lpe-knot.cpp revision f2604687c203c022c4a9715f34e34253a7ff0e75
/**
* @file
* LPE knot effect implementation.
*/
/* Authors:
* Jean-Francois Barraud <jf.barraud@gmail.com>
* Abhishek Sharma
* Johan Engelen
*
* Copyright (C) 2007-2012 Authors
*
* Released under GNU GPL, read the file 'COPYING' for more information
*/
#include "sp-shape.h"
#include "sp-path.h"
#include "display/curve.h"
#include "live_effects/lpe-knot.h"
#include "svg/svg.h"
#include "style.h"
#include "knot-holder-entity.h"
#include "knotholder.h"
#include <glibmm/i18n.h>
#include <2geom/sbasis-to-bezier.h>
#include <2geom/sbasis.h>
#include <2geom/d2.h>
#include <2geom/d2-sbasis.h>
#include <2geom/path.h>
#include <2geom/bezier-to-sbasis.h>
#include <2geom/basic-intersection.h>
#include <2geom/exception.h>
// for change crossing undo
#include "verbs.h"
#include "document.h"
#include "document-undo.h"
#include <exception>
namespace Inkscape {
namespace LivePathEffect {
class KnotHolderEntityCrossingSwitcher : public LPEKnotHolderEntity {
public:
KnotHolderEntityCrossingSwitcher(LPEKnot *effect) : LPEKnotHolderEntity(effect) {};
virtual void knot_set(Geom::Point const &p, Geom::Point const &origin, guint state);
virtual Geom::Point knot_get() const;
virtual void knot_click(guint state);
};
static Geom::Path::size_type size_nondegenerate(Geom::Path const &path) {
Geom::Path::size_type retval = path.size_open();
// if path is closed and closing segment is not degenerate
if (path.closed() && !path.back_closed().isDegenerate()) {
retval = path.size_closed();
}
return retval;
}
//---------------------------------------------------------------------------
//LPEKnot specific Interval manipulation.
//---------------------------------------------------------------------------
//remove an interval from an union of intervals.
//TODO: is it worth moving it to 2Geom?
static
std::vector<Geom::Interval> complementOf(Geom::Interval I, std::vector<Geom::Interval> domain){
std::vector<Geom::Interval> ret;
if (!domain.empty()) {
double min = domain.front().min();
double max = domain.back().max();
Geom::Interval I1 = Geom::Interval(min,I.min());
Geom::Interval I2 = Geom::Interval(I.max(),max);
for (unsigned i = 0; i<domain.size(); i++){
boost::optional<Geom::Interval> I1i = intersect(domain.at(i),I1);
if (I1i && !I1i->isSingular()) ret.push_back(I1i.get());
boost::optional<Geom::Interval> I2i = intersect(domain.at(i),I2);
if (I2i && !I2i->isSingular()) ret.push_back(I2i.get());
}
}
return ret;
}
//find the time interval during which patha is hidden by pathb near a given crossing.
// Warning: not accurate!
static
Geom::Interval
findShadowedTime(Geom::Path const &patha, std::vector<Geom::Point> const &pt_and_dir,
double const ta, double const width){
using namespace Geom;
Point T = unit_vector(pt_and_dir[1]);
Point N = T.cw();
//Point A = pt_and_dir[0] - 3 * width * T;
//Point B = A+6*width*T;
Affine mat = from_basis( T, N, pt_and_dir[0] );
mat = mat.inverse();
Path p = patha * mat;
std::vector<double> times;
//TODO: explore the path fwd/backward from ta (worth?)
for (unsigned i = 0; i < size_nondegenerate(patha); i++){
D2<SBasis> f = p[i].toSBasis();
std::vector<double> times_i, temptimes;
temptimes = roots(f[Y]-width);
times_i.insert(times_i.end(), temptimes.begin(), temptimes.end() );
temptimes = roots(f[Y]+width);
times_i.insert(times_i.end(), temptimes.begin(), temptimes.end() );
temptimes = roots(f[X]-3*width);
times_i.insert(times_i.end(), temptimes.begin(), temptimes.end() );
temptimes = roots(f[X]+3*width);
times_i.insert(times_i.end(), temptimes.begin(), temptimes.end() );
for (unsigned k=0; k<times_i.size(); k++){
times_i[k]+=i;
}
times.insert(times.end(), times_i.begin(), times_i.end() );
}
std::sort( times.begin(), times.end() );
std::vector<double>::iterator new_end = std::unique( times.begin(), times.end() );
times.resize( new_end - times.begin() );
double tmin = 0, tmax = size_nondegenerate(patha);
double period = size_nondegenerate(patha);
if (!times.empty()){
unsigned rk = upper_bound( times.begin(), times.end(), ta ) - times.begin();
if ( rk < times.size() )
tmax = times[rk];
else if ( patha.closed() )
tmax = times[0]+period;
if ( rk > 0 )
tmin = times[rk-1];
else if ( patha.closed() )
tmin = times.back()-period;
}
return Interval(tmin,tmax);
}
//---------------------------------------------------------------------------
//LPEKnot specific Crossing Data manipulation.
//---------------------------------------------------------------------------
//Yet another crossing data representation.
// an CrossingPoint stores
// -an intersection point
// -the involved path components
// -for each component, the time at which this crossing occurs + the order of this crossing along the component (when starting from 0).
namespace LPEKnotNS {//just in case...
CrossingPoints::CrossingPoints(std::vector<Geom::Path> const &paths) : std::vector<CrossingPoint>(){
// std::cout<<"\nCrossingPoints creation from path vector\n";
for( unsigned i=0; i<paths.size(); i++){
for( unsigned ii=0; ii < size_nondegenerate(paths[i]); ii++){
for( unsigned j=i; j<paths.size(); j++){
for( unsigned jj=(i==j?ii:0); jj < size_nondegenerate(paths[j]); jj++){
std::vector<std::pair<double,double> > times;
if ( i==j && ii==jj){
// std::cout<<"--(self int)\n";
// std::cout << paths[i][ii].toSBasis()[Geom::X] <<"\n";
// std::cout << paths[i][ii].toSBasis()[Geom::Y] <<"\n";
find_self_intersections( times, paths[i][ii].toSBasis() );
}else{
// std::cout<<"--(pair int)\n";
// std::cout << paths[i][ii].toSBasis()[Geom::X] <<"\n";
// std::cout << paths[i][ii].toSBasis()[Geom::Y] <<"\n";
// std::cout<<"with\n";
// std::cout << paths[j][jj].toSBasis()[Geom::X] <<"\n";
// std::cout << paths[j][jj].toSBasis()[Geom::Y] <<"\n";
find_intersections( times, paths[i][ii].toSBasis(), paths[j][jj].toSBasis() );
}
for (unsigned k=0; k<times.size(); k++){
//std::cout<<"intersection "<<i<<"["<<ii<<"]("<<times[k].first<<")= "<<j<<"["<<jj<<"]("<<times[k].second<<")\n";
if (times[k].first == times[k].first && times[k].second == times[k].second ){//is this the way to test NaN?
double zero = 1e-4;
if ( i==j && fabs(times[k].first+ii - times[k].second-jj)<=zero ){//this is just end=start of successive curves in a path.
continue;
}
if ( i==j && ii == 0 && jj == size_nondegenerate(paths[i])-1 &&
paths[i].closed() &&
fabs(times[k].first) <= zero &&
fabs(times[k].second - 1) <= zero ){//this is just end=start of a closed path.
continue;
}
CrossingPoint cp;
cp.pt = paths[i][ii].pointAt(times[k].first);
cp.sign = 1;
cp.i = i;
cp.j = j;
cp.ni = 0; cp.nj=0;//not set yet
cp.ti = times[k].first + ii;
cp.tj = times[k].second + jj;
push_back(cp);
}else{
std::cout<<"ooops: find_(self)_intersections returned NaN:";
//std::cout<<"intersection "<<i<<"["<<ii<<"](NaN)= "<<j<<"["<<jj<<"](NaN)\n";
}
}
}
}
}
}
for( unsigned i=0; i<paths.size(); i++){
std::map < double, unsigned > cuts;
for( unsigned k=0; k<size(); k++){
CrossingPoint cp = (*this)[k];
if (cp.i == i) cuts[cp.ti] = k;
if (cp.j == i) cuts[cp.tj] = k;
}
unsigned count = 0;
for ( std::map < double, unsigned >::iterator m=cuts.begin(); m!=cuts.end(); ++m ){
if ( (*this)[m->second].i == i && (*this)[m->second].ti == m->first ){
(*this)[m->second].ni = count;
}else{
(*this)[m->second].nj = count;
}
count++;
}
}
}
CrossingPoints::CrossingPoints(std::vector<double> const &input) : std::vector<CrossingPoint>()
{
if (input.size()>0 && input.size()%9 ==0){
using namespace Geom;
for( unsigned n=0; n<input.size(); ){
CrossingPoint cp;
cp.pt[X] = input[n++];
cp.pt[Y] = input[n++];
cp.i = input[n++];
cp.j = input[n++];
cp.ni = input[n++];
cp.nj = input[n++];
cp.ti = input[n++];
cp.tj = input[n++];
cp.sign = input[n++];
push_back(cp);
}
}
}
std::vector<double>
CrossingPoints::to_vector()
{
using namespace Geom;
std::vector<double> result;
for( unsigned n=0; n<size(); n++){
CrossingPoint cp = (*this)[n];
result.push_back(cp.pt[X]);
result.push_back(cp.pt[Y]);
result.push_back(double(cp.i));
result.push_back(double(cp.j));
result.push_back(double(cp.ni));
result.push_back(double(cp.nj));
result.push_back(double(cp.ti));
result.push_back(double(cp.tj));
result.push_back(double(cp.sign));
}
return result;
}
//FIXME: rewrite to check success: return bool, put result in arg.
CrossingPoint
CrossingPoints::get(unsigned const i, unsigned const ni)
{
for (unsigned k=0; k<size(); k++){
if (
((*this)[k].i==i && (*this)[k].ni==ni) ||
((*this)[k].j==i && (*this)[k].nj==ni)
) return (*this)[k];
}
g_warning("LPEKnotNS::CrossingPoints::get error. %uth crossing along string %u not found.",ni,i);
assert(false);//debug purpose...
return CrossingPoint();
}
static unsigned
idx_of_nearest(CrossingPoints const &cpts, Geom::Point const &p)
{
double dist=-1;
unsigned result = cpts.size();
for (unsigned k=0; k<cpts.size(); k++){
double dist_k = Geom::L2(p-cpts[k].pt);
if (dist<0 || dist>dist_k){
result = k;
dist = dist_k;
}
}
return result;
}
//TODO: Find a way to warn the user when the topology changes.
//TODO: be smarter at guessing the signs when the topology changed?
void
CrossingPoints::inherit_signs(CrossingPoints const &other, int default_value)
{
bool topo_changed = false;
for (unsigned n=0; n<size(); n++){
if ( n<other.size() &&
other[n].i == (*this)[n].i &&
other[n].j == (*this)[n].j &&
other[n].ni == (*this)[n].ni &&
other[n].nj == (*this)[n].nj )
{
(*this)[n].sign = other[n].sign;
}else{
topo_changed = true;
break;
}
}
if (topo_changed){
//TODO: Find a way to warn the user!!
// std::cout<<"knot topolgy changed!\n";
for (unsigned n=0; n<size(); n++){
Geom::Point p = (*this)[n].pt;
unsigned idx = idx_of_nearest(other,p);
if (idx<other.size()){
(*this)[n].sign = other[idx].sign;
}else{
(*this)[n].sign = default_value;
}
}
}
}
}
//---------------------------------------------------------------------------
//---------------------------------------------------------------------------
//LPEKnot effect.
//---------------------------------------------------------------------------
//---------------------------------------------------------------------------
LPEKnot::LPEKnot(LivePathEffectObject *lpeobject) :
Effect(lpeobject),
// initialise your parameters here:
interruption_width(_("Fi_xed width:"), _("Size of hidden region of lower string"), "interruption_width", &wr, this, 3),
prop_to_stroke_width(_("_In units of stroke width"), _("Consider 'Interruption width' as a ratio of stroke width"), "prop_to_stroke_width", &wr, this, true),
add_stroke_width(_("St_roke width"), _("Add the stroke width to the interruption size"), "add_stroke_width", &wr, this, true),
add_other_stroke_width(_("_Crossing path stroke width"), _("Add crossed stroke width to the interruption size"), "add_other_stroke_width", &wr, this, true),
switcher_size(_("S_witcher size:"), _("Orientation indicator/switcher size"), "switcher_size", &wr, this, 15),
crossing_points_vector(_("Crossing Signs"), _("Crossings signs"), "crossing_points_vector", &wr, this),
gpaths(),gstroke_widths()
{
// register all your parameters here, so Inkscape knows which parameters this effect has:
registerParameter( dynamic_cast<Parameter *>(&interruption_width) );
registerParameter( dynamic_cast<Parameter *>(&prop_to_stroke_width) );
registerParameter( dynamic_cast<Parameter *>(&add_stroke_width) );
registerParameter( dynamic_cast<Parameter *>(&add_other_stroke_width) );
registerParameter( dynamic_cast<Parameter *>(&switcher_size) );
registerParameter( dynamic_cast<Parameter *>(&crossing_points_vector) );
crossing_points = LPEKnotNS::CrossingPoints();
selectedCrossing = 0;
switcher = Geom::Point(0,0);
_provides_knotholder_entities = true;
}
LPEKnot::~LPEKnot()
{
}
void
LPEKnot::updateSwitcher(){
if (selectedCrossing < crossing_points.size()){
switcher = crossing_points[selectedCrossing].pt;
//std::cout<<"placing switcher at "<<switcher<<" \n";
}else if (crossing_points.size()>0){
selectedCrossing = 0;
switcher = crossing_points[selectedCrossing].pt;
//std::cout<<"placing switcher at "<<switcher<<" \n";
}else{
//std::cout<<"hiding switcher!\n";
//TODO: is there a way to properly hide the helper.
//switcher = Geom::Point(Geom::infinity(),Geom::infinity());
switcher = Geom::Point(1e10,1e10);
}
}
std::vector<Geom::Path>
LPEKnot::doEffect_path (std::vector<Geom::Path> const &path_in)
{
using namespace Geom;
std::vector<Geom::Path> path_out;
if (gpaths.size()==0){
return path_in;
}
for (unsigned comp=0; comp<path_in.size(); comp++){
//find the relevant path component in gpaths (required to allow groups!)
//Q: do we always recieve the group members in the same order? can we rest on that?
unsigned i0 = 0;
for (i0=0; i0<gpaths.size(); i0++){
if (path_in[comp]==gpaths[i0]) break;
}
if (i0 == gpaths.size() ) {THROW_EXCEPTION("lpe-knot error: group member not recognized");}// this should not happen...
std::vector<Interval> dom;
dom.push_back(Interval(0., size_nondegenerate(gpaths[i0])));
for (unsigned p = 0; p < crossing_points.size(); p++){
if (crossing_points[p].i == i0 || crossing_points[p].j == i0){
unsigned i = crossing_points[p].i;
unsigned j = crossing_points[p].j;
double ti = crossing_points[p].ti;
double tj = crossing_points[p].tj;
double curveidx, t;
t = modf(ti, &curveidx);
if(curveidx == size_nondegenerate(gpaths[i]) ) { curveidx--; t = 1.;}
assert(curveidx >= 0 && curveidx < size_nondegenerate(gpaths[i]));
std::vector<Point> flag_i = gpaths[i][curveidx].pointAndDerivatives(t,1);
t = modf(tj, &curveidx);
if(curveidx == size_nondegenerate(gpaths[j]) ) { curveidx--; t = 1.;}
assert(curveidx >= 0 && curveidx < size_nondegenerate(gpaths[j]));
std::vector<Point> flag_j = gpaths[j][curveidx].pointAndDerivatives(t,1);
int geom_sign = ( cross(flag_i[1],flag_j[1]) > 0 ? 1 : -1);
bool i0_is_under = false;
if ( crossing_points[p].sign * geom_sign > 0 ){
i0_is_under = ( i == i0 );
}else if ( crossing_points[p].sign * geom_sign < 0 ){
if (j == i0){
std::swap( i, j);
std::swap(ti, tj);
std::swap(flag_i,flag_j);
i0_is_under = true;
}
}
if (i0_is_under){
double width = interruption_width;
if ( prop_to_stroke_width.get_value() ) {
width *= gstroke_widths[i];
}
if ( add_stroke_width.get_value() ) {
width += gstroke_widths[i];
}
if ( add_other_stroke_width.get_value() ) {
width += gstroke_widths[j];
}
Interval hidden = findShadowedTime(gpaths[i0], flag_j, ti, width/2);
double period = size_nondegenerate(gpaths[i0]);
if (hidden.max() > period ) hidden -= period;
if (hidden.min()<0){
dom = complementOf( Interval(0,hidden.max()) ,dom);
dom = complementOf( Interval(hidden.min()+period, period) ,dom);
}else{
dom = complementOf(hidden,dom);
}
}
}
}
//If the all component is hidden, continue.
if (dom.empty()){
continue;
}
//If the current path is closed and the last/first point is still there, glue first and last piece.
unsigned beg_comp = 0, end_comp = dom.size();
if ( gpaths[i0].closed() && dom.front().min() == 0 && dom.back().max() == size_nondegenerate(gpaths[i0]) ){
if ( dom.size() == 1){
path_out.push_back(gpaths[i0]);
continue;
}else{
// std::cout<<"fusing first and last component\n";
beg_comp++;
end_comp--;
Path first = gpaths[i0].portion(dom.back());
//FIXME: STITCH_DISCONTINUOUS should not be necessary (?!?)
first.append(gpaths[i0].portion(dom.front()), Path::STITCH_DISCONTINUOUS);
path_out.push_back(first);
}
}
for (unsigned comp = beg_comp; comp < end_comp; comp++){
assert(dom.at(comp).min() >=0 and dom.at(comp).max() <= size_nondegenerate(gpaths.at(i0)));
path_out.push_back(gpaths[i0].portion(dom.at(comp)));
}
}
return path_out;
}
//recursively collect gpaths and stroke widths (stolen from "sp-lpe_item.cpp").
static void
collectPathsAndWidths (SPLPEItem const *lpeitem, std::vector<Geom::Path> &paths, std::vector<double> &stroke_widths){
if (SP_IS_GROUP(lpeitem)) {
GSList const *item_list = sp_item_group_item_list(SP_GROUP(lpeitem));
for ( GSList const *iter = item_list; iter; iter = iter->next ) {
SPObject *subitem = static_cast<SPObject *>(iter->data);
if (SP_IS_LPE_ITEM(subitem)) {
collectPathsAndWidths(SP_LPE_ITEM(subitem), paths, stroke_widths);
}
}
}
else if (SP_IS_SHAPE(lpeitem)) {
SPCurve * c = NULL;
if (SP_IS_PATH(lpeitem)) {
c = SP_PATH(lpeitem)->get_curve_for_edit();
} else {
c = SP_SHAPE(lpeitem)->getCurve();
}
if (c) {
Geom::PathVector subpaths = c->get_pathvector();
for (unsigned i=0; i<subpaths.size(); i++){
paths.push_back(subpaths[i]);
//FIXME: do we have to be more carefull when trying to access stroke width?
stroke_widths.push_back(lpeitem->style->stroke_width.computed);
}
}
}
}
void
LPEKnot::doBeforeEffect (SPLPEItem const* lpeitem)
{
using namespace Geom;
original_bbox(lpeitem);
gpaths = std::vector<Geom::Path>();
gstroke_widths = std::vector<double>();
collectPathsAndWidths(lpeitem, gpaths, gstroke_widths);
// std::cout<<"\nPaths on input:\n";
// for (unsigned i=0; i<gpaths.size(); i++){
// for (unsigned ii=0; ii<gpaths[i].size(); ii++){
// std::cout << gpaths[i][ii].toSBasis()[Geom::X] <<"\n";
// std::cout << gpaths[i][ii].toSBasis()[Geom::Y] <<"\n";
// std::cout<<"--\n";
// }
// }
//std::cout<<"crossing_pts_vect: "<<crossing_points_vector.param_getSVGValue()<<".\n";
//std::cout<<"prop_to_stroke_width: "<<prop_to_stroke_width.param_getSVGValue()<<".\n";
LPEKnotNS::CrossingPoints old_crdata(crossing_points_vector.data());
// std::cout<<"\nVectorParam size:"<<crossing_points_vector.data().size()<<"\n";
// std::cout<<"\nOld crdata ("<<old_crdata.size()<<"): \n";
// for (unsigned toto=0; toto<old_crdata.size(); toto++){
// std::cout<<"(";
// std::cout<<old_crdata[toto].i<<",";
// std::cout<<old_crdata[toto].j<<",";
// std::cout<<old_crdata[toto].ni<<",";
// std::cout<<old_crdata[toto].nj<<",";
// std::cout<<old_crdata[toto].ti<<",";
// std::cout<<old_crdata[toto].tj<<",";
// std::cout<<old_crdata[toto].sign<<"),";
// }
//if ( old_crdata.size() > 0 ) std::cout<<"first crossing sign = "<<old_crdata[0].sign<<".\n";
//else std::cout<<"old data is empty!!\n";
crossing_points = LPEKnotNS::CrossingPoints(gpaths);
// std::cout<<"\nNew crdata ("<<crossing_points.size()<<"): \n";
// for (unsigned toto=0; toto<crossing_points.size(); toto++){
// std::cout<<"(";
// std::cout<<crossing_points[toto].i<<",";
// std::cout<<crossing_points[toto].j<<",";
// std::cout<<crossing_points[toto].ni<<",";
// std::cout<<crossing_points[toto].nj<<",";
// std::cout<<crossing_points[toto].ti<<",";
// std::cout<<crossing_points[toto].tj<<",";
// std::cout<<crossing_points[toto].sign<<"),";
// }
crossing_points.inherit_signs(old_crdata);
crossing_points_vector.param_set_and_write_new_value(crossing_points.to_vector());
updateSwitcher();
}
void
LPEKnot::addCanvasIndicators(SPLPEItem const */*lpeitem*/, std::vector<Geom::PathVector> &hp_vec)
{
using namespace Geom;
double r = switcher_size*.1;
char const * svgd;
//TODO: use a nice path!
if (selectedCrossing >= crossing_points.size()||crossing_points[selectedCrossing].sign > 0){
//svgd = "M -10,0 A 10 10 0 1 0 0,-10 l 5,-1 -1,2";
svgd = "m -7.07,7.07 c 3.9,3.91 10.24,3.91 14.14,0 3.91,-3.9 3.91,-10.24 0,-14.14 -3.9,-3.91 -10.24,-3.91 -14.14,0 l 2.83,-4.24 0.7,2.12";
}else if (crossing_points[selectedCrossing].sign < 0){
//svgd = "M 10,0 A 10 10 0 1 1 0,-10 l -5,-1 1,2";
svgd = "m 7.07,7.07 c -3.9,3.91 -10.24,3.91 -14.14,0 -3.91,-3.9 -3.91,-10.24 0,-14.14 3.9,-3.91 10.24,-3.91 14.14,0 l -2.83,-4.24 -0.7,2.12";
}else{
//svgd = "M 10,0 A 10 10 0 1 0 -10,0 A 10 10 0 1 0 10,0 ";
svgd = "M 10,0 C 10,5.52 5.52,10 0,10 -5.52,10 -10,5.52 -10,0 c 0,-5.52 4.48,-10 10,-10 5.52,0 10,4.48 10,10 z";
}
PathVector pathv = sp_svg_read_pathv(svgd);
pathv *= Affine(r,0,0,r,0,0);
pathv+=switcher;
hp_vec.push_back(pathv);
}
void LPEKnot::addKnotHolderEntities(KnotHolder *knotholder, SPDesktop *desktop, SPItem *item)
{
KnotHolderEntity *e = new KnotHolderEntityCrossingSwitcher(this);
e->create( desktop, item, knotholder, Inkscape::CTRL_TYPE_UNKNOWN,
_("Drag to select a crossing, click to flip it") );
knotholder->add(e);
};
void
KnotHolderEntityCrossingSwitcher::knot_set(Geom::Point const &p, Geom::Point const &/*origin*/, guint /*state*/)
{
LPEKnot* lpe = dynamic_cast<LPEKnot *>(_effect);
lpe->selectedCrossing = idx_of_nearest(lpe->crossing_points,p);
lpe->updateSwitcher();
// FIXME: this should not directly ask for updating the item. It should write to SVG, which triggers updating.
sp_lpe_item_update_patheffect (SP_LPE_ITEM(item), false, true);
}
Geom::Point
KnotHolderEntityCrossingSwitcher::knot_get() const
{
LPEKnot const *lpe = dynamic_cast<LPEKnot const*>(_effect);
return lpe->switcher;
}
void
KnotHolderEntityCrossingSwitcher::knot_click(guint state)
{
LPEKnot* lpe = dynamic_cast<LPEKnot *>(_effect);
unsigned s = lpe->selectedCrossing;
if (s < lpe->crossing_points.size()){
if (state & GDK_SHIFT_MASK){
lpe->crossing_points[s].sign = 1;
}else{
int sign = lpe->crossing_points[s].sign;
lpe->crossing_points[s].sign = ((sign+2)%3)-1;
//std::cout<<"crossing set to"<<lpe->crossing_points[s].sign<<".\n";
}
lpe->crossing_points_vector.param_set_and_write_new_value(lpe->crossing_points.to_vector());
DocumentUndo::done(lpe->getSPDoc(), SP_VERB_DIALOG_LIVE_PATH_EFFECT, /// @todo Is this the right verb?
_("Change knot crossing"));
// FIXME: this should not directly ask for updating the item. It should write to SVG, which triggers updating.
// sp_lpe_item_update_patheffect (SP_LPE_ITEM(item), false, true);
}
}
/* ######################## */
} // namespace LivePathEffect
} // namespace Inkscape
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :