Layout-TNG-Compute.cpp revision 5f8e27a7aab1d54d007e8415cdbd32030a4b8468
/*
* Inkscape::Text::Layout::Calculator - text layout engine meaty bits
*
* Authors:
* Richard Hughes <cyreve@users.sf.net>
*
* Copyright (C) 2005 Richard Hughes
*
* Released under GNU GPL, read the file 'COPYING' for more information
*/
#include "Layout-TNG.h"
#include "style.h"
#include "font-instance.h"
#include "svg/svg-length.h"
#include "sp-object.h"
#include "Layout-TNG-Scanline-Maker.h"
namespace Inkscape {
namespace Text {
//#define IFTRACE(_code) _code
/** \brief private to Layout. Does the real work of text flowing.
This class does a standard greedy paragraph wrapping algorithm.
Very high-level overview:
<pre>
foreach(paragraph) {
call pango_itemize() (_buildPangoItemizationForPara())
break into spans, without dealing with wrapping (_buildSpansForPara())
foreach(line in flow shape) {
foreach(chunk in flow shape) { (in _buildChunksInScanRun())
// this inner loop in _measureUnbrokenSpan()
if the line height changed discard the line and start again
keep adding characters until we run out of space in the chunk, then back up to the last word boundary
(do sensible things if there is no previous word break)
}
push all the glyphs, chars, spans, chunks and line to output (not completely trivial because we must draw rtl in character order) (in _outputLine())
}
push the paragraph (in calculate())
}
</pre>
...and all of that needs to work vertically too, and with all the little details that make life annoying
*/
class Layout::Calculator
{
class SpanPosition;
friend class SpanPosition;
unsigned _current_shape_index; /// index into Layout::_input_wrap_shapes
/** for y= attributes in tspan elements et al, we do the adjustment by moving each
glyph individually by this number. The spec means that this is maintained across
paragraphs.
To do non-flow text layout, only the first "y" attribute is normally used. If there is only one
"y" attribute in a <tspan> other than the first <tspan>, it is ignored. This allows Inkscape to
insert a new line anywhere. On output, the Inkscape determined "y" is written out so other SVG
viewers know where to place the <tspans>.
*/
double _y_offset;
/** to stop pango from hinting its output, the font factory creates all fonts very large.
All numbers returned from pango have to be divided by this number \em and divided by
PANGO_SCALE. See font_factory::font_factory(). */
double _font_factory_size_multiplier;
/** Temporary storage associated with each item in Layout::_input_stream. */
struct InputItemInfo {
bool in_sub_flow;
void free();
};
/** Temporary storage associated with each item returned by the call to
pango_itemize(). */
struct PangoItemInfo {
void free();
};
/** These spans have approximately the same definition as that used for
Layout::Span (constant font, direction, etc), except that they are from
before we have located the line breaks, so bear no relation to chunks.
They are guaranteed to be in at most one PangoItem (spans with no text in
them will not have an associated PangoItem), exactly one input source and
will only have one change of x, y, dx, dy or rotate attribute, which will
be at the beginning. An UnbrokenSpan can cross a chunk boundary, c.f.
BrokenSpan. */
struct UnbrokenSpan {
int pango_item_index; /// index into _para.pango_items, or -1 if this is style only
unsigned input_index; /// index into Layout::_input_stream
double font_size;
double line_height_multiplier; /// calculated from the font-height css property
double baseline_shift; /// calculated from the baseline-shift css property
unsigned text_bytes;
unsigned char_index_in_para; /// the index of the first character in this span in the paragraph, for looking up char_attributes
SVGLength x, y, dx, dy, rotate; // these are reoriented copies of the <tspan> attributes. We change span when we encounter one.
};
/** a useful little iterator for moving char-by-char across spans. */
struct UnbrokenSpanPosition {
unsigned char_byte;
unsigned char_index;
void increment(); ///< Step forward by one character.
inline bool operator== (UnbrokenSpanPosition const &other) const
inline bool operator!= (UnbrokenSpanPosition const &other) const
};
/** The line breaking algorithm will convert each UnbrokenSpan into one
or more of these. A BrokenSpan will never cross a chunk boundary, c.f.
UnbrokenSpan. */
struct BrokenSpan {
unsigned start_glyph_index;
unsigned end_glyph_index;
double width;
unsigned whitespace_count;
bool ends_with_whitespace;
double each_whitespace_width;
double letter_spacing; // Save so we can subtract from width at end of line (for center justification)
double word_spacing;
void setZero();
};
/** The definition of a chunk used here is the same as that used in Layout:
A collection of contiguous broken spans on the same line. (One chunk per line
unless shape splits line into several sections... then one chunk per section. */
struct ChunkInfo {
double scanrun_width;
double text_width; ///< Total width used by the text (excluding justification).
double x;
int whitespace_count;
};
/** Used to provide storage for anything that applies to the current
paragraph only. Since we're only processing one paragraph at a time,
there's only one instantiation of this struct, on the stack of
calculate(). */
struct ParagraphInfo {
unsigned first_input_index; ///< Index into Layout::_input_stream.
template<typename T> static void free_sequence(T &seq);
void free();
};
/* *********************************************************************************************************/
// Initialisation of ParagraphInfo structure
#if 0 /* unused */
#endif
// Returns line_height_multiplier
/* *********************************************************************************************************/
// Per-line functions
/**
* For debugging, not called in distributed code
*
* Input: para->first_input_index, para->pango_items
*/
<< "idx: " << pidx
<< " offset: "
<< " length: "
}
}
/**
* For debugging, not called in distributed code
*
* Input: para->first_input_index, para->pango_items
*/
<< "idx: " << uidx
}
}
bool _goToNextWrapShape();
UnbrokenSpanPosition const &span_pos)
{
}
UnbrokenSpanPosition const &start_span_pos,
FontMetrics *line_height) const;
/** computes the width of a single UnbrokenSpan (pointed to by span->start.iter_span)
and outputs its vital statistics into the other fields of \a span.
Measuring will stop if maximum_width is reached and in that case the
function will return false. In other cases where a line break must be
done immediately the function will also return false. On return
\a last_break_span will contain the vital statistics for the span only
up to the last line breaking change. If there are no line breaking
characters in the span then \a last_break_span will not be altered.
Similarly, \a last_emergency_break_span will contain the vital
statistics for the span up to the last inter-character boundary,
or will be unaltered if there is none. */
bool _measureUnbrokenSpan(ParagraphInfo const ¶, BrokenSpan *span, BrokenSpan *last_break_span, BrokenSpan *last_emergency_break_span, double maximum_width) const
{
} else {
}
}
// if this is a style-only span there's no text in it
// so we don't need to do very much at all
return true;
}
InputStreamControlCode const *control_code = static_cast<InputStreamControlCode const *>(_flow._input_stream[span->start.iter_span->input_index]);
return false;
}
return false;
}
return true;
}
return true; // never happens
InputStreamTextSource const *text_source = static_cast<InputStreamTextSource const *>(_flow._input_stream[span->start.iter_span->input_index]);
// TODO: block-progression altered in the middle
// Measure the precomputed flow from para.input_items
return true;
}
// a normal span going with a normal block-progression
double font_size_multiplier = span->start.iter_span->font_size / (PANGO_SCALE * _font_factory_size_multiplier);
double soft_hyphen_glyph_width = 0.0;
bool soft_hyphen_in_word = false;
bool is_soft_hyphen = false;
IFTRACE(int char_count = 0);
// if we're not at the start of the span we need to pre-init glyph_index
span->start_glyph_index = 0;
&& span->start.iter_span->glyph_string->log_clusters[span->start_glyph_index] < (int)span->start.char_byte)
// go char-by-char summing the width, while keeping track of the previous break point
do {
TRACE(("span %ld end of para; width = %f chars = %d\n", span->start.iter_span - para.unbroken_spans.begin(), span->width, char_count));
return false;
}
if (char_attributes.is_line_break) {
// a suitable position to break at, record where we are
if (soft_hyphen_in_word) {
// if there was a previous soft hyphen we're not going to need it any more so we can remove it
if (!is_soft_hyphen)
soft_hyphen_in_word = false;
}
} else if (char_attributes.is_char_break) {
}
// todo: break between chars if necessary (ie no word breaks present) when doing rectangular flowing
// sum the glyph widths, letter spacing, word spacing, and textLength adjustment to get the character width
double char_width = 0.0;
&& span->end.iter_span->glyph_string->log_clusters[span->end_glyph_index] <= (int)span->end.char_byte) {
// Vertical text
// Sideways orientation
char_width += span->start.iter_span->font_size * para.pango_items[span->end.iter_span->pango_item_index].font->Advance(span->end.iter_span->glyph_string->glyphs[span->end_glyph_index].glyph, false);
} else {
// Upright orientation
char_width += span->start.iter_span->font_size * para.pango_items[span->end.iter_span->pango_item_index].font->Advance(span->end.iter_span->glyph_string->glyphs[span->end_glyph_index].glyph, true);
}
} else {
// Horizontal text
char_width += font_size_multiplier * span->end.iter_span->glyph_string->glyphs[span->end_glyph_index].geometry.width;
}
span->end_glyph_index++;
}
if (char_attributes.is_white)
IFTRACE(char_count++);
if (char_attributes.is_white) {
span->whitespace_count++;
}
is_soft_hyphen = (UNICODE_SOFT_HYPHEN == *Glib::ustring::const_iterator(span->end.iter_span->input_stream_first_character.base() + span->end.char_byte));
if (is_soft_hyphen)
// Width should not include letter_spacing (or word_spacing) after last letter at end of line.
// word_spacing is attached to white space that is already removed from line end (?)
// Save letter_spacing and word_spacing for subtraction later if span is last span in line.
if (test_width > maximum_width && !char_attributes.is_white) { // whitespaces don't matter, we can put as many as we want at eol
TRACE(("span %ld exceeded scanrun; width = %f chars = %d\n", span->start.iter_span - para.unbroken_spans.begin(), span->width, char_count));
return false;
}
TRACE(("fitted span %ld width = %f chars = %d\n", span->start.iter_span - para.unbroken_spans.begin(), span->width, char_count));
return true;
}
/* *********************************************************************************************************/
// Per-line functions (output)
/** Uses the paragraph alignment and the chunk information to work out
where the actual left of the final chunk must be. Also sets
\a add_to_each_whitespace to be the amount of x to add at each
whitespace character to make full justification work. */
double _getChunkLeftWithAlignment(ParagraphInfo const ¶, std::vector<ChunkInfo>::const_iterator it_chunk, double *add_to_each_whitespace) const
{
*add_to_each_whitespace = 0.0;
case FULL:
case LEFT:
default:
return it_chunk->x;
case RIGHT:
case CENTER:
}
}
case FULL:
&& it_chunk->broken_spans.back().end.iter_span != para.unbroken_spans.end()) { // don't justify the last chunk in the para
if (it_chunk->whitespace_count)
*add_to_each_whitespace = (it_chunk->scanrun_width - it_chunk->text_width) / it_chunk->whitespace_count;
//else
//add_to_each_charspace = something
}
return it_chunk->x;
case LEFT:
default:
return it_chunk->x;
case RIGHT:
case CENTER:
}
}
/** Once we've got here we have finished making changes to the line and
are ready to output the final result to #_flow. This method takes its
input parameters and does that.
*/
void _outputLine(ParagraphInfo const ¶, FontMetrics const &line_height, std::vector<ChunkInfo> const &chunk_info)
{
TRACE(("Start _outputLine\n"));
if (chunk_info.empty()) {
TRACE(("line too short to fit anything on it, go to next\n"));
return;
}
// we've finished fiddling about with ascents and descents: create the output
TRACE(("found line fit; creating output\n"));
// Flowed text
// Vertical text, use em box center as baseline
} else {
}
}
for (std::vector<ChunkInfo>::const_iterator it_chunk = chunk_info.begin() ; it_chunk != chunk_info.end() ; it_chunk++) {
double add_to_each_whitespace;
// add the chunk to the list
// we may also have y move orders to deal with here (dx, dy and rotate are done per span)
// Comment updated: 23 July 2010:
// We must handle two cases:
//
// 1. Inkscape SVG where the first line is placed by the read-in "y" value and the
// rest are determined by 'font-size' and 'line-height' (and not by any
// y-kerning). <tspan>s in this case are marked by sodipodi:role="line". This
// allows new lines to be inserted in the middle of a <text> object. On output,
// new "y" values are calculated for each <tspan> that represents a new line. Line
// spacing is already handled by the calling routine.
//
// 2. Plain SVG where each <text> or <tspan> is placed by its own "x" and "y" values.
// Note that in this case Inkscape treats each <text> object with any included
// <tspan>s as a single line of text. This can be confusing in the code below.
// If empty or new line (sodipode:role="line")
// This is the Inkscape SVG case.
//
// If <tspan> "y" attribute is set, use it (initial "y" attributes in
// <tspans> other than the first have already been stripped for <tspans>
// marked with role="line", see sp-text.cpp: SPText::_buildLayoutInput).
// NOTE: for vertical text, "y" is the user-space "x" value.
// Use set "y" attribute
// Save baseline
// Set the initial y coordinate of the next line.
}
// Reset relative y_offset ("dy" attribute is relative but should be reset at
// the beginning of each line since each line will have a new "y" written out.)
_y_offset = 0.0;
} else {
// This is the plain SVG case
//
// "x" and "y" are used to place text, simulating lines as necessary
}
}
}
double current_x;
double direction_sign;
double counter_directional_width_remaining = 0.0;
float glyph_rotate = 0.0;
direction_sign = +1.0;
current_x = 0.0;
} else {
direction_sign = -1.0;
}
else {
}
}
for (std::vector<BrokenSpan>::const_iterator it_span = it_chunk->broken_spans.begin() ; it_span != it_chunk->broken_spans.end() ; it_span++) {
// begin adding spans to the list
// Start of an unbroken span, we might have dx, dy or rotate still to process
// (x and y are done per chunk)
}
// style only, nothing to output
continue;
}
if ((_flow._input_stream[unbroken_span.input_index]->Type() == TEXT_SOURCE) && (new_span.font = para.pango_items[unbroken_span.pango_item_index].font))
{
new_span.direction = para.pango_items[unbroken_span.pango_item_index].item->analysis.level & 1 ? RIGHT_TO_LEFT : LEFT_TO_RIGHT;
new_span.input_stream_first_character = Glib::ustring::const_iterator(unbroken_span.input_stream_first_character.base() + it_span->start.char_byte);
} else { // a control code
}
// measure width of spans we need to switch round
for (it_following_span = it_span ; it_following_span != it_chunk->broken_spans.end() ; it_following_span++) {
Layout::Direction following_span_progression = static_cast<InputStreamTextSource const *>(_flow._input_stream[it_following_span->start.iter_span->input_index])->styleGetBlockProgression();
if (it_following_span->start.iter_span->pango_item_index == -1) { // when the span came from a control code
} else
if (new_span.direction != (para.pango_items[it_following_span->start.iter_span->pango_item_index].item->analysis.level & 1 ? RIGHT_TO_LEFT : LEFT_TO_RIGHT)) break;
}
counter_directional_width_remaining += direction_sign * (it_following_span->width + it_following_span->whitespace_count * add_to_each_whitespace);
}
}
// the span is set up, push the glyphs and chars
InputStreamTextSource const *text_source = static_cast<InputStreamTextSource const *>(_flow._input_stream[unbroken_span.input_index]);
Glib::ustring::const_iterator iter_source_text = Glib::ustring::const_iterator(unbroken_span.input_stream_first_character.base() + it_span->start.char_byte) ;
int log_cluster_size_glyphs = 0; // Number of glyphs in this log_cluster
int log_cluster_size_chars = 0; // Number of characters in this log_cluster
unsigned end_byte = 0;
for (unsigned glyph_index = it_span->start_glyph_index ; glyph_index < it_span->end_glyph_index ; glyph_index++) {
int newcluster = 0;
newcluster = 1;
}
// if we're looking at a soft hyphen and it's not the last glyph in the
// chunk we don't draw the glyph but we still need to add to _characters
new_character.char_attributes = para.char_attributes[unbroken_span.char_index_in_para + char_index_in_unbroken_span];
glyph_index++;
glyph_index--;
continue;
}
// create the Layout::Glyph
// We may have scaled font size to fit textLength; now, if
// @lengthAdjust=spacingAndGlyphs, this scaling must be only horizontal,
// not vertical, so we unscale it back vertically during output
else
// Position glyph --------------------
// y-coordinate is flipped between vertical and horizontal text... delta_y is common offset but applied with opposite sign
double delta_y = unbroken_span_glyph_info->geometry.y_offset * font_size_multiplier + unbroken_span.baseline_shift;
// Vertical text
// Default dominant baseline is determined by overall block (i.e. <text>) 'text-orientation' value.
} else {
}
// TODO: Should also check 'glyph_orientation_vertical' if 'text-orientation' is unset...
// Sideways orientation (Latin characters, CJK punctuation), 90deg rotation done at output stage. zzzzzzz
new_glyph.y -= new_span.font_size * para.pango_items[unbroken_span.pango_item_index].font->GetBaselines()[ dominant_baseline ];
new_glyph.width = new_span.font_size * para.pango_items[unbroken_span.pango_item_index].font->Advance(unbroken_span_glyph_info->glyph, false);
} else {
// Upright orientation
// Glyph reference point is center (shift: left edge to center glyph)
new_glyph.y -= new_span.font_size * (para.pango_items[unbroken_span.pango_item_index].font->GetBaselines()[ dominant_baseline ] -
new_glyph.width = new_span.font_size * para.pango_items[unbroken_span.pango_item_index].font->Advance(unbroken_span_glyph_info->glyph, true);
}
}
} else {
// Horizontal text
new_glyph.y += new_span.font_size * para.pango_items[unbroken_span.pango_item_index].font->GetBaselines()[ dominant_baseline ];
new_glyph.width = new_span.font_size * para.pango_items[unbroken_span.pango_item_index].font->Advance(unbroken_span_glyph_info->glyph, false);
// for some reason pango returns zero width for invalid glyph characters (those empty boxes), so go to freetype for the info
}
// pango wanted to give us glyphs in visual order but we refused, so we need to work
// out where the cluster start is ourselves
double cluster_width = 0.0;
if (unbroken_span.glyph_string->glyphs[rtl_index].attr.is_cluster_start && rtl_index != glyph_index)
break;
// Vertical text
cluster_width += new_span.font_size * para.pango_items[unbroken_span.pango_item_index].font->Advance(unbroken_span.glyph_string->glyphs[rtl_index].glyph, true);
else
// Horizontal text
cluster_width += font_size_multiplier * unbroken_span.glyph_string->glyphs[rtl_index].geometry.width;
}
new_glyph.x -= cluster_width;
}
// create the Layout::Character(s)
if (newcluster){
newcluster = 0;
// find where the text ends for this log_cluster
for(int next_glyph_index = glyph_index+1; next_glyph_index < unbroken_span.glyph_string->num_glyphs; next_glyph_index++){
break;
}
}
// Figure out how many glyphs and characters are in the log_cluster.
}
lclist++;
}
}
/* Hack to survive ligatures: in log_cluster keep the number of available chars >= number of glyphs remaining.
When there are no ligatures these two sizes are always the same.
*/
break;
}
new_character.x = x_in_span;
new_character.char_attributes = para.char_attributes[unbroken_span.char_index_in_para + char_index_in_unbroken_span];
advance_width += text_source->style->word_spacing.computed * _flow.getTextLengthMultiplierDue() + add_to_each_whitespace; // justification
}
} else {
}
}
current_x += static_cast<InputStreamControlCode const *>(_flow._input_stream[unbroken_span.input_index])->width;
}
}
// end adding spans to the list, on to the next chunk...
}
TRACE(("output done\n"));
}
/* *********************************************************************************************************/
// Setup and top-level functions
/** initialises the ScanlineMaker for the first shape in the flow, or
the infinite version if we're not doing wrapping. */
void _createFirstScanlineMaker()
{
_current_shape_index = 0;
// create the special no-wrapping infinite scanline maker
InputStreamTextSource const *text_source = static_cast<InputStreamTextSource const *>(_flow._input_stream.front());
if (!text_source->x.empty())
if (!text_source->y.empty())
TRACE((" wrapping disabled\n"));
}
else {
_scanline_maker = new ShapeScanlineMaker(_flow._input_wrap_shapes[_current_shape_index].shape, _block_progression);
TRACE((" begin wrap shape 0\n"));
}
}
public:
bool calculate();
};
/* fixme: I don't like the fact that InputItemInfo etc. use the default copy constructor and
* operator= (and thus don't involve incrementing reference counts), yet they provide a free method
* that does delete or Unref.
*
* I suggest using the garbage collector to manage deletion.
*/
{
if (sub_flow) {
delete sub_flow;
}
}
{
if (item) {
}
if (font) {
}
}
{
char_index++;
iter_span++;
char_index = char_byte = 0;
}
}
{
width = 0.0;
whitespace_count = 0;
end_glyph_index = start_glyph_index = 0;
ends_with_whitespace = false;
each_whitespace_width = 0.0;
letter_spacing = 0.0;
word_spacing = 0.0;
}
{
}
}
{
}
///**
// * For sections of text with a block-progression different to the rest
// * of the flow, the best thing to do is to detect them in advance and
// * create child TextFlow objects with just the rotated text. In the
// * parent we then effectively use ARBITRARY_GAP fields during the
// * flowing (because we don't allow wrapping when the block-progression
// * changes) and copy the actual text in during the output phase.
// *
// * NB: this code not enabled yet.
// */
//void Layout::Calculator::_initialiseInputItems(ParagraphInfo *para) const
//{
// Direction prev_block_progression = _block_progression;
// int run_start_input_index = para->first_input_index;
//
// para->free_sequence(para->input_items);
// for(int input_index = para->first_input_index ; input_index < (int)_flow._input_stream.size() ; input_index++) {
// InputItemInfo input_item;
//
// input_item.in_sub_flow = false;
// input_item.sub_flow = NULL;
// if (_flow._input_stream[input_index]->Type() == CONTROL_CODE) {
// Layout::InputStreamControlCode const *control_code = static_cast<Layout::InputStreamControlCode const *>(_flow._input_stream[input_index]);
// if ( control_code->code == SHAPE_BREAK
// || control_code->code == PARAGRAPH_BREAK)
// break; // stop at the end of the paragraph
// // all other control codes we'll pick up later
//
// } else if (_flow._input_stream[input_index]->Type() == TEXT_SOURCE) {
// Layout::InputStreamTextSource *text_source = static_cast<Layout::InputStreamTextSource *>(_flow._input_stream[input_index]);
// Direction this_block_progression = text_source->styleGetBlockProgression();
// if (this_block_progression != prev_block_progression) {
// if (prev_block_progression != _block_progression) {
// // need to back up so that control codes belong outside the block-progression change
// int run_end_input_index = input_index - 1;
// while (run_end_input_index > run_start_input_index
// && _flow._input_stream[run_end_input_index]->Type() != TEXT_SOURCE)
// run_end_input_index--;
// // now create the sub-flow
// input_item.sub_flow = new Layout;
// for (int sub_input_index = run_start_input_index ; sub_input_index <= run_end_input_index ; sub_input_index++) {
// input_item.in_sub_flow = true;
// if (_flow._input_stream[sub_input_index]->Type() == CONTROL_CODE) {
// Layout::InputStreamControlCode const *control_code = static_cast<Layout::InputStreamControlCode const *>(_flow._input_stream[sub_input_index]);
// input_item.sub_flow->appendControlCode(control_code->code, control_code->source_cookie, control_code->width, control_code->ascent, control_code->descent);
// } else if (_flow._input_stream[sub_input_index]->Type() == TEXT_SOURCE) {
// Layout::InputStreamTextSource *text_source = static_cast<Layout::InputStreamTextSource *>(_flow._input_stream[sub_input_index]);
// input_item.sub_flow->appendText(*text_source->text, text_source->style, text_source->source_cookie, NULL, 0, text_source->text_begin, text_source->text_end);
// Layout::InputStreamTextSource *sub_flow_text_source = static_cast<Layout::InputStreamTextSource *>(input_item.sub_flow->_input_stream.back());
// sub_flow_text_source->x = text_source->x; // this is easier than going via optionalattrs for the appendText() call
// sub_flow_text_source->y = text_source->y; // should these actually be allowed anyway? You'll almost never get the results you expect
// sub_flow_text_source->dx = text_source->dx; // (not that it's very clear what you should expect, anyway)
// sub_flow_text_source->dy = text_source->dy;
// sub_flow_text_source->rotate = text_source->rotate;
// }
// }
// input_item.sub_flow->calculateFlow();
// }
// run_start_input_index = input_index;
// }
// prev_block_progression = this_block_progression;
// }
// para->input_items.push_back(input_item);
// }
//}
/**
* Take all the text from \a _para.first_input_index to the end of the
* paragraph and stitch it together so that pango_itemize() can be called on
* the whole thing.
*
* Input: para.first_input_index.
* Output: para.direction, para.pango_items, para.char_attributes.
* Returns: the number of spans created by pango_itemize
*/
{
TRACE((" ... compiled for font features\n"));
#endif
unsigned input_index;
for(input_index = para->first_input_index ; input_index < _flow._input_stream.size() ; input_index++) {
Layout::InputStreamControlCode const *control_code = static_cast<Layout::InputStreamControlCode const *>(_flow._input_stream[input_index]);
break; // stop at the end of the paragraph
// all other control codes we'll pick up later
Layout::InputStreamTextSource *text_source = static_cast<Layout::InputStreamTextSource *>(_flow._input_stream[input_index]);
// create the font_instance
continue; // bad news: we'll have to ignore all this text because we know of no font to render it
#endif
para_text.append(&*text_source->text_begin.base(), text_source->text_length); // build the combined text
#endif
// ownership of attribute is assumed by the list
}
}
// do the pango_itemize()
Layout::InputStreamTextSource const *text_source = static_cast<Layout::InputStreamTextSource *>(_flow._input_stream[para->first_input_index]);
para->direction = (text_source->style->direction.computed == SP_CSS_DIRECTION_LTR) ? LEFT_TO_RIGHT : RIGHT_TO_LEFT;
PangoDirection pango_direction = (text_source->style->direction.computed == SP_CSS_DIRECTION_LTR) ? PANGO_DIRECTION_LTR : PANGO_DIRECTION_RTL;
pango_items_glist = pango_itemize_with_base_dir(_pango_context, pango_direction, para_text.data(), 0, para_text.bytes(), attributes_list, NULL);
}
if( pango_items_glist == NULL ) {
// Type wasn't TEXT_SOURCE or direction was not set.
pango_items_glist = pango_itemize(_pango_context, para_text.data(), 0, para_text.bytes(), attributes_list, NULL);
}
// convert the GList to our vector<> and make the font_instance for each PangoItem at the same time
for (GList *current_pango_item = pango_items_glist ; current_pango_item != NULL ; current_pango_item = current_pango_item->next) {
}
// and get the character attributes on everything
pango_get_log_attrs(para_text.data(), para_text.bytes(), -1, NULL, &*para->char_attributes.begin(), para->char_attributes.size());
}
/**
* Finds the value of line_height_multiplier given the 'line-height' property. The result of
* multiplying \a l by \a line_height_multiplier is the inline box height as specified in css2
* section 10.8. http://www.w3.org/TR/CSS2/visudet.html#line-height
*
* The 'computed' value of 'line-height' does not have a consistent meaning. We need to find the
* 'used' value and divide that by the font size.
*/
{
// yet another borked SPStyle member that we're going to have to fix ourselves
// We shouldn't need to climb the element tree...
for ( ; ; ) {
break;
case SP_CSS_UNIT_NONE:
case SP_CSS_UNIT_EX:
// 0.5 is an approximation of the x-height. Fixme.
case SP_CSS_UNIT_EM:
case SP_CSS_UNIT_PERCENT:
default: // absolute values
}
break;
}
}
return (LINE_HEIGHT_NORMAL);
}
{
bool retval = false;
return (retval);
}
/**
* Split the paragraph into spans. Also call pango_shape() on them.
*
* Input: para->first_input_index, para->pango_items
* Output: para->spans
* Returns: the index of the beginning of the following paragraph in _flow._input_stream
*/
{
unsigned pango_item_index = 0;
unsigned char_index_in_para = 0;
unsigned byte_index_in_para = 0;
unsigned input_index;
TRACE(("build spans\n"));
for(input_index = para->first_input_index ; input_index < _flow._input_stream.size() ; input_index++) {
Layout::InputStreamControlCode const *control_code = static_cast<Layout::InputStreamControlCode const *>(_flow._input_stream[input_index]);
break; // stop at the end of the paragraph
new_span.text_bytes = 0;
}
} else if (_flow._input_stream[input_index]->Type() == TEXT_SOURCE && pango_item_index < para->pango_items.size()) {
Layout::InputStreamTextSource const *text_source = static_cast<Layout::InputStreamTextSource const *>(_flow._input_stream[input_index]);
unsigned char_index_in_source = 0;
unsigned span_start_byte_in_source = 0;
// we'll need to make several spans from each text source, based on the rules described about the UnbrokenSpan definition
for ( ; ; ) {
/* we need to change spans at every change of PangoItem, source stream change,
? 0
- byte_index_in_para ) );
TRACE(("New Span\n"));
new_span.input_stream_first_character = Glib::ustring::const_iterator(text_source->text_begin.base() + span_start_byte_in_source);
// cut at <tspan> attribute changes as well
// Horizontal text
if (text_source->x.size() > char_index_in_source) new_span.x = text_source->x[char_index_in_source];
if (text_source->y.size() > char_index_in_source) new_span.y = text_source->y[char_index_in_source];
if (text_source->dx.size() > char_index_in_source) new_span.dx = text_source->dx[char_index_in_source].computed * _flow.getTextLengthMultiplierDue();
if (text_source->dy.size() > char_index_in_source) new_span.dy = text_source->dy[char_index_in_source].computed * _flow.getTextLengthMultiplierDue();
} else {
// Vertical text
if (text_source->x.size() > char_index_in_source) new_span.y = text_source->x[char_index_in_source];
if (text_source->y.size() > char_index_in_source) new_span.x = text_source->y[char_index_in_source];
if (text_source->dx.size() > char_index_in_source) new_span.dy = text_source->dx[char_index_in_source].computed * _flow.getTextLengthMultiplierDue();
if (text_source->dy.size() > char_index_in_source) new_span.dx = text_source->dy[char_index_in_source].computed * _flow.getTextLengthMultiplierDue();
}
if (text_source->rotate.size() > char_index_in_source) new_span.rotate = text_source->rotate[char_index_in_source];
if (input_index == 0 && para->unbroken_spans.empty() && !new_span.y._set && _flow._input_wrap_shapes.empty()) {
// if we don't set an explicit y some of the automatic wrapping code takes over and moves the text vertically
// so that the top of the letters is at zero, not the baseline
new_span.y = 0.0;
}
iter_text++;
if (iter_text.base() - new_span.input_stream_first_character.base() >= (int)new_span.text_bytes) break;
break;
}
}
// now we know the length, do some final calculations and add the UnbrokenSpan to the list
if (new_span.text_bytes) {
/* Some assertions intended to help diagnose bug #1277746. */
g_assert( memchr(text_source->text->data() + span_start_byte_in_source, '\0', static_cast<size_t>(new_span.text_bytes))
== NULL );
/* Notes as of 4/29/13. Pango_shape is not generating English language ligatures, but it is generating
them for Hebrew (and probably other similar languages). In the case observed 3 unicode characters (a base
and 2 Mark, nonspacings) are merged into two glyphs (the base + first Mn, the 2nd Mn). All of these map
from glyph to first character of the log_cluster range. This destroys the 1:1 correspondence between
characters and glyphs. A big chunk of the conditional code which immediately follows this call
is there to clean up the resulting mess.
*/
// Convert characters to glyphs
// pango_shape() will reorder glyphs in rtl sections into visual order which messes
// us up because the svg spec requires us to draw glyphs in logical order
// let's reverse the glyphstring on a cluster-by-cluster basis
unsigned i, j;
for (i = 0 ; i < nglyphs ; i++) {
j=i;
while( (j < nglyphs-1) &&
)j++;
/*
CAREFUL, within a log_cluster the order of glyphs may not map 1:1, or
even in the same order, to the original unicode characters!!! Among
other things, diacritical mark glyphs can end up sequentially in front of the base
character glyph. That makes determining kerning, even approximately, difficult
later on.
To resolve this to the extent possible sort the glyphs within the same
log_cluster into descending order by width in a special manner before copying. Diacritical marks
and similar have zero width and the glyph they modify has nonzero width. The order
of the zero width ones does not matter. A logical cluster is sorted into sequential order
[base] [zw_modifier1] [zw_modifier2]
where all the modifiers have zero width and the base does not. This works for languages like Hebrew.
Pango also creates log clusters for languages like Telugu having many glyphs with nonzero widths.
Since these are nonzero, their order is not modified.
If some language mixes these modes, having a log cluster having something like
[base1] [zw_modifier1] [base2] [zw_modifier2]
the result will be incorrect:
base1] [base2] [zw_modifier1] [zw_modifier2]
If ligatures other than with Mark, nonspacing are ever implemented in Pango this will screw up, for instance
changing "fi" to "if".
*/
if(j - i){
std::sort(&(new_span.glyph_string->glyphs[i]), &(new_span.glyph_string->glyphs[j+1]), compareGlyphWidth);
}
std::copy(&new_span.glyph_string->glyphs[ i], &new_span.glyph_string->glyphs[ j+1], infos.end() - j -1);
std::copy(&new_span.glyph_string->log_clusters[i], &new_span.glyph_string->log_clusters[j+1], clusters.end() - j -1);
i = j;
}
/* glyphs[].x_offset values are probably out of order within any log_clusters, apparently harmless */
}
else { // ltr sections are in order but glyphs in a log_cluster following a ligature may not be. Sort, but no block swapping.
unsigned i, j;
for (i = 0 ; i < nglyphs ; i++) {
j=i;
while( (j < nglyphs-1) &&
)j++;
/* see note in preceding section */
if(j - i){
std::sort(&(new_span.glyph_string->glyphs[i]), &(new_span.glyph_string->glyphs[j+1]), compareGlyphWidth);
}
i = j;
}
/* glyphs[].x_offset values may be out of order within any log_clusters, apparently harmless */
}
// At some point we may want to calculate baseline_shift here (to take advantage
// of otm features like superscript baseline), but for now we use style baseline_shift.
// TODO: metrics for vertical text
TRACE(("add text span %lu \"%s\"\n", para->unbroken_spans.size(), text_source->text->raw().substr(span_start_byte_in_source, new_span.text_bytes).c_str()));
} else {
// if there's no text we still need to initialise the styles
if (font) {
} else {
}
}
// calculations for moving to the next UnbrokenSpan
char_index_in_source += g_utf8_strlen(&*new_span.input_stream_first_character.base(), new_span.text_bytes);
}
break; // end of source
// else <tspan> attribute changed
}
}
}
TRACE(("end build spans\n"));
return input_index;
}
/**
* Reinitialises the variables required on completion of one shape and
* moving on to the next. Returns false if there are no more shapes to wrap
* in to.
*/
{
delete _scanline_maker;
_scanline_maker = new ShapeScanlineMaker(_flow._input_wrap_shapes[_current_shape_index].shape, _block_progression);
return true;
}
/**
* Given \a para filled in and \a start_span_pos set, keeps trying to
* find somewhere it can fit the next line of text. The process of finding
* the text that fits will involve creating one or more entries in
* \a chunk_info describing the bounds of the fitted text and several
* bits of information that will prove useful when we come to output the
* line to #_flow. Returns with \a start_span_pos set to the end of the
* text that was fitted, \a chunk_info completely filled out and
* \a line_height set to the largest line box on the line. The return
* value is false only if we've run out of shapes to wrap inside (and
* hence couldn't create any chunks).
*/
{
// init the initial line_height
// empty first para: create a font for the sole purpose of measuring it
InputStreamTextSource const *text_source = static_cast<InputStreamTextSource const *>(_flow._input_stream.front());
if (font) {
*line_height *= multiplier;
}
}
// else empty subsequent para: keep the old line height
} else {
// if we're not wrapping set the line_height big and negative so we can use negative line height
}
else
line_height->setZero();
}
for( ; ; ) {
scan_runs = _scanline_maker->makeScanline(*line_height); // Only one line with "InfiniteScanlineMaker
// Only used by ShapeScanlineMaker
if (!_goToNextWrapShape()) return false; // no more shapes to wrap in to
}
chunk_info->clear();
unsigned scan_run_index;
break;
}
}
return true;
}
/**
* Given a scan run and a first character, append one or more chunks to
* the \a chunk_info vector that describe all the spans and other detail
* necessary to output the greatest amount of text that will fit on this scan
* line (greedy line breaking algorithm). Each chunk contains one or more
* BrokenSpan structures that link back to UnbrokenSpan structures that link
* to the text itself. Normally there will be either one or zero (if the
* scanrun is too short to fit any text) chunk added to \a chunk_info by
* each call to this method, but we will add more than one if an x or y
* attribute has been set on a tspan. \a line_height must be set on input,
* and if it needs to be made larger and the #_scanline_maker can't do
* an in-situ resize then it will be set to the required value and the
* method will return false.
*/
UnbrokenSpanPosition const &start_span_pos,
FontMetrics *line_height) const
{
// we haven't done anything yet so the last valid break position is the beginning
while (new_span.end.iter_span != para.unbroken_spans.end()) { // this loops once for each UnbrokenSpan
// force a chunk change at x or y attribute change
if ((new_span.start.iter_span->x._set || new_span.start.iter_span->y._set) && new_span.start.char_byte == 0) {
// y doesn't need to be done until output time
}
// see if this span is too tall to fit on the current line
/* floating point 80-bit/64-bit rounding problems require epsilon. See
discussion http://inkscape.gristle.org/2005-03-16.txt around 22:00 */
// Take larger of each of the two ascents and two descents per CSS
return false;
}
}
bool span_fitted = _measureUnbrokenSpan(para, &new_span, &last_span_at_break, &last_span_at_emergency_break, new_chunk.scanrun_width - new_chunk.text_width);
if (!span_fitted) break;
break;
}
}
TRACE(("chunk complete, used %f width (%d whitespaces, %lu brokenspans)\n", new_chunk.text_width, new_chunk.whitespace_count, new_chunk.broken_spans.size()));
/* **non-SVG spec bit**: See bug #1191102
If the user types a very long line with no spaces, the way the spec
is written at the moment means that when the length of the text
exceeds the available width of all remaining areas, the text is
completely hidden. This condition alters that behaviour so that if
the length of the line is greater than four times the line-height
and there are no spaces, it'll be emergency-wrapped at the last
character. One could read the SVG Tiny 1.2 draft as permitting this
sort of behaviour, but it's still a bit dodgy. The hard-coding of
4x is not nice, either. */
}
if (!chunk_info->back().broken_spans.empty() && last_span_at_break.end != chunk_info->back().broken_spans.back().end) {
// need to back out spans until we come to the one with the last break in it
while (!chunk_info->empty() && last_span_at_break.start.iter_span != chunk_info->back().broken_spans.back().start.iter_span) {
chunk_info->pop_back();
}
if (!chunk_info->empty()) {
chunk_info->pop_back();
} else {
}
TRACE(("correction: fitted span %lu width = %f\n", last_span_at_break.start.iter_span - para.unbroken_spans.begin(), last_span_at_break.width));
}
}
if (!chunk_info->empty() && !chunk_info->back().broken_spans.empty() && chunk_info->back().broken_spans.back().ends_with_whitespace) {
// for justification we need to discard space occupied by the single whitespace at the end of the chunk
chunk_info->back().broken_spans.back().width -= chunk_info->back().broken_spans.back().each_whitespace_width;
}
// for justification we need to discard line-spacing and word-spacing at end of the chunk
chunk_info->back().broken_spans.back().width -= chunk_info->back().broken_spans.back().letter_spacing;
TRACE(("width after subtracting last letter_spacing: %f\n", chunk_info->back().broken_spans.back().width));
}
return true;
}
/** The management function to start the whole thing off. */
{
return false;
/**
* hm, why do we want assert (crash) the application, now do simply return false
* \todo check if this is the correct behaviour
* g_assert(_flow._input_stream.front()->Type() == TEXT_SOURCE);
*/
{
g_warning("flow text is not of type TEXT_SOURCE. Abort.");
return false;
}
TRACE(("begin calculateFlow()\n"));
// Reset gravity hint in case it was changed via previous use of 'text-orientation'
// (scripts take their natural gravity given base gravity).
// Vertical text, CJK
} else {
// Horizontal text
}
_y_offset = 0.0;
FontMetrics line_height; // needs to be maintained across paragraphs to be able to deal with blank paras
// jump to the next wrap shape if this is a SHAPE_BREAK control code
InputStreamControlCode const *control_code = static_cast<InputStreamControlCode const *>(_flow._input_stream[para.first_input_index]);
TRACE(("shape break control code\n"));
if (!_goToNextWrapShape()) break;
continue;
}
}
if (_scanline_maker == NULL)
break; // we're trying to flow past the last wrap shape
// Break things up into little pango units with unique direction, gravity, etc.
// Do shaping (convert characters to glyphs)
para.alignment = static_cast<InputStreamTextSource*>(_flow._input_stream[para.first_input_index])->styleGetAlignment(para.direction, !_flow._input_wrap_shapes.empty());
else
// start scanning lines
span_pos.char_index = 0;
do { // for each line in the paragraph
TRACE(("begin line\n"));
break; // out of shapes to wrap in to
if (_scanline_maker != NULL) {
bool is_empty_para = _flow._characters.empty() || _flow._characters.back().line(&_flow).in_paragraph != _flow._paragraphs.size() - 1;
// we need a span just for the para if it's either an empty last para or a break in the middle
} else {
}
else
}
// we've got to add an invisible character between paragraphs so that we can position iterators
// (and hence cursors) both before and after the paragraph break
}
}
}
if (_scanline_maker) {
delete _scanline_maker;
_flow._input_truncated = false;
} else {
_flow._input_truncated = true;
}
// Calculate the adjustment needed to meet the textLength
_flow.textLengthIncrement = difference / (_flow._characters.size() == 1? 1 : _flow._characters.size() - 1);
}
return true;
}
void Layout::_calculateCursorShapeForEmpty()
{
return;
InputStreamTextSource const *text_source = static_cast<InputStreamTextSource const *>(_input_stream.front());
if (font) {
line_height *= font_size;
}
if (_input_wrap_shapes.empty()) {
_empty_cursor_shape.position = Geom::Point(text_source->x.empty() || !text_source->x.front()._set ? 0.0 : text_source->x.front().computed,
} else {
// Vertical text
_empty_cursor_shape.position = Geom::Point(scan_runs.front().y + font_size, scan_runs.front().x_start);
} else {
// Horizontal text
_empty_cursor_shape.position = Geom::Point(scan_runs.front().x_start, scan_runs.front().y + font_size);
}
}
}
}
bool Layout::calculateFlow()
{
if (textLengthIncrement != 0) {
TRACE(("Recalculating layout the second time to fit textLength!\n"));
}
if (_characters.empty())
return result;
}
}//namespace Text
}//namespace Inkscape
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :