Shape.cpp revision 02493e1d76c38beb15fee20374afb956e77a677c
/*
* Shape.cpp
* nlivarot
*
* Created by fred on Thu Jun 12 2003.
*
*/
#include <glib/gmem.h>
#include "Shape.h"
#include "livarot/sweep-event-queue.h"
#include "livarot/sweep-tree-list.h"
#include <libnr/nr-point-fns.h>
/*
* Shape instances handling.
* never (i repeat: never) modify edges and points links; use Connect() and Disconnect() instead
* the graph is stored as a set of points and edges, with edges in a doubly-linked list for each point.
*/
Shape::Shape()
: qrsData(NULL),
iData(NULL),
sTree(NULL),
sEvts(NULL),
_need_points_sorting(false),
_need_edges_sorting(false),
_has_points_data(false),
_point_data_initialised(false),
_has_edges_data(false),
_has_sweep_src_data(false),
_has_sweep_dest_data(false),
_has_raster_data(false),
_has_quick_raster_data(false),
_has_back_data(false),
_has_voronoi_data(false),
_bbox_up_to_date(false)
{
leftX = topY = rightX = bottomY = 0;
maxPt = 0;
maxAr = 0;
type = shape_polygon;
}
Shape::~Shape (void)
{
maxPt = 0;
maxAr = 0;
free(qrsData);
}
void Shape::Affiche(void)
{
printf("sh=%p nbPt=%i nbAr=%i\n", this, static_cast<int>(_pts.size()), static_cast<int>(_aretes.size())); // localizing ok
for (unsigned int i=0; i<_pts.size(); i++) {
printf("pt %i : x=(%f %f) dI=%i dO=%i\n",i, _pts[i].x[0], _pts[i].x[1], _pts[i].dI, _pts[i].dO); // localizing ok
}
for (unsigned int i=0; i<_aretes.size(); i++) {
printf("ar %i : dx=(%f %f) st=%i en=%i\n",i, _aretes[i].dx[0], _aretes[i].dx[1], _aretes[i].st, _aretes[i].en); // localizing ok
}
}
/**
* Allocates space for point cache or clears the cache
\param nVal Allocate a cache (true) or clear it (false)
*/
void
Shape::MakePointData (bool nVal)
{
if (nVal)
{
if (_has_points_data == false)
{
_has_points_data = true;
_point_data_initialised = false;
_bbox_up_to_date = false;
pData.resize(maxPt);
}
}
/* no need to clean point data - keep it cached*/
}
void
Shape::MakeEdgeData (bool nVal)
{
if (nVal)
{
if (_has_edges_data == false)
{
_has_edges_data = true;
eData.resize(maxAr);
}
}
else
{
if (_has_edges_data)
{
_has_edges_data = false;
eData.clear();
}
}
}
void
Shape::MakeRasterData (bool nVal)
{
if (nVal)
{
if (_has_raster_data == false)
{
_has_raster_data = true;
swrData.resize(maxAr);
}
}
else
{
if (_has_raster_data)
{
_has_raster_data = false;
swrData.clear();
}
}
}
void
Shape::MakeQuickRasterData (bool nVal)
{
if (nVal)
{
if (_has_quick_raster_data == false)
{
_has_quick_raster_data = true;
qrsData = (quick_raster_data*)realloc(qrsData, maxAr * sizeof(quick_raster_data));
}
}
else
{
if (_has_quick_raster_data)
{
_has_quick_raster_data = false;
}
}
}
void
Shape::MakeSweepSrcData (bool nVal)
{
if (nVal)
{
if (_has_sweep_src_data == false)
{
_has_sweep_src_data = true;
swsData.resize(maxAr);
}
}
else
{
if (_has_sweep_src_data)
{
_has_sweep_src_data = false;
swsData.clear();
}
}
}
void
Shape::MakeSweepDestData (bool nVal)
{
if (nVal)
{
if (_has_sweep_dest_data == false)
{
_has_sweep_dest_data = true;
swdData.resize(maxAr);
}
}
else
{
if (_has_sweep_dest_data)
{
_has_sweep_dest_data = false;
swdData.clear();
}
}
}
void
Shape::MakeBackData (bool nVal)
{
if (nVal)
{
if (_has_back_data == false)
{
_has_back_data = true;
ebData.resize(maxAr);
}
}
else
{
if (_has_back_data)
{
_has_back_data = false;
ebData.clear();
}
}
}
void
Shape::MakeVoronoiData (bool nVal)
{
if (nVal)
{
if (_has_voronoi_data == false)
{
_has_voronoi_data = true;
vorpData.resize(maxPt);
voreData.resize(maxAr);
}
}
else
{
if (_has_voronoi_data)
{
_has_voronoi_data = false;
vorpData.clear();
voreData.clear();
}
}
}
/**
* Copy point and edge data from `who' into this object, discarding
* any cached data that we have.
*/
void
Shape::Copy (Shape * who)
{
if (who == NULL)
{
Reset (0, 0);
return;
}
MakePointData (false);
MakeEdgeData (false);
MakeSweepSrcData (false);
MakeSweepDestData (false);
MakeRasterData (false);
MakeQuickRasterData (false);
MakeBackData (false);
delete sTree;
sTree = NULL;
delete sEvts;
sEvts = NULL;
Reset (who->numberOfPoints(), who->numberOfEdges());
type = who->type;
_need_points_sorting = who->_need_points_sorting;
_need_edges_sorting = who->_need_edges_sorting;
_has_points_data = false;
_point_data_initialised = false;
_has_edges_data = false;
_has_sweep_src_data = false;
_has_sweep_dest_data = false;
_has_raster_data = false;
_has_quick_raster_data = false;
_has_back_data = false;
_has_voronoi_data = false;
_bbox_up_to_date = false;
_pts = who->_pts;
_aretes = who->_aretes;
}
/**
* Clear points and edges and prepare internal data using new size.
*/
void
Shape::Reset (int pointCount, int edgeCount)
{
_pts.clear();
_aretes.clear();
type = shape_polygon;
if (pointCount > maxPt)
{
maxPt = pointCount;
if (_has_points_data)
pData.resize(maxPt);
if (_has_voronoi_data)
vorpData.resize(maxPt);
}
if (edgeCount > maxAr)
{
maxAr = edgeCount;
if (_has_edges_data)
eData.resize(maxAr);
if (_has_sweep_dest_data)
swdData.resize(maxAr);
if (_has_sweep_src_data)
swsData.resize(maxAr);
if (_has_back_data)
ebData.resize(maxAr);
if (_has_voronoi_data)
voreData.resize(maxAr);
}
_need_points_sorting = false;
_need_edges_sorting = false;
_point_data_initialised = false;
_bbox_up_to_date = false;
}
int
Shape::AddPoint (const NR::Point x)
{
if (numberOfPoints() >= maxPt)
{
maxPt = 2 * numberOfPoints() + 1;
if (_has_points_data)
pData.resize(maxPt);
if (_has_voronoi_data)
vorpData.resize(maxPt);
}
dg_point p;
p.x = x;
p.dI = p.dO = 0;
p.incidentEdge[FIRST] = p.incidentEdge[LAST] = -1;
p.oldDegree = -1;
_pts.push_back(p);
int const n = _pts.size() - 1;
if (_has_points_data)
{
pData[n].pending = 0;
pData[n].edgeOnLeft = -1;
pData[n].nextLinkedPoint = -1;
pData[n].askForWindingS = NULL;
pData[n].askForWindingB = -1;
pData[n].rx[0] = Round(p.x[0]);
pData[n].rx[1] = Round(p.x[1]);
}
if (_has_voronoi_data)
{
vorpData[n].value = 0.0;
vorpData[n].winding = -2;
}
_need_points_sorting = true;
return n;
}
void
Shape::SubPoint (int p)
{
if (p < 0 || p >= numberOfPoints())
return;
_need_points_sorting = true;
int cb;
cb = getPoint(p).incidentEdge[FIRST];
while (cb >= 0 && cb < numberOfEdges())
{
if (getEdge(cb).st == p)
{
int ncb = getEdge(cb).nextS;
_aretes[cb].nextS = _aretes[cb].prevS = -1;
_aretes[cb].st = -1;
cb = ncb;
}
else if (getEdge(cb).en == p)
{
int ncb = getEdge(cb).nextE;
_aretes[cb].nextE = _aretes[cb].prevE = -1;
_aretes[cb].en = -1;
cb = ncb;
}
else
{
break;
}
}
_pts[p].incidentEdge[FIRST] = _pts[p].incidentEdge[LAST] = -1;
if (p < numberOfPoints() - 1)
SwapPoints (p, numberOfPoints() - 1);
_pts.pop_back();
}
void
Shape::SwapPoints (int a, int b)
{
if (a == b)
return;
if (getPoint(a).totalDegree() == 2 && getPoint(b).totalDegree() == 2)
{
int cb = getPoint(a).incidentEdge[FIRST];
if (getEdge(cb).st == a)
{
_aretes[cb].st = numberOfPoints();
}
else if (getEdge(cb).en == a)
{
_aretes[cb].en = numberOfPoints();
}
cb = getPoint(a).incidentEdge[LAST];
if (getEdge(cb).st == a)
{
_aretes[cb].st = numberOfPoints();
}
else if (getEdge(cb).en == a)
{
_aretes[cb].en = numberOfPoints();
}
cb = getPoint(b).incidentEdge[FIRST];
if (getEdge(cb).st == b)
{
_aretes[cb].st = a;
}
else if (getEdge(cb).en == b)
{
_aretes[cb].en = a;
}
cb = getPoint(b).incidentEdge[LAST];
if (getEdge(cb).st == b)
{
_aretes[cb].st = a;
}
else if (getEdge(cb).en == b)
{
_aretes[cb].en = a;
}
cb = getPoint(a).incidentEdge[FIRST];
if (getEdge(cb).st == numberOfPoints())
{
_aretes[cb].st = b;
}
else if (getEdge(cb).en == numberOfPoints())
{
_aretes[cb].en = b;
}
cb = getPoint(a).incidentEdge[LAST];
if (getEdge(cb).st == numberOfPoints())
{
_aretes[cb].st = b;
}
else if (getEdge(cb).en == numberOfPoints())
{
_aretes[cb].en = b;
}
}
else
{
int cb;
cb = getPoint(a).incidentEdge[FIRST];
while (cb >= 0)
{
int ncb = NextAt (a, cb);
if (getEdge(cb).st == a)
{
_aretes[cb].st = numberOfPoints();
}
else if (getEdge(cb).en == a)
{
_aretes[cb].en = numberOfPoints();
}
cb = ncb;
}
cb = getPoint(b).incidentEdge[FIRST];
while (cb >= 0)
{
int ncb = NextAt (b, cb);
if (getEdge(cb).st == b)
{
_aretes[cb].st = a;
}
else if (getEdge(cb).en == b)
{
_aretes[cb].en = a;
}
cb = ncb;
}
cb = getPoint(a).incidentEdge[FIRST];
while (cb >= 0)
{
int ncb = NextAt (numberOfPoints(), cb);
if (getEdge(cb).st == numberOfPoints())
{
_aretes[cb].st = b;
}
else if (getEdge(cb).en == numberOfPoints())
{
_aretes[cb].en = b;
}
cb = ncb;
}
}
{
dg_point swap = getPoint(a);
_pts[a] = getPoint(b);
_pts[b] = swap;
}
if (_has_points_data)
{
point_data swad = pData[a];
pData[a] = pData[b];
pData[b] = swad;
// pData[pData[a].oldInd].newInd=a;
// pData[pData[b].oldInd].newInd=b;
}
if (_has_voronoi_data)
{
voronoi_point swav = vorpData[a];
vorpData[a] = vorpData[b];
vorpData[b] = swav;
}
}
void
Shape::SwapPoints (int a, int b, int c)
{
if (a == b || b == c || a == c)
return;
SwapPoints (a, b);
SwapPoints (b, c);
}
void
Shape::SortPoints (void)
{
if (_need_points_sorting && hasPoints())
SortPoints (0, numberOfPoints() - 1);
_need_points_sorting = false;
}
void
Shape::SortPointsRounded (void)
{
if (hasPoints())
SortPointsRounded (0, numberOfPoints() - 1);
}
void
Shape::SortPoints (int s, int e)
{
if (s >= e)
return;
if (e == s + 1)
{
if (getPoint(s).x[1] > getPoint(e).x[1]
|| (getPoint(s).x[1] == getPoint(e).x[1] && getPoint(s).x[0] > getPoint(e).x[0]))
SwapPoints (s, e);
return;
}
int ppos = (s + e) / 2;
int plast = ppos;
double pvalx = getPoint(ppos).x[0];
double pvaly = getPoint(ppos).x[1];
int le = s, ri = e;
while (le < ppos || ri > plast)
{
if (le < ppos)
{
do
{
int test = 0;
if (getPoint(le).x[1] > pvaly)
{
test = 1;
}
else if (getPoint(le).x[1] == pvaly)
{
if (getPoint(le).x[0] > pvalx)
{
test = 1;
}
else if (getPoint(le).x[0] == pvalx)
{
test = 0;
}
else
{
test = -1;
}
}
else
{
test = -1;
}
if (test == 0)
{
// on colle les valeurs egales au pivot ensemble
if (le < ppos - 1)
{
SwapPoints (le, ppos - 1, ppos);
ppos--;
continue; // sans changer le
}
else if (le == ppos - 1)
{
ppos--;
break;
}
else
{
// oupsie
break;
}
}
if (test > 0)
{
break;
}
le++;
}
while (le < ppos);
}
if (ri > plast)
{
do
{
int test = 0;
if (getPoint(ri).x[1] > pvaly)
{
test = 1;
}
else if (getPoint(ri).x[1] == pvaly)
{
if (getPoint(ri).x[0] > pvalx)
{
test = 1;
}
else if (getPoint(ri).x[0] == pvalx)
{
test = 0;
}
else
{
test = -1;
}
}
else
{
test = -1;
}
if (test == 0)
{
// on colle les valeurs egales au pivot ensemble
if (ri > plast + 1)
{
SwapPoints (ri, plast + 1, plast);
plast++;
continue; // sans changer ri
}
else if (ri == plast + 1)
{
plast++;
break;
}
else
{
// oupsie
break;
}
}
if (test < 0)
{
break;
}
ri--;
}
while (ri > plast);
}
if (le < ppos)
{
if (ri > plast)
{
SwapPoints (le, ri);
le++;
ri--;
}
else
{
if (le < ppos - 1)
{
SwapPoints (ppos - 1, plast, le);
ppos--;
plast--;
}
else if (le == ppos - 1)
{
SwapPoints (plast, le);
ppos--;
plast--;
}
}
}
else
{
if (ri > plast + 1)
{
SwapPoints (plast + 1, ppos, ri);
ppos++;
plast++;
}
else if (ri == plast + 1)
{
SwapPoints (ppos, ri);
ppos++;
plast++;
}
else
{
break;
}
}
}
SortPoints (s, ppos - 1);
SortPoints (plast + 1, e);
}
void
Shape::SortPointsByOldInd (int s, int e)
{
if (s >= e)
return;
if (e == s + 1)
{
if (getPoint(s).x[1] > getPoint(e).x[1] || (getPoint(s).x[1] == getPoint(e).x[1] && getPoint(s).x[0] > getPoint(e).x[0])
|| (getPoint(s).x[1] == getPoint(e).x[1] && getPoint(s).x[0] == getPoint(e).x[0]
&& pData[s].oldInd > pData[e].oldInd))
SwapPoints (s, e);
return;
}
int ppos = (s + e) / 2;
int plast = ppos;
double pvalx = getPoint(ppos).x[0];
double pvaly = getPoint(ppos).x[1];
int pvali = pData[ppos].oldInd;
int le = s, ri = e;
while (le < ppos || ri > plast)
{
if (le < ppos)
{
do
{
int test = 0;
if (getPoint(le).x[1] > pvaly)
{
test = 1;
}
else if (getPoint(le).x[1] == pvaly)
{
if (getPoint(le).x[0] > pvalx)
{
test = 1;
}
else if (getPoint(le).x[0] == pvalx)
{
if (pData[le].oldInd > pvali)
{
test = 1;
}
else if (pData[le].oldInd == pvali)
{
test = 0;
}
else
{
test = -1;
}
}
else
{
test = -1;
}
}
else
{
test = -1;
}
if (test == 0)
{
// on colle les valeurs egales au pivot ensemble
if (le < ppos - 1)
{
SwapPoints (le, ppos - 1, ppos);
ppos--;
continue; // sans changer le
}
else if (le == ppos - 1)
{
ppos--;
break;
}
else
{
// oupsie
break;
}
}
if (test > 0)
{
break;
}
le++;
}
while (le < ppos);
}
if (ri > plast)
{
do
{
int test = 0;
if (getPoint(ri).x[1] > pvaly)
{
test = 1;
}
else if (getPoint(ri).x[1] == pvaly)
{
if (getPoint(ri).x[0] > pvalx)
{
test = 1;
}
else if (getPoint(ri).x[0] == pvalx)
{
if (pData[ri].oldInd > pvali)
{
test = 1;
}
else if (pData[ri].oldInd == pvali)
{
test = 0;
}
else
{
test = -1;
}
}
else
{
test = -1;
}
}
else
{
test = -1;
}
if (test == 0)
{
// on colle les valeurs egales au pivot ensemble
if (ri > plast + 1)
{
SwapPoints (ri, plast + 1, plast);
plast++;
continue; // sans changer ri
}
else if (ri == plast + 1)
{
plast++;
break;
}
else
{
// oupsie
break;
}
}
if (test < 0)
{
break;
}
ri--;
}
while (ri > plast);
}
if (le < ppos)
{
if (ri > plast)
{
SwapPoints (le, ri);
le++;
ri--;
}
else
{
if (le < ppos - 1)
{
SwapPoints (ppos - 1, plast, le);
ppos--;
plast--;
}
else if (le == ppos - 1)
{
SwapPoints (plast, le);
ppos--;
plast--;
}
}
}
else
{
if (ri > plast + 1)
{
SwapPoints (plast + 1, ppos, ri);
ppos++;
plast++;
}
else if (ri == plast + 1)
{
SwapPoints (ppos, ri);
ppos++;
plast++;
}
else
{
break;
}
}
}
SortPointsByOldInd (s, ppos - 1);
SortPointsByOldInd (plast + 1, e);
}
void
Shape::SortPointsRounded (int s, int e)
{
if (s >= e)
return;
if (e == s + 1)
{
if (pData[s].rx[1] > pData[e].rx[1]
|| (pData[s].rx[1] == pData[e].rx[1] && pData[s].rx[0] > pData[e].rx[0]))
SwapPoints (s, e);
return;
}
int ppos = (s + e) / 2;
int plast = ppos;
double pvalx = pData[ppos].rx[0];
double pvaly = pData[ppos].rx[1];
int le = s, ri = e;
while (le < ppos || ri > plast)
{
if (le < ppos)
{
do
{
int test = 0;
if (pData[le].rx[1] > pvaly)
{
test = 1;
}
else if (pData[le].rx[1] == pvaly)
{
if (pData[le].rx[0] > pvalx)
{
test = 1;
}
else if (pData[le].rx[0] == pvalx)
{
test = 0;
}
else
{
test = -1;
}
}
else
{
test = -1;
}
if (test == 0)
{
// on colle les valeurs egales au pivot ensemble
if (le < ppos - 1)
{
SwapPoints (le, ppos - 1, ppos);
ppos--;
continue; // sans changer le
}
else if (le == ppos - 1)
{
ppos--;
break;
}
else
{
// oupsie
break;
}
}
if (test > 0)
{
break;
}
le++;
}
while (le < ppos);
}
if (ri > plast)
{
do
{
int test = 0;
if (pData[ri].rx[1] > pvaly)
{
test = 1;
}
else if (pData[ri].rx[1] == pvaly)
{
if (pData[ri].rx[0] > pvalx)
{
test = 1;
}
else if (pData[ri].rx[0] == pvalx)
{
test = 0;
}
else
{
test = -1;
}
}
else
{
test = -1;
}
if (test == 0)
{
// on colle les valeurs egales au pivot ensemble
if (ri > plast + 1)
{
SwapPoints (ri, plast + 1, plast);
plast++;
continue; // sans changer ri
}
else if (ri == plast + 1)
{
plast++;
break;
}
else
{
// oupsie
break;
}
}
if (test < 0)
{
break;
}
ri--;
}
while (ri > plast);
}
if (le < ppos)
{
if (ri > plast)
{
SwapPoints (le, ri);
le++;
ri--;
}
else
{
if (le < ppos - 1)
{
SwapPoints (ppos - 1, plast, le);
ppos--;
plast--;
}
else if (le == ppos - 1)
{
SwapPoints (plast, le);
ppos--;
plast--;
}
}
}
else
{
if (ri > plast + 1)
{
SwapPoints (plast + 1, ppos, ri);
ppos++;
plast++;
}
else if (ri == plast + 1)
{
SwapPoints (ppos, ri);
ppos++;
plast++;
}
else
{
break;
}
}
}
SortPointsRounded (s, ppos - 1);
SortPointsRounded (plast + 1, e);
}
/*
*
*/
int
Shape::AddEdge (int st, int en)
{
if (st == en)
return -1;
if (st < 0 || en < 0)
return -1;
type = shape_graph;
if (numberOfEdges() >= maxAr)
{
maxAr = 2 * numberOfEdges() + 1;
if (_has_edges_data)
eData.resize(maxAr);
if (_has_sweep_src_data)
swsData.resize(maxAr);
if (_has_sweep_dest_data)
swdData.resize(maxAr);
if (_has_raster_data)
swrData.resize(maxAr);
if (_has_back_data)
ebData.resize(maxAr);
if (_has_voronoi_data)
voreData.resize(maxAr);
}
dg_arete a;
a.dx = NR::Point(0, 0);
a.st = a.en = -1;
a.prevS = a.nextS = -1;
a.prevE = a.nextE = -1;
if (st >= 0 && en >= 0) {
a.dx = getPoint(en).x - getPoint(st).x;
}
_aretes.push_back(a);
int const n = numberOfEdges() - 1;
ConnectStart (st, n);
ConnectEnd (en, n);
if (_has_edges_data)
{
eData[n].weight = 1;
eData[n].rdx = getEdge(n).dx;
}
if (_has_sweep_src_data)
{
swsData[n].misc = NULL;
swsData[n].firstLinkedPoint = -1;
}
if (_has_back_data)
{
ebData[n].pathID = -1;
ebData[n].pieceID = -1;
ebData[n].tSt = ebData[n].tEn = 0;
}
if (_has_voronoi_data)
{
voreData[n].leF = -1;
voreData[n].riF = -1;
}
_need_edges_sorting = true;
return n;
}
int
Shape::AddEdge (int st, int en, int leF, int riF)
{
if (st == en)
return -1;
if (st < 0 || en < 0)
return -1;
{
int cb = getPoint(st).incidentEdge[FIRST];
while (cb >= 0)
{
if (getEdge(cb).st == st && getEdge(cb).en == en)
return -1; // doublon
if (getEdge(cb).st == en && getEdge(cb).en == st)
return -1; // doublon
cb = NextAt (st, cb);
}
}
type = shape_graph;
if (numberOfEdges() >= maxAr)
{
maxAr = 2 * numberOfEdges() + 1;
if (_has_edges_data)
eData.resize(maxAr);
if (_has_sweep_src_data)
swsData.resize(maxAr);
if (_has_sweep_dest_data)
swdData.resize(maxAr);
if (_has_raster_data)
swrData.resize(maxAr);
if (_has_back_data)
ebData.resize(maxAr);
if (_has_voronoi_data)
voreData.resize(maxAr);
}
dg_arete a;
a.dx = NR::Point(0, 0);
a.st = a.en = -1;
a.prevS = a.nextS = -1;
a.prevE = a.nextE = -1;
if (st >= 0 && en >= 0) {
a.dx = getPoint(en).x - getPoint(st).x;
}
_aretes.push_back(a);
int const n = numberOfEdges() - 1;
ConnectStart (st, n);
ConnectEnd (en, n);
if (_has_edges_data)
{
eData[n].weight = 1;
eData[n].rdx = getEdge(n).dx;
}
if (_has_sweep_src_data)
{
swsData[n].misc = NULL;
swsData[n].firstLinkedPoint = -1;
}
if (_has_back_data)
{
ebData[n].pathID = -1;
ebData[n].pieceID = -1;
ebData[n].tSt = ebData[n].tEn = 0;
}
if (_has_voronoi_data)
{
voreData[n].leF = leF;
voreData[n].riF = riF;
}
_need_edges_sorting = true;
return n;
}
void
Shape::SubEdge (int e)
{
if (e < 0 || e >= numberOfEdges())
return;
type = shape_graph;
DisconnectStart (e);
DisconnectEnd (e);
if (e < numberOfEdges() - 1)
SwapEdges (e, numberOfEdges() - 1);
_aretes.pop_back();
_need_edges_sorting = true;
}
void
Shape::SwapEdges (int a, int b)
{
if (a == b)
return;
if (getEdge(a).prevS >= 0 && getEdge(a).prevS != b)
{
if (getEdge(getEdge(a).prevS).st == getEdge(a).st)
{
_aretes[getEdge(a).prevS].nextS = b;
}
else if (getEdge(getEdge(a).prevS).en == getEdge(a).st)
{
_aretes[getEdge(a).prevS].nextE = b;
}
}
if (getEdge(a).nextS >= 0 && getEdge(a).nextS != b)
{
if (getEdge(getEdge(a).nextS).st == getEdge(a).st)
{
_aretes[getEdge(a).nextS].prevS = b;
}
else if (getEdge(getEdge(a).nextS).en == getEdge(a).st)
{
_aretes[getEdge(a).nextS].prevE = b;
}
}
if (getEdge(a).prevE >= 0 && getEdge(a).prevE != b)
{
if (getEdge(getEdge(a).prevE).st == getEdge(a).en)
{
_aretes[getEdge(a).prevE].nextS = b;
}
else if (getEdge(getEdge(a).prevE).en == getEdge(a).en)
{
_aretes[getEdge(a).prevE].nextE = b;
}
}
if (getEdge(a).nextE >= 0 && getEdge(a).nextE != b)
{
if (getEdge(getEdge(a).nextE).st == getEdge(a).en)
{
_aretes[getEdge(a).nextE].prevS = b;
}
else if (getEdge(getEdge(a).nextE).en == getEdge(a).en)
{
_aretes[getEdge(a).nextE].prevE = b;
}
}
if (getEdge(a).st >= 0)
{
if (getPoint(getEdge(a).st).incidentEdge[FIRST] == a)
_pts[getEdge(a).st].incidentEdge[FIRST] = numberOfEdges();
if (getPoint(getEdge(a).st).incidentEdge[LAST] == a)
_pts[getEdge(a).st].incidentEdge[LAST] = numberOfEdges();
}
if (getEdge(a).en >= 0)
{
if (getPoint(getEdge(a).en).incidentEdge[FIRST] == a)
_pts[getEdge(a).en].incidentEdge[FIRST] = numberOfEdges();
if (getPoint(getEdge(a).en).incidentEdge[LAST] == a)
_pts[getEdge(a).en].incidentEdge[LAST] = numberOfEdges();
}
if (getEdge(b).prevS >= 0 && getEdge(b).prevS != a)
{
if (getEdge(getEdge(b).prevS).st == getEdge(b).st)
{
_aretes[getEdge(b).prevS].nextS = a;
}
else if (getEdge(getEdge(b).prevS).en == getEdge(b).st)
{
_aretes[getEdge(b).prevS].nextE = a;
}
}
if (getEdge(b).nextS >= 0 && getEdge(b).nextS != a)
{
if (getEdge(getEdge(b).nextS).st == getEdge(b).st)
{
_aretes[getEdge(b).nextS].prevS = a;
}
else if (getEdge(getEdge(b).nextS).en == getEdge(b).st)
{
_aretes[getEdge(b).nextS].prevE = a;
}
}
if (getEdge(b).prevE >= 0 && getEdge(b).prevE != a)
{
if (getEdge(getEdge(b).prevE).st == getEdge(b).en)
{
_aretes[getEdge(b).prevE].nextS = a;
}
else if (getEdge(getEdge(b).prevE).en == getEdge(b).en)
{
_aretes[getEdge(b).prevE].nextE = a;
}
}
if (getEdge(b).nextE >= 0 && getEdge(b).nextE != a)
{
if (getEdge(getEdge(b).nextE).st == getEdge(b).en)
{
_aretes[getEdge(b).nextE].prevS = a;
}
else if (getEdge(getEdge(b).nextE).en == getEdge(b).en)
{
_aretes[getEdge(b).nextE].prevE = a;
}
}
for (int i = 0; i < 2; i++) {
int p = getEdge(b).st;
if (p >= 0) {
if (getPoint(p).incidentEdge[i] == b) {
_pts[p].incidentEdge[i] = a;
}
}
p = getEdge(b).en;
if (p >= 0) {
if (getPoint(p).incidentEdge[i] == b) {
_pts[p].incidentEdge[i] = a;
}
}
p = getEdge(a).st;
if (p >= 0) {
if (getPoint(p).incidentEdge[i] == numberOfEdges()) {
_pts[p].incidentEdge[i] = b;
}
}
p = getEdge(a).en;
if (p >= 0) {
if (getPoint(p).incidentEdge[i] == numberOfEdges()) {
_pts[p].incidentEdge[i] = b;
}
}
}
if (getEdge(a).prevS == b)
_aretes[a].prevS = a;
if (getEdge(a).prevE == b)
_aretes[a].prevE = a;
if (getEdge(a).nextS == b)
_aretes[a].nextS = a;
if (getEdge(a).nextE == b)
_aretes[a].nextE = a;
if (getEdge(b).prevS == a)
_aretes[a].prevS = b;
if (getEdge(b).prevE == a)
_aretes[a].prevE = b;
if (getEdge(b).nextS == a)
_aretes[a].nextS = b;
if (getEdge(b).nextE == a)
_aretes[a].nextE = b;
dg_arete swap = getEdge(a);
_aretes[a] = getEdge(b);
_aretes[b] = swap;
if (_has_edges_data)
{
edge_data swae = eData[a];
eData[a] = eData[b];
eData[b] = swae;
}
if (_has_sweep_src_data)
{
sweep_src_data swae = swsData[a];
swsData[a] = swsData[b];
swsData[b] = swae;
}
if (_has_sweep_dest_data)
{
sweep_dest_data swae = swdData[a];
swdData[a] = swdData[b];
swdData[b] = swae;
}
if (_has_raster_data)
{
raster_data swae = swrData[a];
swrData[a] = swrData[b];
swrData[b] = swae;
}
if (_has_back_data)
{
back_data swae = ebData[a];
ebData[a] = ebData[b];
ebData[b] = swae;
}
if (_has_voronoi_data)
{
voronoi_edge swav = voreData[a];
voreData[a] = voreData[b];
voreData[b] = swav;
}
}
void
Shape::SwapEdges (int a, int b, int c)
{
if (a == b || b == c || a == c)
return;
SwapEdges (a, b);
SwapEdges (b, c);
}
void
Shape::SortEdges (void)
{
if (_need_edges_sorting == false) {
return;
}
_need_edges_sorting = false;
edge_list *list = (edge_list *) g_malloc(numberOfEdges() * sizeof (edge_list));
for (int p = 0; p < numberOfPoints(); p++)
{
int const d = getPoint(p).totalDegree();
if (d > 1)
{
int cb;
cb = getPoint(p).incidentEdge[FIRST];
int nb = 0;
while (cb >= 0)
{
int n = nb++;
list[n].no = cb;
if (getEdge(cb).st == p)
{
list[n].x = getEdge(cb).dx;
list[n].starting = true;
}
else
{
list[n].x = -getEdge(cb).dx;
list[n].starting = false;
}
cb = NextAt (p, cb);
}
SortEdgesList (list, 0, nb - 1);
_pts[p].incidentEdge[FIRST] = list[0].no;
_pts[p].incidentEdge[LAST] = list[nb - 1].no;
for (int i = 0; i < nb; i++)
{
if (list[i].starting)
{
if (i > 0)
{
_aretes[list[i].no].prevS = list[i - 1].no;
}
else
{
_aretes[list[i].no].prevS = -1;
}
if (i < nb - 1)
{
_aretes[list[i].no].nextS = list[i + 1].no;
}
else
{
_aretes[list[i].no].nextS = -1;
}
}
else
{
if (i > 0)
{
_aretes[list[i].no].prevE = list[i - 1].no;
}
else
{
_aretes[list[i].no].prevE = -1;
}
if (i < nb - 1)
{
_aretes[list[i].no].nextE = list[i + 1].no;
}
else
{
_aretes[list[i].no].nextE = -1;
}
}
}
}
}
g_free(list);
}
int
Shape::CmpToVert (NR::Point ax, NR::Point bx,bool as,bool bs)
{
int tstAX = 0;
int tstAY = 0;
int tstBX = 0;
int tstBY = 0;
if (ax[0] > 0)
tstAX = 1;
if (ax[0] < 0)
tstAX = -1;
if (ax[1] > 0)
tstAY = 1;
if (ax[1] < 0)
tstAY = -1;
if (bx[0] > 0)
tstBX = 1;
if (bx[0] < 0)
tstBX = -1;
if (bx[1] > 0)
tstBY = 1;
if (bx[1] < 0)
tstBY = -1;
int quadA = 0, quadB = 0;
if (tstAX < 0)
{
if (tstAY < 0)
{
quadA = 7;
}
else if (tstAY == 0)
{
quadA = 6;
}
else if (tstAY > 0)
{
quadA = 5;
}
}
else if (tstAX == 0)
{
if (tstAY < 0)
{
quadA = 0;
}
else if (tstAY == 0)
{
quadA = -1;
}
else if (tstAY > 0)
{
quadA = 4;
}
}
else if (tstAX > 0)
{
if (tstAY < 0)
{
quadA = 1;
}
else if (tstAY == 0)
{
quadA = 2;
}
else if (tstAY > 0)
{
quadA = 3;
}
}
if (tstBX < 0)
{
if (tstBY < 0)
{
quadB = 7;
}
else if (tstBY == 0)
{
quadB = 6;
}
else if (tstBY > 0)
{
quadB = 5;
}
}
else if (tstBX == 0)
{
if (tstBY < 0)
{
quadB = 0;
}
else if (tstBY == 0)
{
quadB = -1;
}
else if (tstBY > 0)
{
quadB = 4;
}
}
else if (tstBX > 0)
{
if (tstBY < 0)
{
quadB = 1;
}
else if (tstBY == 0)
{
quadB = 2;
}
else if (tstBY > 0)
{
quadB = 3;
}
}
if (quadA < quadB)
return 1;
if (quadA > quadB)
return -1;
NR::Point av, bv;
av = ax;
bv = bx;
double si = cross (bv, av);
int tstSi = 0;
if (si > 0.000001) tstSi = 1;
if (si < -0.000001) tstSi = -1;
if ( tstSi == 0 ) {
if ( as == true && bs == false ) return -1;
if ( as == false && bs == true ) return 1;
}
return tstSi;
}
void
Shape::SortEdgesList (edge_list * list, int s, int e)
{
if (s >= e)
return;
if (e == s + 1) {
int cmpval=CmpToVert (list[e].x, list[s].x,list[e].starting,list[s].starting);
if ( cmpval > 0 ) { // priorite aux sortants
edge_list swap = list[s];
list[s] = list[e];
list[e] = swap;
}
return;
}
int ppos = (s + e) / 2;
int plast = ppos;
NR::Point pvalx = list[ppos].x;
bool pvals = list[ppos].starting;
int le = s, ri = e;
while (le < ppos || ri > plast)
{
if (le < ppos)
{
do
{
int test = CmpToVert (pvalx, list[le].x,pvals,list[le].starting);
if (test == 0)
{
// on colle les valeurs egales au pivot ensemble
if (le < ppos - 1)
{
edge_list swap = list[le];
list[le] = list[ppos - 1];
list[ppos - 1] = list[ppos];
list[ppos] = swap;
ppos--;
continue; // sans changer le
}
else if (le == ppos - 1)
{
ppos--;
break;
}
else
{
// oupsie
break;
}
}
if (test > 0)
{
break;
}
le++;
}
while (le < ppos);
}
if (ri > plast)
{
do
{
int test = CmpToVert (pvalx, list[ri].x,pvals,list[ri].starting);
if (test == 0)
{
// on colle les valeurs egales au pivot ensemble
if (ri > plast + 1)
{
edge_list swap = list[ri];
list[ri] = list[plast + 1];
list[plast + 1] = list[plast];
list[plast] = swap;
plast++;
continue; // sans changer ri
}
else if (ri == plast + 1)
{
plast++;
break;
}
else
{
// oupsie
break;
}
}
if (test < 0)
{
break;
}
ri--;
}
while (ri > plast);
}
if (le < ppos)
{
if (ri > plast)
{
edge_list swap = list[le];
list[le] = list[ri];
list[ri] = swap;
le++;
ri--;
}
else if (le < ppos - 1)
{
edge_list swap = list[ppos - 1];
list[ppos - 1] = list[plast];
list[plast] = list[le];
list[le] = swap;
ppos--;
plast--;
}
else if (le == ppos - 1)
{
edge_list swap = list[plast];
list[plast] = list[le];
list[le] = swap;
ppos--;
plast--;
}
else
{
break;
}
}
else
{
if (ri > plast + 1)
{
edge_list swap = list[plast + 1];
list[plast + 1] = list[ppos];
list[ppos] = list[ri];
list[ri] = swap;
ppos++;
plast++;
}
else if (ri == plast + 1)
{
edge_list swap = list[ppos];
list[ppos] = list[ri];
list[ri] = swap;
ppos++;
plast++;
}
else
{
break;
}
}
}
SortEdgesList (list, s, ppos - 1);
SortEdgesList (list, plast + 1, e);
}
/*
*
*/
void
Shape::ConnectStart (int p, int b)
{
if (getEdge(b).st >= 0)
DisconnectStart (b);
_aretes[b].st = p;
_pts[p].dO++;
_aretes[b].nextS = -1;
_aretes[b].prevS = getPoint(p).incidentEdge[LAST];
if (getPoint(p).incidentEdge[LAST] >= 0)
{
if (getEdge(getPoint(p).incidentEdge[LAST]).st == p)
{
_aretes[getPoint(p).incidentEdge[LAST]].nextS = b;
}
else if (getEdge(getPoint(p).incidentEdge[LAST]).en == p)
{
_aretes[getPoint(p).incidentEdge[LAST]].nextE = b;
}
}
_pts[p].incidentEdge[LAST] = b;
if (getPoint(p).incidentEdge[FIRST] < 0)
_pts[p].incidentEdge[FIRST] = b;
}
void
Shape::ConnectEnd (int p, int b)
{
if (getEdge(b).en >= 0)
DisconnectEnd (b);
_aretes[b].en = p;
_pts[p].dI++;
_aretes[b].nextE = -1;
_aretes[b].prevE = getPoint(p).incidentEdge[LAST];
if (getPoint(p).incidentEdge[LAST] >= 0)
{
if (getEdge(getPoint(p).incidentEdge[LAST]).st == p)
{
_aretes[getPoint(p).incidentEdge[LAST]].nextS = b;
}
else if (getEdge(getPoint(p).incidentEdge[LAST]).en == p)
{
_aretes[getPoint(p).incidentEdge[LAST]].nextE = b;
}
}
_pts[p].incidentEdge[LAST] = b;
if (getPoint(p).incidentEdge[FIRST] < 0)
_pts[p].incidentEdge[FIRST] = b;
}
void
Shape::DisconnectStart (int b)
{
if (getEdge(b).st < 0)
return;
_pts[getEdge(b).st].dO--;
if (getEdge(b).prevS >= 0)
{
if (getEdge(getEdge(b).prevS).st == getEdge(b).st)
{
_aretes[getEdge(b).prevS].nextS = getEdge(b).nextS;
}
else if (getEdge(getEdge(b).prevS).en == getEdge(b).st)
{
_aretes[getEdge(b).prevS].nextE = getEdge(b).nextS;
}
}
if (getEdge(b).nextS >= 0)
{
if (getEdge(getEdge(b).nextS).st == getEdge(b).st)
{
_aretes[getEdge(b).nextS].prevS = getEdge(b).prevS;
}
else if (getEdge(getEdge(b).nextS).en == getEdge(b).st)
{
_aretes[getEdge(b).nextS].prevE = getEdge(b).prevS;
}
}
if (getPoint(getEdge(b).st).incidentEdge[FIRST] == b)
_pts[getEdge(b).st].incidentEdge[FIRST] = getEdge(b).nextS;
if (getPoint(getEdge(b).st).incidentEdge[LAST] == b)
_pts[getEdge(b).st].incidentEdge[LAST] = getEdge(b).prevS;
_aretes[b].st = -1;
}
void
Shape::DisconnectEnd (int b)
{
if (getEdge(b).en < 0)
return;
_pts[getEdge(b).en].dI--;
if (getEdge(b).prevE >= 0)
{
if (getEdge(getEdge(b).prevE).st == getEdge(b).en)
{
_aretes[getEdge(b).prevE].nextS = getEdge(b).nextE;
}
else if (getEdge(getEdge(b).prevE).en == getEdge(b).en)
{
_aretes[getEdge(b).prevE].nextE = getEdge(b).nextE;
}
}
if (getEdge(b).nextE >= 0)
{
if (getEdge(getEdge(b).nextE).st == getEdge(b).en)
{
_aretes[getEdge(b).nextE].prevS = getEdge(b).prevE;
}
else if (getEdge(getEdge(b).nextE).en == getEdge(b).en)
{
_aretes[getEdge(b).nextE].prevE = getEdge(b).prevE;
}
}
if (getPoint(getEdge(b).en).incidentEdge[FIRST] == b)
_pts[getEdge(b).en].incidentEdge[FIRST] = getEdge(b).nextE;
if (getPoint(getEdge(b).en).incidentEdge[LAST] == b)
_pts[getEdge(b).en].incidentEdge[LAST] = getEdge(b).prevE;
_aretes[b].en = -1;
}
void
Shape::Inverse (int b)
{
int swap;
swap = getEdge(b).st;
_aretes[b].st = getEdge(b).en;
_aretes[b].en = swap;
swap = getEdge(b).prevE;
_aretes[b].prevE = getEdge(b).prevS;
_aretes[b].prevS = swap;
swap = getEdge(b).nextE;
_aretes[b].nextE = getEdge(b).nextS;
_aretes[b].nextS = swap;
_aretes[b].dx = -getEdge(b).dx;
if (getEdge(b).st >= 0)
{
_pts[getEdge(b).st].dO++;
_pts[getEdge(b).st].dI--;
}
if (getEdge(b).en >= 0)
{
_pts[getEdge(b).en].dO--;
_pts[getEdge(b).en].dI++;
}
if (_has_edges_data)
eData[b].weight = -eData[b].weight;
if (_has_sweep_dest_data)
{
int swap = swdData[b].leW;
swdData[b].leW = swdData[b].riW;
swdData[b].riW = swap;
}
if (_has_back_data)
{
double swat = ebData[b].tSt;
ebData[b].tSt = ebData[b].tEn;
ebData[b].tEn = swat;
}
if (_has_voronoi_data)
{
int swai = voreData[b].leF;
voreData[b].leF = voreData[b].riF;
voreData[b].riF = swai;
}
}
void
Shape::CalcBBox (bool strict_degree)
{
if (_bbox_up_to_date)
return;
if (hasPoints() == false)
{
leftX = rightX = topY = bottomY = 0;
_bbox_up_to_date = true;
return;
}
leftX = rightX = getPoint(0).x[0];
topY = bottomY = getPoint(0).x[1];
bool not_set=true;
for (int i = 0; i < numberOfPoints(); i++)
{
if ( strict_degree == false || getPoint(i).dI > 0 || getPoint(i).dO > 0 ) {
if ( not_set ) {
leftX = rightX = getPoint(i).x[0];
topY = bottomY = getPoint(i).x[1];
not_set=false;
} else {
if ( getPoint(i).x[0] < leftX) leftX = getPoint(i).x[0];
if ( getPoint(i).x[0] > rightX) rightX = getPoint(i).x[0];
if ( getPoint(i).x[1] < topY) topY = getPoint(i).x[1];
if ( getPoint(i).x[1] > bottomY) bottomY = getPoint(i).x[1];
}
}
}
_bbox_up_to_date = true;
}
// winding of a point with respect to the Shape
// 0= outside
// 1= inside (or -1, that usually the same)
// other=depends on your fill rule
// if the polygon is uncrossed, it's all the same, usually
int
Shape::PtWinding (const NR::Point px) const
{
int lr = 0, ll = 0, rr = 0;
for (int i = 0; i < numberOfEdges(); i++)
{
NR::Point const adir = getEdge(i).dx;
NR::Point const ast = getPoint(getEdge(i).st).x;
NR::Point const aen = getPoint(getEdge(i).en).x;
//int const nWeight = eData[i].weight;
int const nWeight = 1;
if (ast[0] < aen[0]) {
if (ast[0] > px[0]) continue;
if (aen[0] < px[0]) continue;
} else {
if (ast[0] < px[0]) continue;
if (aen[0] > px[0]) continue;
}
if (ast[0] == px[0]) {
if (ast[1] >= px[1]) continue;
if (aen[0] == px[0]) continue;
if (aen[0] < px[0]) ll += nWeight; else rr -= nWeight;
continue;
}
if (aen[0] == px[0]) {
if (aen[1] >= px[1]) continue;
if (ast[0] == px[0]) continue;
if (ast[0] < px[0]) ll -= nWeight; else rr += nWeight;
continue;
}
if (ast[1] < aen[1]) {
if (ast[1] >= px[1]) continue;
} else {
if (aen[1] >= px[1]) continue;
}
NR::Point const diff = px - ast;
double const cote = cross(diff, adir);
if (cote == 0) continue;
if (cote < 0) {
if (ast[0] > px[0]) lr += nWeight;
} else {
if (ast[0] < px[0]) lr -= nWeight;
}
}
return lr + (ll + rr) / 2;
}
void Shape::initialisePointData()
{
if (_point_data_initialised)
return;
int const N = numberOfPoints();
for (int i = 0; i < N; i++) {
pData[i].pending = 0;
pData[i].edgeOnLeft = -1;
pData[i].nextLinkedPoint = -1;
pData[i].rx[0] = Round(getPoint(i).x[0]);
pData[i].rx[1] = Round(getPoint(i).x[1]);
}
_point_data_initialised = true;
}
void Shape::initialiseEdgeData()
{
int const N = numberOfEdges();
for (int i = 0; i < N; i++) {
eData[i].rdx = pData[getEdge(i).en].rx - pData[getEdge(i).st].rx;
eData[i].length = dot(eData[i].rdx, eData[i].rdx);
eData[i].ilength = 1 / eData[i].length;
eData[i].sqlength = sqrt(eData[i].length);
eData[i].isqlength = 1 / eData[i].sqlength;
eData[i].siEd = eData[i].rdx[1] * eData[i].isqlength;
eData[i].coEd = eData[i].rdx[0] * eData[i].isqlength;
if (eData[i].siEd < 0) {
eData[i].siEd = -eData[i].siEd;
eData[i].coEd = -eData[i].coEd;
}
swsData[i].misc = NULL;
swsData[i].firstLinkedPoint = -1;
swsData[i].stPt = swsData[i].enPt = -1;
swsData[i].leftRnd = swsData[i].rightRnd = -1;
swsData[i].nextSh = NULL;
swsData[i].nextBo = -1;
swsData[i].curPoint = -1;
swsData[i].doneTo = -1;
}
}
void Shape::clearIncidenceData()
{
g_free(iData);
iData = NULL;
nbInc = maxInc = 0;
}
/**
* A directed graph is Eulerian iff every vertex has equal indegree and outdegree.
* http://mathworld.wolfram.com/EulerianGraph.html
*
* \param s Directed shape.
* \return true if s is Eulerian.
*/
bool directedEulerian(Shape const *s)
{
for (int i = 0; i < s->numberOfPoints(); i++) {
if (s->getPoint(i).dI != s->getPoint(i).dO) {
return false;
}
}
return true;
}
/**
* \param s Shape.
* \param p Point.
* \return Minimum distance from p to any of the points or edges of s.
*/
double distance(Shape const *s, NR::Point const &p)
{
if ( s->hasPoints() == false) {
return 0.0;
}
/* Find the minimum distance from p to one of the points on s.
** Computing the dot product of the difference vector gives
** us the distance squared; we can leave the square root
** until the end.
*/
double bdot = NR::dot(p - s->getPoint(0).x, p - s->getPoint(0).x);
for (int i = 0; i < s->numberOfPoints(); i++) {
NR::Point const offset( p - s->getPoint(i).x );
double ndot = NR::dot(offset, offset);
if ( ndot < bdot ) {
bdot = ndot;
}
}
for (int i = 0; i < s->numberOfEdges(); i++) {
if ( s->getEdge(i).st >= 0 && s->getEdge(i).en >= 0 ) {
/* The edge has start and end points */
NR::Point const st(s->getPoint(s->getEdge(i).st).x); // edge start
NR::Point const en(s->getPoint(s->getEdge(i).en).x); // edge end
NR::Point const d(p - st); // vector between p and edge start
NR::Point const e(en - st); // vector of the edge
double const el = NR::dot(e, e); // edge length
/* Update bdot if appropriate */
if ( el > 0.001 ) {
double const npr = NR::dot(d, e);
if ( npr > 0 && npr < el ) {
double const nl = fabs( NR::cross(d, e) );
double ndot = nl * nl / el;
if ( ndot < bdot ) {
bdot = ndot;
}
}
}
}
}
return sqrt(bdot);
}
/**
* Returns true iff the L2 distance from \a thePt to this shape is <= \a max_l2.
* Distance = the min of distance to its points and distance to its edges.
* Points without edges are considered, which is maybe unwanted...
*
* This is largely similar to distance().
*
* \param s Shape.
* \param p Point.
* \param max_l2 L2 distance.
*/
bool distanceLessThanOrEqual(Shape const *s, NR::Point const &p, double const max_l2)
{
if ( s->hasPoints() == false ) {
return false;
}
/* TODO: Consider using bbox to return early, perhaps conditional on nbPt or nbAr. */
/* TODO: Efficiency: In one test case (scribbling with the freehand tool to create a small number of long
** path elements), changing from a Distance method to a DistanceLE method reduced this
** function's CPU time from about 21% of total inkscape CPU time to 14-15% of total inkscape
** CPU time, due to allowing early termination. I don't know how much the L1 test helps, it
** may well be a case of premature optimization. Consider testing dot(offset, offset)
** instead.
*/
double const max_l1 = max_l2 * M_SQRT2;
for (int i = 0; i < s->numberOfPoints(); i++) {
NR::Point const offset( p - s->getPoint(i).x );
double const l1 = NR::L1(offset);
if ( (l1 <= max_l2) || ((l1 <= max_l1) && (NR::L2(offset) <= max_l2)) ) {
return true;
}
}
for (int i = 0; i < s->numberOfEdges(); i++) {
if ( s->getEdge(i).st >= 0 && s->getEdge(i).en >= 0 ) {
NR::Point const st(s->getPoint(s->getEdge(i).st).x);
NR::Point const en(s->getPoint(s->getEdge(i).en).x);
NR::Point const d(p - st);
NR::Point const e(en - st);
double const el = NR::L2(e);
if ( el > 0.001 ) {
NR::Point const e_unit(e / el);
double const npr = NR::dot(d, e_unit);
if ( npr > 0 && npr < el ) {
double const nl = fabs(NR::cross(d, e_unit));
if ( nl <= max_l2 ) {
return true;
}
}
}
}
}
return false;
}
//};