straightener.cpp revision b2296609507c2d79d585f1076b058730a6ec9239
/*
** vim: set cindent
** vim: ts=4 sw=4 et tw=0 wm=0
*/
/**
* \brief Functions to automatically generate constraints for the
* rectangular node overlap removal problem.
*
* Authors:
* Tim Dwyer <tgdwyer@gmail.com>
*
* Copyright (C) 2005 Authors
*
* Released under GNU LGPL. Read the file 'COPYING' for more information.
*/
#include <set>
#include <list>
#include <cassert>
#include "straightener.h"
#include <iostream>
#include <cmath>
#include <cstdlib>
using std::set;
using std::vector;
using std::list;
namespace straightener {
// is point p on line a-b?
static bool pointOnLine(double px,double py, double ax, double ay, double bx, double by, double& tx) {
double dx=bx-ax;
double dy=by-ay;
double ty=0;
if(fabs(dx)<0.0001&&fabs(dy)<0.0001) {
// runty line!
tx=px-ax;
ty=py-ay;
} else {
if(fabs(dx)<0.0001) {
//vertical line
if(fabs(px-ax)<0.01) {
tx=(py-ay)/dy;
}
} else {
tx=(px-ax)/dx;
}
if(fabs(dy)<0.0001) {
//horizontal line
if(fabs(py-ay)<0.01) {
ty=tx;
}
} else {
ty=(py-ay)/dy;
}
}
//printf(" tx=%f,ty=%f\n",tx,ty);
if(fabs(tx-ty)<0.001 && tx>0 && tx<=1) {
return true;
}
return false;
}
void Edge::nodePath(vector<Node*>& nodes) {
list<unsigned> ds(dummyNodes.size());
copy(dummyNodes.begin(),dummyNodes.end(),ds.begin());
//printf("Edge::nodePath: (%d,%d) dummyNodes:%d\n",startNode,endNode,ds.size());
path.clear();
path.push_back(startNode);
for(unsigned i=1;i<route->n;i++) {
//printf(" checking segment %d-%d\n",i-1,i);
set<pair<double,unsigned> > pntsOnLineSegment;
for(list<unsigned>::iterator j=ds.begin();j!=ds.end();) {
double px=nodes[*j]->x;
double py=nodes[*j]->y;
double ax=route->xs[i-1];
double ay=route->ys[i-1];
double bx=route->xs[i];
double by=route->ys[i];
double t=0;
list<unsigned>::iterator copyit=j++;
//printf(" px=%f, py=%f, ax=%f, ay=%f, bx=%f, by=%f\n",px,py,ax,ay,bx,by);
if(pointOnLine(px,py,ax,ay,bx,by,t)) {
//printf(" got node %d\n",*copyit);
pntsOnLineSegment.insert(make_pair(t,*copyit));
ds.erase(copyit);
}
}
for(set<pair<double,unsigned> >::iterator j=pntsOnLineSegment.begin();j!=pntsOnLineSegment.end();j++) {
path.push_back(j->second);
}
//printf("\n");
}
path.push_back(endNode);
assert(ds.empty());
}
typedef enum {Open, Close} EventType;
struct Event {
EventType type;
Node *v;
Edge *e;
double pos;
Event(EventType t, Node *v, double p) : type(t),v(v),e(NULL),pos(p) {};
Event(EventType t, Edge *e, double p) : type(t),v(NULL),e(e),pos(p) {};
};
Event **events;
int compare_events(const void *a, const void *b) {
Event *ea=*(Event**)a;
Event *eb=*(Event**)b;
if((ea->v!=NULL&&ea->v==eb->v)||(ea->e!=NULL&&ea->e==eb->e)) {
// when comparing opening and closing from object
// open must come first
if(ea->type==Open) return -1;
return 1;
} else if(ea->pos > eb->pos) {
return 1;
} else if(ea->pos < eb->pos) {
return -1;
}
return 0;
}
void sortNeighbours(Node* v, Node* l, Node* r,
double conjpos, vector<Edge*>& openEdges,
vector<Node*>& L,vector<Node*>& nodes, Dim dim) {
double minpos=-DBL_MAX, maxpos=DBL_MAX;
if(l!=NULL) {
L.push_back(l);
minpos=l->scanpos;
}
typedef pair<double,Edge*> PosEdgePair;
set<PosEdgePair> sortedEdges;
for(unsigned i=0;i<openEdges.size();i++) {
Edge *e=openEdges[i];
vector<double> bs;
if(dim==HORIZONTAL) {
e->xpos(conjpos,bs);
} else {
e->ypos(conjpos,bs);
}
//cerr << "edge(intersections="<<bs.size()<<":("<<e->startNode<<","<<e->endNode<<"))"<<endl;
for(vector<double>::iterator it=bs.begin();it!=bs.end();it++) {
sortedEdges.insert(make_pair(*it,e));
}
}
for(set<PosEdgePair>::iterator i=sortedEdges.begin();i!=sortedEdges.end();i++) {
double pos=i->first;
if(pos < minpos) continue;
if(pos > v->scanpos) break;
// if edge is connected (start or end) to v then skip
// need to record start and end positions of edge segment!
Edge* e=i->second;
if(e->startNode==v->id||e->endNode==v->id) continue;
//if(l!=NULL&&(e->startNode==l->id||e->endNode==l->id)) continue;
//cerr << "edge("<<e->startNode<<","<<e->endNode<<",pts="<<e->pts<<")"<<endl;
Node* d=dim==HORIZONTAL?
new Node(nodes.size(),pos,conjpos,e):
new Node(nodes.size(),conjpos,pos,e);
L.push_back(d);
nodes.push_back(d);
}
L.push_back(v);
if(r!=NULL) {
maxpos=r->scanpos;
}
for(set<PosEdgePair>::iterator i=sortedEdges.begin();i!=sortedEdges.end();i++) {
if(i->first < v->scanpos) continue;
if(i->first > maxpos) break;
double pos=i->first;
// if edge is connected (start or end) to v then skip
// need to record start and end positions of edge segment!
Edge* e=i->second;
if(e->startNode==v->id||e->endNode==v->id) continue;
//if(r!=NULL&&(e->startNode==r->id||e->endNode==r->id)) continue;
//cerr << "edge("<<e->startNode<<","<<e->endNode<<",pts="<<e->pts<<")"<<endl;
Node* d=dim==HORIZONTAL?
new Node(nodes.size(),pos,conjpos,e):
new Node(nodes.size(),conjpos,pos,e);
L.push_back(d);
nodes.push_back(d);
}
if(r!=NULL) {
L.push_back(r);
}
}
static SimpleConstraint* createConstraint(Node* u, Node* v, Dim dim) {
double g=dim==HORIZONTAL?(u->width+v->width):(u->height+v->height);
g/=2;
//cerr << "Constraint: "<< u->id << "+"<<g<<"<="<<v->id<<endl;
return new SimpleConstraint(u->id,v->id,g);
}
void generateConstraints(vector<Node*>& nodes, vector<Edge*>& edges,vector<SimpleConstraint*>& cs,Dim dim) {
unsigned nevents=2*nodes.size()+2*edges.size();
events=new Event*[nevents];
unsigned ctr=0;
if(dim==HORIZONTAL) {
//cout << "Scanning top to bottom..." << endl;
for(unsigned i=0;i<nodes.size();i++) {
Node *v=nodes[i];
v->scanpos=v->x;
events[ctr++]=new Event(Open,v,v->ymin+0.01);
events[ctr++]=new Event(Close,v,v->ymax-0.01);
}
for(unsigned i=0;i<edges.size();i++) {
Edge *e=edges[i];
events[ctr++]=new Event(Open,e,e->ymin-1);
events[ctr++]=new Event(Close,e,e->ymax+1);
}
} else {
//cout << "Scanning left to right..." << endl;
for(unsigned i=0;i<nodes.size();i++) {
Node *v=nodes[i];
v->scanpos=v->y;
events[ctr++]=new Event(Open,v,v->xmin+0.01);
events[ctr++]=new Event(Close,v,v->xmax-0.01);
}
for(unsigned i=0;i<edges.size();i++) {
Edge *e=edges[i];
events[ctr++]=new Event(Open,e,e->xmin-1);
events[ctr++]=new Event(Close,e,e->xmax+1);
}
}
qsort((Event*)events, (size_t)nevents, sizeof(Event*), compare_events );
NodeSet openNodes;
vector<Edge*> openEdges;
for(unsigned i=0;i<nevents;i++) {
Event *e=events[i];
Node *v=e->v;
if(v!=NULL) {
v->open = true;
//printf("NEvent@%f,nid=%d,(%f,%f),w=%f,h=%f,openn=%d,opene=%d\n",e->pos,v->id,v->x,v->y,v->width,v->height,(int)openNodes.size(),(int)openEdges.size());
Node *l=NULL, *r=NULL;
if(!openNodes.empty()) {
// it points to the first node to the right of v
NodeSet::iterator it=openNodes.lower_bound(v);
// step left to find the first node to the left of v
if(it--!=openNodes.begin()) {
l=*it;
//printf("l=%d\n",l->id);
}
it=openNodes.upper_bound(v);
if(it!=openNodes.end()) {
r=*it;
}
}
vector<Node*> L;
sortNeighbours(v,l,r,e->pos,openEdges,L,nodes,dim);
//printf("L=[");
for(unsigned i=0;i<L.size();i++) {
//printf("%d ",L[i]->id);
}
//printf("]\n");
// Case A: create constraints between adjacent edges skipping edges joined
// to l,v or r.
Node* lastNode=NULL;
for(vector<Node*>::iterator i=L.begin();i!=L.end();i++) {
if((*i)->dummy) {
// node is on an edge
Edge *edge=(*i)->edge;
if(!edge->isEnd(v->id)
&&((l!=NULL&&!edge->isEnd(l->id))||l==NULL)
&&((r!=NULL&&!edge->isEnd(r->id))||r==NULL)) {
if(lastNode!=NULL) {
//printf(" Rule A: Constraint: v%d +g <= v%d\n",lastNode->id,(*i)->id);
cs.push_back(createConstraint(lastNode,*i,dim));
}
lastNode=*i;
}
} else {
// is an actual node
lastNode=NULL;
}
}
// Case B: create constraints for all the edges connected to the right of
// their own end, also in the scan line
vector<Node*> skipList;
lastNode=NULL;
for(vector<Node*>::iterator i=L.begin();i!=L.end();i++) {
if((*i)->dummy) {
// node is on an edge
if(lastNode!=NULL) {
if((*i)->edge->isEnd(lastNode->id)) {
skipList.push_back(*i);
} else {
for(vector<Node*>::iterator j=skipList.begin();
j!=skipList.end();j++) {
//printf(" Rule B: Constraint: v%d +g <= v%d\n",(*j)->id,(*i)->id);
cs.push_back(createConstraint(*j,*i,dim));
}
skipList.clear();
}
}
} else {
// is an actual node
skipList.clear();
skipList.push_back(*i);
lastNode=*i;
}
}
skipList.clear();
// Case C: reverse of B
lastNode=NULL;
for(vector<Node*>::reverse_iterator i=L.rbegin();i!=L.rend();i++) {
if((*i)->dummy) {
// node is on an edge
if(lastNode!=NULL) {
if((*i)->edge->isEnd(lastNode->id)) {
skipList.push_back(*i);
} else {
for(vector<Node*>::iterator j=skipList.begin();
j!=skipList.end();j++) {
//printf(" Rule C: Constraint: v%d +g <= v%d\n",(*i)->id,(*j)->id);
cs.push_back(createConstraint(*i,*j,dim));
}
skipList.clear();
}
}
} else {
// is an actual node
skipList.clear();
skipList.push_back(*i);
lastNode=*i;
}
}
if(e->type==Close) {
if(l!=NULL) cs.push_back(createConstraint(l,v,dim));
if(r!=NULL) cs.push_back(createConstraint(v,r,dim));
}
}
if(e->type==Open) {
if(v!=NULL) {
openNodes.insert(v);
} else {
//printf("EdgeOpen@%f,eid=%d,(u,v)=(%d,%d)\n", e->pos,e->e->id,e->e->startNode,e->e->endNode);
e->e->openInd=openEdges.size();
openEdges.push_back(e->e);
}
} else {
// Close
if(v!=NULL) {
openNodes.erase(v);
v->open=false;
} else {
//printf("EdgeClose@%f,eid=%d,(u,v)=(%d,%d)\n", e->pos,e->e->id,e->e->startNode,e->e->endNode);
unsigned i=e->e->openInd;
openEdges[i]=openEdges[openEdges.size()-1];
openEdges[i]->openInd=i;
openEdges.resize(openEdges.size()-1);
}
}
delete e;
}
delete [] events;
}
}