s_erf.c revision 6b15695578f07a3f72c4c9475c1a261a3021472a
550N/A/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- 550N/A * ***** BEGIN LICENSE BLOCK ***** 550N/A * Version: MPL 1.1/GPL 2.0/LGPL 2.1 919N/A * The contents of this file are subject to the Mozilla Public License Version 919N/A * 1.1 (the "License"); you may not use this file except in compliance with 919N/A * the License. You may obtain a copy of the License at 919N/A * Software distributed under the License is distributed on an "AS IS" basis, 919N/A * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License 919N/A * for the specific language governing rights and limitations under the 919N/A * The Original Code is Mozilla Communicator client code, released 919N/A * The Initial Developer of the Original Code is 919N/A * Sun Microsystems, Inc. 919N/A * Portions created by the Initial Developer are Copyright (C) 1998 550N/A * the Initial Developer. All Rights Reserved. 550N/A * Alternatively, the contents of this file may be used under the terms of 550N/A * either of the GNU General Public License Version 2 or later (the "GPL"), 550N/A * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), 550N/A * in which case the provisions of the GPL or the LGPL are applicable instead 550N/A * of those above. If you wish to allow use of your version of this file only 1233N/A * under the terms of either the GPL or the LGPL, and not to allow others to 550N/A * use your version of this file under the terms of the MPL, indicate your 550N/A * decision by deleting the provisions above and replace them with the notice 550N/A * and other provisions required by the GPL or the LGPL. If you do not delete 550N/A * the provisions above, a recipient may use your version of this file under 550N/A * the terms of any one of the MPL, the GPL or the LGPL. 550N/A * ***** END LICENSE BLOCK ***** */ 1233N/A * ==================================================== 550N/A * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. 1233N/A * Developed at SunSoft, a Sun Microsystems, Inc. business. 550N/A * Permission to use, copy, modify, and distribute this 550N/A * software is freely granted, provided that this notice 550N/A * ==================================================== 550N/A * double erfc(double x) 550N/A * erf(x) = --------- | exp(-t*t)dt 550N/A * erfc(-x) = 2 - erfc(x) 550N/A * 1. For |x| in [0, 0.84375] 550N/A * erf(x) = x + x*R(x^2) 550N/A * erfc(x) = 1 - erf(x) if x in [-.84375,0.25] 550N/A * = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375] 550N/A * where R = P/Q where P is an odd poly of degree 8 and 550N/A * Q is an odd poly of degree 10. 550N/A * | R - (erf(x)-x)/x | <= 2 550N/A * Remark. The formula is derived by noting 550N/A * erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....) 550N/A * 2/sqrt(pi) = 1.128379167095512573896158903121545171688 550N/A * is close to one. The interval is chosen because the fix 550N/A * point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is 550N/A * near 0.6174), and by some experiment, 0.84375 is chosen to 550N/A * guarantee the error is less than one ulp for erf. 550N/A * 2. For |x| in [0.84375,1.25], let s = |x| - 1, and 550N/A * c = 0.84506291151 rounded to single (24 bits) 550N/A * erf(x) = sign(x) * (c + P1(s)/Q1(s)) 550N/A * erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0 550N/A * 1+(c+P1(s)/Q1(s)) if x < 0 * |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06 * Remark: here we use the taylor series expansion at x=1. * erf(1+s) = erf(1) + s*Poly(s) * = 0.845.. + P1(s)/Q1(s) * That is, we use rational approximation to approximate * erf(1+s) - (c = (single)0.84506291151) * Note that |P1/Q1|< 0.078 for x in [0.84375,1.25] * P1(s) = degree 6 poly in s * Q1(s) = degree 6 poly in s * 3. For x in [1.25,1/0.35(~2.857143)], * erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1) * R1(z) = degree 7 poly in z, (z=1/x^2) * S1(z) = degree 8 poly in z * 4. For x in [1/0.35,28] * erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0 * = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0 * = 2.0 - tiny (if x <= -6) * erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else * erf(x) = sign(x)*(1.0 - tiny) * R2(z) = degree 6 poly in z, (z=1/x^2) * S2(z) = degree 7 poly in z * To compute exp(-x*x-0.5625+R/S), let s be a single * precision number and s := x; then * -x*x = -s*s + (s-x)*(s+x) * exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S); * Here 4 and 5 make use of the asymptotic series * erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) ) * We use rational approximation to approximate * g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625 * Here is the error bound for R1/S1 and R2/S2 * |R1/S1 - f(x)| < 2**(-62.57) * |R2/S2 - f(x)| < 2**(-61.52) * erf(x) = sign(x) *(1 - tiny) (raise inexact) * erfc(x) = tiny*tiny (raise underflow) if x > 0 * erf(0) = 0, erf(inf) = 1, erf(-inf) = -1, * erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2, half=
5.00000000000000000000e-01,
/* 0x3FE00000, 0x00000000 */ one =
1.00000000000000000000e+00,
/* 0x3FF00000, 0x00000000 */ two =
2.00000000000000000000e+00,
/* 0x40000000, 0x00000000 */ /* c = (float)0.84506291151 */ erx =
8.45062911510467529297e-01,
/* 0x3FEB0AC1, 0x60000000 */ * Coefficients for approximation to erf on [0,0.84375] efx =
1.28379167095512586316e-01,
/* 0x3FC06EBA, 0x8214DB69 */ efx8=
1.02703333676410069053e+00,
/* 0x3FF06EBA, 0x8214DB69 */ pp0 =
1.28379167095512558561e-01,
/* 0x3FC06EBA, 0x8214DB68 */ pp1 = -
3.25042107247001499370e-01,
/* 0xBFD4CD7D, 0x691CB913 */ pp2 = -
2.84817495755985104766e-02,
/* 0xBF9D2A51, 0xDBD7194F */ pp3 = -
5.77027029648944159157e-03,
/* 0xBF77A291, 0x236668E4 */ pp4 = -
2.37630166566501626084e-05,
/* 0xBEF8EAD6, 0x120016AC */ qq1 =
3.97917223959155352819e-01,
/* 0x3FD97779, 0xCDDADC09 */ qq2 =
6.50222499887672944485e-02,
/* 0x3FB0A54C, 0x5536CEBA */ qq3 =
5.08130628187576562776e-03,
/* 0x3F74D022, 0xC4D36B0F */ qq4 =
1.32494738004321644526e-04,
/* 0x3F215DC9, 0x221C1A10 */ qq5 = -
3.96022827877536812320e-06,
/* 0xBED09C43, 0x42A26120 */ * Coefficients for approximation to erf in [0.84375,1.25] pa0 = -
2.36211856075265944077e-03,
/* 0xBF6359B8, 0xBEF77538 */ pa1 =
4.14856118683748331666e-01,
/* 0x3FDA8D00, 0xAD92B34D */ pa2 = -
3.72207876035701323847e-01,
/* 0xBFD7D240, 0xFBB8C3F1 */ pa3 =
3.18346619901161753674e-01,
/* 0x3FD45FCA, 0x805120E4 */ pa4 = -
1.10894694282396677476e-01,
/* 0xBFBC6398, 0x3D3E28EC */ pa5 =
3.54783043256182359371e-02,
/* 0x3FA22A36, 0x599795EB */ pa6 = -
2.16637559486879084300e-03,
/* 0xBF61BF38, 0x0A96073F */ qa1 =
1.06420880400844228286e-01,
/* 0x3FBB3E66, 0x18EEE323 */ qa2 =
5.40397917702171048937e-01,
/* 0x3FE14AF0, 0x92EB6F33 */ qa3 =
7.18286544141962662868e-02,
/* 0x3FB2635C, 0xD99FE9A7 */ qa4 =
1.26171219808761642112e-01,
/* 0x3FC02660, 0xE763351F */ qa5 =
1.36370839120290507362e-02,
/* 0x3F8BEDC2, 0x6B51DD1C */ qa6 =
1.19844998467991074170e-02,
/* 0x3F888B54, 0x5735151D */ * Coefficients for approximation to erfc in [1.25,1/0.35] ra0 = -
9.86494403484714822705e-03,
/* 0xBF843412, 0x600D6435 */ ra1 = -
6.93858572707181764372e-01,
/* 0xBFE63416, 0xE4BA7360 */ ra2 = -
1.05586262253232909814e+01,
/* 0xC0251E04, 0x41B0E726 */ ra3 = -
6.23753324503260060396e+01,
/* 0xC04F300A, 0xE4CBA38D */ ra4 = -
1.62396669462573470355e+02,
/* 0xC0644CB1, 0x84282266 */ ra5 = -
1.84605092906711035994e+02,
/* 0xC067135C, 0xEBCCABB2 */ ra6 = -
8.12874355063065934246e+01,
/* 0xC0545265, 0x57E4D2F2 */ ra7 = -
9.81432934416914548592e+00,
/* 0xC023A0EF, 0xC69AC25C */ sa1 =
1.96512716674392571292e+01,
/* 0x4033A6B9, 0xBD707687 */ sa2 =
1.37657754143519042600e+02,
/* 0x4061350C, 0x526AE721 */ sa3 =
4.34565877475229228821e+02,
/* 0x407B290D, 0xD58A1A71 */ sa4 =
6.45387271733267880336e+02,
/* 0x40842B19, 0x21EC2868 */ sa5 =
4.29008140027567833386e+02,
/* 0x407AD021, 0x57700314 */ sa6 =
1.08635005541779435134e+02,
/* 0x405B28A3, 0xEE48AE2C */ sa7 =
6.57024977031928170135e+00,
/* 0x401A47EF, 0x8E484A93 */ sa8 = -
6.04244152148580987438e-02,
/* 0xBFAEEFF2, 0xEE749A62 */ * Coefficients for approximation to erfc in [1/.35,28] rb0 = -
9.86494292470009928597e-03,
/* 0xBF843412, 0x39E86F4A */ rb1 = -
7.99283237680523006574e-01,
/* 0xBFE993BA, 0x70C285DE */ rb2 = -
1.77579549177547519889e+01,
/* 0xC031C209, 0x555F995A */ rb3 = -
1.60636384855821916062e+02,
/* 0xC064145D, 0x43C5ED98 */ rb4 = -
6.37566443368389627722e+02,
/* 0xC083EC88, 0x1375F228 */ rb5 = -
1.02509513161107724954e+03,
/* 0xC0900461, 0x6A2E5992 */ rb6 = -
4.83519191608651397019e+02,
/* 0xC07E384E, 0x9BDC383F */ sb1 =
3.03380607434824582924e+01,
/* 0x403E568B, 0x261D5190 */ sb2 =
3.25792512996573918826e+02,
/* 0x40745CAE, 0x221B9F0A */ sb3 =
1.53672958608443695994e+03,
/* 0x409802EB, 0x189D5118 */ sb4 =
3.19985821950859553908e+03,
/* 0x40A8FFB7, 0x688C246A */ sb5 =
2.55305040643316442583e+03,
/* 0x40A3F219, 0xCEDF3BE6 */ sb6 =
4.74528541206955367215e+02,
/* 0x407DA874, 0xE79FE763 */ sb7 = -
2.24409524465858183362e+01;
/* 0xC03670E2, 0x42712D62 */ if(
ix>=
0x7ff00000) {
/* erf(nan)=nan */ i = ((
unsigned)
hx>>
31)<<
1;
return (
double)(
1-i)+
one/x;
/* erf(+-inf)=+-1 */ if(
ix <
0x3feb0000) {
/* |x|<0.84375 */ if(
ix <
0x3e300000) {
/* |x|<2**-28 */ return 0.125*(
8.0*x+
efx8*x);
/*avoid underflow */ if(
ix <
0x3ff40000) {
/* 0.84375 <= |x| < 1.25 */ if(
hx>=0)
return erx + P/Q;
else return -
erx - P/Q;
if (
ix >=
0x40180000) {
/* inf>|x|>=6 */ if(
ix<
0x4006DB6E) {
/* |x| < 1/0.35 */ }
else {
/* |x| >= 1/0.35 */ if(
hx>=0)
return one-r/x;
else return r/x-
one;
if(
ix>=
0x7ff00000) {
/* erfc(nan)=nan */ return (
double)(((
unsigned)
hx>>
31)<<
1)+
one/x;
if(
ix <
0x3feb0000) {
/* |x|<0.84375 */ if(
ix <
0x3c700000)
/* |x|<2**-56 */ if(
hx <
0x3fd00000) {
/* x<1/4 */ if(
ix <
0x3ff40000) {
/* 0.84375 <= |x| < 1.25 */ if (
ix <
0x403c0000) {
/* |x|<28 */ if(
ix<
0x4006DB6D) {
/* |x| < 1/.35 ~ 2.857143*/ }
else {
/* |x| >= 1/.35 ~ 2.857143 */ if(
hx>0)
return r/x;
else return two-r/x;