curves with modifiable stroke width.
*/
/* Authors:
* Johan Engelen <j.b.c.engelen@alumnus.utwente.nl>
*
* Copyright (C) 2010-2011 Authors
*
* Released under GNU GPL, read the file 'COPYING' for more information
*/
#include "live_effects/lpe-powerstroke.h"
#include "live_effects/lpe-powerstroke-interpolators.h"
#include "sp-shape.h"
#include "display/curve.h"
#include <2geom/path.h>
#include <2geom/piecewise.h>
#include <2geom/sbasis-geometric.h>
#include <2geom/transforms.h>
#include <2geom/bezier-utils.h>
#include <2geom/svg-elliptical-arc.h>
#include <2geom/sbasis-to-bezier.h>
#include <2geom/svg-path.h>
#include <2geom/path-intersection.h>
#include <2geom/crossing.h>
#include <2geom/ellipse.h>
namespace Geom {
// should all be moved to 2geom at some point
Point unitTangentAt( D2<SBasis> const & a, Coord t, unsigned n = 3) {
std::vector<Point> derivs = a.valueAndDerivatives(t, n);
for (unsigned deriv_n = 1; deriv_n < derivs.size(); deriv_n++) {
Coord length = derivs[deriv_n].length();
if ( ! are_near(length, 0) ) {
// length of derivative is non-zero, so return unit vector
return derivs[deriv_n] / length;
}
}
return Point (0,0);
}
/** Find the point where two straight lines cross.
*/
boost::optional<Point> intersection_point( Point const & origin_a, Point const & vector_a,
Point const & origin_b, Point const & vector_b)
{
Coord denom = cross(vector_b, vector_a);
if (!are_near(denom,0.)){
Coord t = (cross(origin_a,vector_b) + cross(vector_b,origin_b)) / denom;
return origin_a + t * vector_a;
}
return boost::none;
}
Geom::CubicBezier sbasis_to_cubicbezier(Geom::D2<Geom::SBasis> const & sbasis_in)
{
std::vector<Geom::Point> temp;
sbasis_to_bezier(temp, sbasis_in, 4);
return Geom::CubicBezier( temp );
}
/**
* document this!
* very quick: this finds the ellipse with minimum eccentricity
passing through point P and Q, with tangent PO at P and QO at Q
http://mathforum.org/kb/message.jspa?messageID=7471596&tstart=0
*/
static Ellipse find_ellipse(Point P, Point Q, Point O)
{
Point p = P - O;
Point q = Q - O;
Coord K = 4 * dot(p,q) / (L2sq(p) + L2sq(q));
double cross = p[Y]*q[X] - p[X]*q[Y];
double a = -q[Y]/cross;
double b = q[X]/cross;
double c = (O[X]*q[Y] - O[Y]*q[X])/cross;
double d = p[Y]/cross;
double e = -p[X]/cross;
double f = (-O[X]*p[Y] + O[Y]*p[X])/cross;
// Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0
double A = (a*d*K+d*d+a*a);
double B = (a*e*K+b*d*K+2*d*e+2*a*b);
double C = (b*e*K+e*e+b*b);
double D = (a*f*K+c*d*K+2*d*f-2*d+2*a*c-2*a);
double E = (b*f*K+c*e*K+2*e*f-2*e+2*b*c-2*b);
double F = c*f*K+f*f-2*f+c*c-2*c+1;
return Ellipse(A, B, C, D, E, F);
}
} // namespace Geom
namespace Inkscape {
namespace LivePathEffect {
static const Util::EnumData<unsigned> InterpolatorTypeData[] = {
{Geom::Interpolate::INTERP_LINEAR , N_("Linear"), "Linear"},
{Geom::Interpolate::INTERP_CUBICBEZIER , N_("CubicBezierFit"), "CubicBezierFit"},
{Geom::Interpolate::INTERP_CUBICBEZIER_JOHAN , N_("CubicBezierJohan"), "CubicBezierJohan"},
{Geom::Interpolate::INTERP_SPIRO , N_("SpiroInterpolator"), "SpiroInterpolator"}
};
static const Util::EnumDataConverter<unsigned> InterpolatorTypeConverter(InterpolatorTypeData, sizeof(InterpolatorTypeData)/sizeof(*InterpolatorTypeData));
enum LineCapType {
LINECAP_BUTT,
LINECAP_SQUARE,
LINECAP_ROUND,
LINECAP_PEAK,
LINECAP_ZERO_WIDTH
};
static const Util::EnumData<unsigned> LineCapTypeData[] = {
{LINECAP_BUTT, N_("Butt"), "butt"},
{LINECAP_SQUARE, N_("Square"), "square"},
{LINECAP_ROUND, N_("Round"), "round"},
{LINECAP_PEAK, N_("Peak"), "peak"},
{LINECAP_ZERO_WIDTH, N_("Zero width"), "zerowidth"}
};
static const Util::EnumDataConverter<unsigned> LineCapTypeConverter(LineCapTypeData, sizeof(LineCapTypeData)/sizeof(*LineCapTypeData));
enum LineJoinType {
LINEJOIN_BEVEL,
LINEJOIN_ROUND,
LINEJOIN_EXTRP_MITER,
LINEJOIN_MITER
};
static const Util::EnumData<unsigned> LineJoinTypeData[] = {
{LINEJOIN_BEVEL, N_("Beveled"), "bevel"},
{LINEJOIN_ROUND, N_("Rounded"), "round"},
{LINEJOIN_EXTRP_MITER, N_("Extrapolated"), "extrapolated"},
{LINEJOIN_MITER, N_("Miter"), "miter"},
};
static const Util::EnumDataConverter<unsigned> LineJoinTypeConverter(LineJoinTypeData, sizeof(LineJoinTypeData)/sizeof(*LineJoinTypeData));
LPEPowerStroke::LPEPowerStroke(LivePathEffectObject *lpeobject) :
Effect(lpeobject),
offset_points(_("Offset points"), _("Offset points"), "offset_points", &wr, this),
sort_points(_("Sort points"), _("Sort offset points according to their time value along the curve."), "sort_points", &wr, this, true),
interpolator_type(_("Interpolator type"), _("Determines which kind of interpolator will be used to interpolate between stroke width along the path."), "interpolator_type", InterpolatorTypeConverter, &wr, this, Geom::Interpolate::INTERP_CUBICBEZIER_JOHAN),
interpolator_beta(_("Smoothness"), _("Sets the smoothness for the CubicBezierJohan interpolator. 0 = linear interpolation, 1 = smooth"), "interpolator_beta", &wr, this, 0.2),
start_linecap_type(_("Start cap"), _("Determines the shape of the path's start."), "start_linecap_type", LineCapTypeConverter, &wr, this, LINECAP_ROUND),
linejoin_type(_("Join"), _("Specifies the shape of the path's corners."), "linejoin_type", LineJoinTypeConverter, &wr, this, LINEJOIN_ROUND),
miter_limit(_("Miter limit"), _("Maximum length of the miter (in units of stroke width)"), "miter_limit", &wr, this, 4.),
end_linecap_type(_("End cap"), _("Determines the shape of the path's end."), "end_linecap_type", LineCapTypeConverter, &wr, this, LINECAP_ROUND)
{
show_orig_path = true;
/// @todo offset_points are initialized with empty path, is that bug-save?
interpolator_beta.addSlider(true);
interpolator_beta.param_set_range(0.,1.);
registerParameter( dynamic_cast<Parameter *>(&offset_points) );
registerParameter( dynamic_cast<Parameter *>(&sort_points) );
registerParameter( dynamic_cast<Parameter *>(&interpolator_type) );
registerParameter( dynamic_cast<Parameter *>(&interpolator_beta) );
registerParameter( dynamic_cast<Parameter *>(&start_linecap_type) );
registerParameter( dynamic_cast<Parameter *>(&linejoin_type) );
registerParameter( dynamic_cast<Parameter *>(&miter_limit) );
registerParameter( dynamic_cast<Parameter *>(&end_linecap_type) );
}
LPEPowerStroke::~LPEPowerStroke()
{
}
void
LPEPowerStroke::doOnApply(SPLPEItem *lpeitem)
{
if (SP_IS_SHAPE(lpeitem)) {
std::vector<Geom::Point> points;
Geom::PathVector pathv = SP_SHAPE(lpeitem)->_curve->get_pathvector();
Geom::Path::size_type size = pathv.empty() ? 1 : pathv.front().size_open();
points.push_back( Geom::Point(0,0) );
points.push_back( Geom::Point(0.5*size,0) );
points.push_back( Geom::Point(size,0) );
offset_points.param_set_and_write_new_value(points);
} else {
g_warning("LPE Powerstroke can only be applied to shapes (not groups).");
}
}
void
LPEPowerStroke::adjustForNewPath(std::vector<Geom::Path> const & path_in)
{
if (!path_in.empty()) {
offset_points.recalculate_controlpoints_for_new_pwd2(path_in[0].toPwSb());
}
}
static bool compare_offsets (Geom::Point first, Geom::Point second)
{
return first[Geom::X] < second[Geom::X];
}
// find discontinuities in input path
struct discontinuity_data {
Geom::Point der0; // unit derivative of 'left' side of join
Geom::Point der1; // unit derivative of 'right' side of join
double width; // intended stroke width at join
};
std::vector<discontinuity_data> find_discontinuities( Geom::Piecewise<Geom::D2<Geom::SBasis> > const & der,
Geom::Piecewise<Geom::SBasis> const & x,
Geom::Piecewise<Geom::SBasis> const & y,
double eps=Geom::EPSILON )
{
std::vector<discontinuity_data> vect;
for(unsigned i = 1; i < der.size(); i++) {
if ( ! are_near(der[i-1].at1(), der[i].at0(), eps) ) {
discontinuity_data data;
data.der0 = der[i-1].at1();
data.der1 = der[i].at0();
if ( Geom::are_near(data.der0.length(), 0) ) {
data.der0 = unitTangentAt(der[i-1], 1, 2);
}
if ( Geom::are_near(data.der1.length(), 0) ) {
data.der1 = unitTangentAt(der[i], 0, 2);
}
double t = der.cuts[i];
std::vector< double > rts = roots (x - t); /// @todo this has multiple solutions for general strokewidth paths (generated by spiro interpolator...), ignore for now
if (!rts.empty()) {
data.width = y(rts.front());
} else {
data.width = 1;
}
vect.push_back(data);
}
}
return vect;
}
Geom::Path path_from_piecewise_fix_cusps( Geom::Piecewise<Geom::D2<Geom::SBasis> > const & B,
std::vector<discontinuity_data> const & cusps,
LineJoinType jointype,
double miter_limit,
bool forward_direction,
double tol=Geom::EPSILON)
{
/* per definition, each discontinuity should be fixed with a join-ending, as defined by linejoin_type
*/
Geom::PathBuilder pb;
if (B.size() == 0) {
return pb.peek().front();
}
double sign = forward_direction ? 1. : -1.;
unsigned int cusp_i = forward_direction ? 0 : cusps.size()-1;
Geom::Point start = B[0].at0();
pb.moveTo(start);
build_from_sbasis(pb, B[0], tol, false);
unsigned prev_i = 0;
for (unsigned i=1; i < B.size(); i++) {
// if segment is degenerate, skip it
// the degeneracy/constancy test had to be loosened (eps > 1e-5)
if (B[i].isConstant(1e-4)) {
continue;
}
if (!are_near(B[prev_i].at1(), B[i].at0(), tol) )
{ // discontinuity found, so fix it :-)
discontinuity_data cusp = cusps[cusp_i];
switch (jointype) {
case LINEJOIN_ROUND: {
if ( sign*cusp.width*angle_between(cusp.der0, cusp.der1) < 0.) {
// we are on the outside: round corner
/* for constant width paths, the rounding is a circular arc (rx == ry),
for non-constant width paths, the rounding can be done with an ellipse but is hard and ambiguous.
The elliptical arc should go through the discontinuity's start and end points (of course!)
and also should match the discontinuity tangents at those start and end points.
To resolve the ambiguity, the elliptical arc with minimal eccentricity should be chosen.
A 2Geom method was created to do exactly this :)
*/
Geom::Point tang1 = unitTangentAt(B[prev_i],1);
Geom::Point tang2 = unitTangentAt(B[i],0);
boost::optional<Geom::Point> O = intersection_point( B[prev_i].at1(), tang1,
B[i].at0(), tang2 );
if (!O) {
// no center found, i.e. 180 degrees round
pb.lineTo(B[i].at0()); // default to bevel for too shallow cusp angles
break;
}
Geom::Ellipse ellipse = find_ellipse(B[prev_i].at1(), B[i].at0(), *O);
pb.arcTo( ellipse.ray(Geom::X), ellipse.ray(Geom::Y), ellipse.rot_angle(),
false, cusp.width < 0, B[i].at0() );
} else {
// we are on the inside, do a simple bevel to connect the paths
pb.lineTo(B[i].at0()); // default to bevel for too shallow cusp angles
}
break;
}
/* case LINEJOIN_NONE: {
if ( sign*cusp.width*angle_between(cusp.der0, cusp.der1) < 0.) {
// we are on the outside
Geom::Point der1 = unitTangentAt(B[prev_i],1);
Geom::Point point_on_path = B[prev_i].at1() - rot90(der1) * cusp.width;
pb.lineTo(point_on_path);
pb.lineTo(B[i].at0());
} else {
// we are on the inside, do a simple bevel to connect the paths
pb.lineTo(B[i].at0()); // default to bevel for too shallow cusp angles
}
} */
case LINEJOIN_EXTRP_MITER: {
// first figure out whether we are on the outside or inside of the corner in the path
if ( sign*cusp.width*angle_between(cusp.der0, cusp.der1) < 0.) {
// we are on the outside, do something complicated to make it look good ;)
Geom::Point der1 = unitTangentAt(B[prev_i],1);
Geom::Point der2 = unitTangentAt(B[i],0);
Geom::D2<Geom::SBasis> newcurve1 = B[prev_i] * Geom::reflection(rot90(der1), B[prev_i].at1());
Geom::CubicBezier bzr1 = sbasis_to_cubicbezier( reverse(newcurve1) );
Geom::D2<Geom::SBasis> newcurve2 = B[i] * Geom::reflection(rot90(der2), B[i].at0());
Geom::CubicBezier bzr2 = sbasis_to_cubicbezier( reverse(newcurve2) );
Geom::Crossings cross = crossings(bzr1, bzr2);
if (cross.empty()) {
// empty crossing: default to bevel
pb.lineTo(B[i].at0());
} else {
// check size of miter
Geom::Point point_on_path = B[prev_i].at1() - rot90(der1) * cusp.width;
Geom::Coord len = distance(bzr1.pointAt(cross[0].ta), point_on_path);
if (len > cusp.width * miter_limit) {
// miter too big: default to bevel
pb.lineTo(B[i].at0());
} else {
std::pair<Geom::CubicBezier, Geom::CubicBezier> sub1 = bzr1.subdivide(cross[0].ta);
std::pair<Geom::CubicBezier, Geom::CubicBezier> sub2 = bzr2.subdivide(cross[0].tb);
pb.curveTo(sub1.first[1], sub1.first[2], sub1.first[3]);
pb.curveTo(sub2.second[1], sub2.second[2], sub2.second[3]);
}
}
} else {
// we are on the inside, do a simple bevel to connect the paths
pb.lineTo(B[i].at0()); // default to bevel for too shallow cusp angles
}
break;
}
case LINEJOIN_MITER: {
// first figure out whether we are on the outside or inside of the corner in the path
if ( sign*cusp.width*angle_between(cusp.der0, cusp.der1) < 0.) {
// we are on the outside, do something complicated to make it look good ;)
Geom::Point der1 = unitTangentAt(B[prev_i],1);
Geom::Point der2 = unitTangentAt(B[i],0);
boost::optional<Geom::Point> p = intersection_point( B[prev_i].at1(), der1,
B[i].at0(), der2 );
if (p) {
// check size of miter
Geom::Point point_on_path = B[prev_i].at1() - rot90(der1) * cusp.width;
Geom::Coord len = distance(*p, point_on_path);
if (len <= cusp.width * miter_limit) {
// miter OK
pb.lineTo(*p);
}
}
pb.lineTo(B[i].at0());
} else {
// we are on the inside, do a simple bevel to connect the paths
pb.lineTo(B[i].at0()); // default to bevel for too shallow cusp angles
}
break;
}
case LINEJOIN_BEVEL:
default:
pb.lineTo(B[i].at0());
break;
}
cusp_i += forward_direction ? 1 : -1;
}
build_from_sbasis(pb, B[i], tol, false);
prev_i = i;
}
pb.finish();
return pb.peek().front();
}
std::vector<Geom::Path>
LPEPowerStroke::doEffect_path (std::vector<Geom::Path> const & path_in)
{
using namespace Geom;
std::vector<Geom::Path> path_out;
if (path_in.empty()) {
return path_out;
}
// for now, only regard first subpath and ignore the rest
Geom::Piecewise<Geom::D2<Geom::SBasis> > pwd2_in = path_in[0].toPwSb();
Piecewise<D2<SBasis> > der = derivative(pwd2_in);
Piecewise<D2<SBasis> > n = rot90(unitVector(der));
offset_points.set_pwd2(pwd2_in, n);
LineCapType end_linecap = static_cast<LineCapType>(end_linecap_type.get_value());
LineCapType start_linecap = static_cast<LineCapType>(start_linecap_type.get_value());
std::vector<Geom::Point> ts = offset_points.data();
if (ts.empty()) {
return path_out;
}
if (sort_points) {
sort(ts.begin(), ts.end(), compare_offsets);
}
if (path_in[0].closed()) {
// add extra points for interpolation between first and last point
Point first_point = ts.front();
Point last_point = ts.back();
ts.insert(ts.begin(), last_point - Point(pwd2_in.domain().extent() ,0));
ts.push_back( first_point + Point(pwd2_in.domain().extent() ,0) );
} else {
// add width data for first and last point on the path
// depending on cap type, these first and last points have width zero or take the width from the closest width point.
ts.insert(ts.begin(), Point( pwd2_in.domain().min(),
(start_linecap==LINECAP_ZERO_WIDTH) ? 0. : ts.front()[Geom::Y]) );
ts.push_back( Point( pwd2_in.domain().max(),
(end_linecap==LINECAP_ZERO_WIDTH) ? 0. : ts.back()[Geom::Y]) );
}
// create stroke path where points (x,y) := (t, offset)
Geom::Interpolate::Interpolator *interpolator = Geom::Interpolate::Interpolator::create(static_cast<Geom::Interpolate::InterpolatorType>(interpolator_type.get_value()));
if (Geom::Interpolate::CubicBezierJohan *johan = dynamic_cast<Geom::Interpolate::CubicBezierJohan*>(interpolator)) {
johan->setBeta(interpolator_beta);
}
Geom::Path strokepath = interpolator->interpolateToPath(ts);
delete interpolator;
D2<Piecewise<SBasis> > patternd2 = make_cuts_independent(strokepath.toPwSb());
Piecewise<SBasis> x = Piecewise<SBasis>(patternd2[0]);
Piecewise<SBasis> y = Piecewise<SBasis>(patternd2[1]);
// find time values for which x lies outside path domain
// and only take portion of x and y that lies within those time values
std::vector< double > rtsmin = roots (x - pwd2_in.domain().min());
std::vector< double > rtsmax = roots (x - pwd2_in.domain().max());
if ( !rtsmin.empty() && !rtsmax.empty() ) {
x = portion(x, rtsmin.at(0), rtsmax.at(0));
y = portion(y, rtsmin.at(0), rtsmax.at(0));
}
std::vector<discontinuity_data> cusps = find_discontinuities(der, x, y);
LineJoinType jointype = static_cast<LineJoinType>(linejoin_type.get_value());
Piecewise<D2<SBasis> > pwd2_out = compose(pwd2_in,x) + y*compose(n,x);
Piecewise<D2<SBasis> > mirrorpath = reverse(compose(pwd2_in,x) - y*compose(n,x));
Geom::Path fixed_path = path_from_piecewise_fix_cusps( pwd2_out, cusps, jointype, miter_limit, true, LPE_CONVERSION_TOLERANCE);
Geom::Path fixed_mirrorpath = path_from_piecewise_fix_cusps( mirrorpath, cusps, jointype, miter_limit, false, LPE_CONVERSION_TOLERANCE);
if (path_in[0].closed()) {
fixed_path.close(true);
path_out.push_back(fixed_path);
fixed_mirrorpath.close(true);
path_out.push_back(fixed_mirrorpath);
} else {
// add linecaps...
switch (end_linecap) {
case LINECAP_ZERO_WIDTH:
// do nothing
break;
case LINECAP_PEAK:
{
Geom::Point end_deriv = unit_vector(der.lastValue());
double radius = 0.5 * distance(pwd2_out.lastValue(), mirrorpath.firstValue());
Geom::Point midpoint = 0.5*(pwd2_out.lastValue() + mirrorpath.firstValue()) + radius*end_deriv;
fixed_path.appendNew<LineSegment>(midpoint);
fixed_path.appendNew<LineSegment>(mirrorpath.firstValue());
break;
}
case LINECAP_SQUARE:
{
Geom::Point end_deriv = unit_vector(der.lastValue());
double radius = 0.5 * distance(pwd2_out.lastValue(), mirrorpath.firstValue());
fixed_path.appendNew<LineSegment>( pwd2_out.lastValue() + radius*end_deriv );
fixed_path.appendNew<LineSegment>( mirrorpath.firstValue() + radius*end_deriv );
fixed_path.appendNew<LineSegment>( mirrorpath.firstValue() );
break;
}
case LINECAP_BUTT:
{
fixed_path.appendNew<LineSegment>( mirrorpath.firstValue() );
break;
}
case LINECAP_ROUND:
default:
{
double radius1 = 0.5 * distance(pwd2_out.lastValue(), mirrorpath.firstValue());
fixed_path.appendNew<SVGEllipticalArc>( radius1, radius1, M_PI/2., false, y.lastValue() < 0, mirrorpath.firstValue() );
break;
}
}
fixed_path.append(fixed_mirrorpath, Geom::Path::STITCH_DISCONTINUOUS);
switch (start_linecap) {
case LINECAP_ZERO_WIDTH:
// do nothing
break;
case LINECAP_PEAK:
{
Geom::Point start_deriv = unit_vector(der.firstValue());
double radius = 0.5 * distance(pwd2_out.firstValue(), mirrorpath.lastValue());
Geom::Point midpoint = 0.5*(mirrorpath.lastValue() + pwd2_out.firstValue()) - radius*start_deriv;
fixed_path.appendNew<LineSegment>( midpoint );
fixed_path.appendNew<LineSegment>( pwd2_out.firstValue() );
break;
}
case LINECAP_SQUARE:
{
Geom::Point start_deriv = unit_vector(der.firstValue());
double radius = 0.5 * distance(pwd2_out.firstValue(), mirrorpath.lastValue());
fixed_path.appendNew<LineSegment>( mirrorpath.lastValue() - radius*start_deriv );
fixed_path.appendNew<LineSegment>( pwd2_out.firstValue() - radius*start_deriv );
fixed_path.appendNew<LineSegment>( pwd2_out.firstValue() );
break;
}
case LINECAP_BUTT:
{
fixed_path.appendNew<LineSegment>( pwd2_out.firstValue() );
break;
}
case LINECAP_ROUND:
default:
{
double radius2 = 0.5 * distance(pwd2_out.firstValue(), mirrorpath.lastValue());
fixed_path.appendNew<SVGEllipticalArc>( radius2, radius2, M_PI/2., false, y.firstValue() < 0, pwd2_out.firstValue() );
break;
}
}
fixed_path.close(true);
path_out.push_back(fixed_path);
}
return path_out;
}
/* ######################## */
} //namespace LivePathEffect
} /* namespace Inkscape */
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :