gradient_projection.h revision cc0a7f11008a887c51ab7fd899e0e374d21d48a9
#ifndef _GRADIENT_PROJECTION_H
#define _GRADIENT_PROJECTION_H
#include <libvpsc/solve_VPSC.h>
#include <libvpsc/variable.h>
#include <libvpsc/constraint.h>
#include <libvpsc/generate-constraints.h>
#include <vector>
#include <iostream>
#include <math.h>
typedef std::vector<vpsc::Constraint*> Constraints;
typedef std::vector<vpsc::Variable*> Variables;
typedef std::vector<std::pair<unsigned, double> > OffsetList;
class SimpleConstraint {
public:
SimpleConstraint(unsigned l, unsigned r, double g)
: left(l), right(r), gap(g) {}
unsigned left;
unsigned right;
double gap;
};
typedef std::vector<SimpleConstraint*> SimpleConstraints;
class AlignmentConstraint {
friend class GradientProjection;
public:
AlignmentConstraint(double pos) :
offsets(),
guide(NULL),
position(pos),
variable(NULL)
{}
void updatePosition() {
position = variable->position();
}
OffsetList offsets;
void* guide;
double position;
private:
vpsc::Variable* variable;
};
typedef std::vector<AlignmentConstraint*> AlignmentConstraints;
class PageBoundaryConstraints {
public:
PageBoundaryConstraints(double lm, double rm, double w)
: leftMargin(lm), rightMargin(rm), weight(w) { }
void createVarsAndConstraints(Variables &vs, Constraints &cs) {
vpsc::Variable* vl, * vr;
// create 2 dummy vars, based on the dimension we are in
vs.push_back(vl=new vpsc::Variable(vs.size(), leftMargin, weight));
vs.push_back(vr=new vpsc::Variable(vs.size(), rightMargin, weight));
// for each of the "real" variables, create a constraint that puts that var
// between our two new dummy vars, depending on the dimension.
for(OffsetList::iterator o=offsets.begin(); o!=offsets.end(); ++o) {
cs.push_back(new vpsc::Constraint(vl, vs[o->first], o->second));
cs.push_back(new vpsc::Constraint(vs[o->first], vr, o->second));
}
}
OffsetList offsets;
private:
double leftMargin;
double rightMargin;
double weight;
};
typedef std::vector<std::pair<unsigned, double> > CList;
/**
* A DummyVarPair is a pair of variables with an ideal distance between them and which have no
* other interaction with other variables apart from through constraints. This means that
* the entries in the laplacian matrix for dummy vars and other vars would be 0 - thus, sparse
* matrix techniques can be used in laplacian operations.
* The constraints are specified by a two lists of pairs of variable indexes and required separation.
* The two lists are:
* leftof: variables to which left must be to the left of,
* rightof: variables to which right must be to the right of.
*/
class DummyVarPair {
public:
DummyVarPair(double desiredDist) :
leftof(),
rightof(),
place_l(0),
place_r(0),
dist(desiredDist),
b(0),
left(NULL),
right(NULL),
lap2(1.0/(desiredDist*desiredDist)),
g(0),
old_place_l(0),
old_place_r(0)
{}
CList leftof; // variables to which left dummy var must be to the left of
CList rightof; // variables to which right dummy var must be to the right of
double place_l;
double place_r;
void computeLinearTerm(double euclideanDistance) {
if(euclideanDistance > 1e-30) {
b = place_r - place_l;
b /= euclideanDistance * dist;
} else { b=0; }
}
double stress(double euclideanDistance) {
double diff = dist - euclideanDistance;
return diff*diff / (dist*dist);
}
private:
friend class GradientProjection;
/**
* Setup vars and constraints for an instance of the VPSC problem.
* Adds generated vars and constraints to the argument vectors.
*/
void setupVPSC(Variables &vars, Constraints &cs) {
double weight=1;
left = new vpsc::Variable(vars.size(),place_l,weight);
vars.push_back(left);
right = new vpsc::Variable(vars.size(),place_r,weight);
vars.push_back(right);
for(CList::iterator cit=leftof.begin();
cit!=leftof.end(); ++cit) {
vpsc::Variable* v = vars[(*cit).first];
cs.push_back(new vpsc::Constraint(left,v,(*cit).second));
}
for(CList::iterator cit=rightof.begin();
cit!=rightof.end(); ++cit) {
vpsc::Variable* v = vars[(*cit).first];
cs.push_back(new vpsc::Constraint(v,right,(*cit).second));
}
}
/**
* Extract the result of a VPSC solution to the variable positions
*/
void updatePosition() {
place_l=left->position();
place_r=right->position();
}
/**
* Compute the descent vector, also copying the current position to old_place for
* future reference
*/
void computeDescentVector() {
old_place_l=place_l;
old_place_r=place_r;
g = 2.0 * ( b + lap2 * ( place_l - place_r ) );
}
/**
* move in the direction of steepest descent (based on g computed by computeGradient)
* alpha is the step size.
*/
void steepestDescent(double alpha) {
place_l -= alpha*g;
place_r += alpha*g;
left->desiredPosition=place_l;
right->desiredPosition=place_r;
}
/**
* add dummy vars' contribution to numerator and denominator for
* beta step size calculation
*/
void betaCalc(double &numerator, double &denominator) {
double dl = place_l-old_place_l,
dr = place_r-old_place_r,
r = 2.0 * lap2 * ( dr - dl );
numerator += g * ( dl - dr );
denominator += r*dl - r * dr;
}
/**
* move by stepsize beta from old_place to place
*/
void feasibleDescent(double beta) {
left->desiredPosition = place_l = old_place_l + beta*(place_l - old_place_l);
right->desiredPosition = place_r = old_place_r + beta*(place_r - old_place_r);
}
double absoluteDisplacement() {
return fabs(place_l - old_place_l) + fabs(place_r - old_place_r);
}
double dist; // ideal distance between vars
double b; // linear coefficient in quad form for left (b_right = -b)
vpsc::Variable* left; // Variables used in constraints
vpsc::Variable* right;
double lap2; // laplacian entry
double g; // descent vec for quad form for left (g_right = -g)
double old_place_l; // old_place is where the descent vec g was computed
double old_place_r;
};
typedef std::vector<DummyVarPair*> DummyVars;
enum Dim { HORIZONTAL, VERTICAL };
class GradientProjection {
public:
GradientProjection(
const Dim k,
unsigned n,
double** A,
double* x,
double tol,
unsigned max_iterations,
AlignmentConstraints* acs=NULL,
bool nonOverlapConstraints=false,
vpsc::Rectangle** rs=NULL,
PageBoundaryConstraints *pbc = NULL,
SimpleConstraints *sc = NULL)
: k(k), n(n), A(A), place(x), rs(rs),
nonOverlapConstraints(nonOverlapConstraints),
tolerance(tol), acs(acs), max_iterations(max_iterations),
g(new double[n]), d(new double[n]), old_place(new double[n]),
constrained(false)
{
for(unsigned i=0;i<n;i++) {
vars.push_back(new vpsc::Variable(i,1,1));
}
if(acs) {
for(AlignmentConstraints::iterator iac=acs->begin();
iac!=acs->end();++iac) {
AlignmentConstraint* ac=*iac;
vpsc::Variable *v=ac->variable=new vpsc::Variable(vars.size(),ac->position,0.0001);
vars.push_back(v);
for(OffsetList::iterator o=ac->offsets.begin();
o!=ac->offsets.end();
++o) {
gcs.push_back(new vpsc::Constraint(v,vars[o->first],o->second,true));
}
}
}
if (pbc) {
pbc->createVarsAndConstraints(vars,gcs);
}
if (sc) {
for(SimpleConstraints::iterator c=sc->begin(); c!=sc->end();++c) {
gcs.push_back(new vpsc::Constraint(
vars[(*c)->left],vars[(*c)->right],(*c)->gap));
}
}
if(!gcs.empty() || nonOverlapConstraints) {
constrained=true;
}
}
virtual ~GradientProjection() {
delete [] g;
delete [] d;
delete [] old_place;
for(Constraints::iterator i(gcs.begin()); i!=gcs.end(); ++i) {
delete *i;
}
gcs.clear();
for(unsigned i=0;i<vars.size();i++) {
delete vars[i];
}
}
void clearDummyVars();
unsigned solve(double* b);
DummyVars dummy_vars; // special vars that must be considered in Lapl.
private:
vpsc::IncSolver* setupVPSC();
void destroyVPSC(vpsc::IncSolver *vpsc);
Dim k;
unsigned n; // number of actual vars
double** A; // Graph laplacian matrix
double* place;
Variables vars; // all variables
// computations
Constraints gcs; /* global constraints - persist throughout all
iterations */
Constraints lcs; /* local constraints - only for current iteration */
vpsc::Rectangle** rs;
bool nonOverlapConstraints;
double tolerance;
AlignmentConstraints* acs;
unsigned max_iterations;
double* g; /* gradient */
double* d;
double* old_place;
bool constrained;
};
#endif /* _GRADIENT_PROJECTION_H */
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=4:softtabstop=4 :