emf-print.cpp revision 034d7ccaa6acbcd03e37974a2d164706862c32a2
/** @file
* @brief Enhanced Metafile printing
*//*
* Authors:
* Ulf Erikson <ulferikson@users.sf.net>
* Jon A. Cruz <jon@joncruz.org>
* Abhishek Sharma
* David Mathog
*
* Copyright (C) 2006-2009 Authors
*
* Released under GNU GPL, read the file 'COPYING' for more information
*
* References:
* - How to Create & Play Enhanced Metafiles in Win32
* http://support.microsoft.com/kb/q145999/
* - INFO: Windows Metafile Functions & Aldus Placeable Metafiles
* http://support.microsoft.com/kb/q66949/
* - Metafile Functions
* http://msdn.microsoft.com/library/en-us/gdi/metafile_0whf.asp
* - Metafile Structures
* http://msdn.microsoft.com/library/en-us/gdi/metafile_5hkj.asp
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <string.h>
#include <glibmm/miscutils.h>
#include <libuemf/symbol_convert.h>
#include <2geom/sbasis-to-bezier.h>
#include <2geom/path.h>
#include <2geom/pathvector.h>
#include <2geom/rect.h>
#include <2geom/curves.h>
#include <sp-clippath.h>
#include "helper/geom.h"
#include "helper/geom-curves.h"
#include "sp-item.h"
#include "util/units.h"
#include "style.h"
#include "inkscape-version.h"
#include "sp-root.h"
#include "extension/system.h"
#include "extension/print.h"
#include "document.h"
#include "path-prefix.h"
#include "sp-pattern.h"
#include "sp-image.h"
#include "sp-gradient.h"
#include "sp-radial-gradient.h"
#include "sp-linear-gradient.h"
#include "display/cairo-utils.h"
#include "splivarot.h" // pieces for union on shapes
#include "2geom/svg-path-parser.h" // to get from SVG text to Geom::Path
#include "display/canvas-bpath.h" // for SPWindRule
#include "emf-print.h"
namespace Inkscape {
namespace Extension {
namespace Internal {
#define PXPERMETER 2835
/* globals */
static double PX2WORLD;
static bool FixPPTCharPos, FixPPTDashLine, FixPPTGrad2Polys, FixPPTLinGrad, FixPPTPatternAsHatch, FixImageRot;
static EMFTRACK *et = NULL;
static EMFHANDLES *eht = NULL;
void PrintEmf::smuggle_adxkyrtl_out(const char *string, uint32_t **adx, double *ky, int *rtl, int *ndx, float scale)
{
float fdx;
int i;
uint32_t *ladx;
const char *cptr = &string[strlen(string) + 1]; // this works because of the first fake terminator
*adx = NULL;
*ky = 0.0; // set a default value
sscanf(cptr, "%7d", ndx);
if (!*ndx) {
return; // this could happen with an empty string
}
cptr += 7;
ladx = (uint32_t *) malloc(*ndx * sizeof(uint32_t));
if (!ladx) {
g_message("Out of memory");
}
*adx = ladx;
for (i = 0; i < *ndx; i++, cptr += 7, ladx++) {
sscanf(cptr, "%7f", &fdx);
*ladx = (uint32_t) round(fdx * scale);
}
cptr++; // skip 2nd fake terminator
sscanf(cptr, "%7f", &fdx);
*ky = fdx;
cptr += 7; // advance over ky and its space
sscanf(cptr, "%07d", rtl);
}
PrintEmf::PrintEmf()
{
// all of the class variables are initialized elsewhere, many in PrintEmf::Begin,
}
unsigned int PrintEmf::setup(Inkscape::Extension::Print * /*mod*/)
{
return TRUE;
}
unsigned int PrintEmf::begin(Inkscape::Extension::Print *mod, SPDocument *doc)
{
U_SIZEL szlDev, szlMm;
U_RECTL rclBounds, rclFrame;
char *rec;
gchar const *utf8_fn = mod->get_param_string("destination");
// Typically PX2WORLD is 1200/90, using inkscape's default dpi
PX2WORLD = 1200.0 / Inkscape::Util::Quantity::convert(1.0, "in", "px");
FixPPTCharPos = mod->get_param_bool("FixPPTCharPos");
FixPPTDashLine = mod->get_param_bool("FixPPTDashLine");
FixPPTGrad2Polys = mod->get_param_bool("FixPPTGrad2Polys");
FixPPTLinGrad = mod->get_param_bool("FixPPTLinGrad");
FixPPTPatternAsHatch = mod->get_param_bool("FixPPTPatternAsHatch");
FixImageRot = mod->get_param_bool("FixImageRot");
(void) emf_start(utf8_fn, 1000000, 250000, &et); // Initialize the et structure
(void) htable_create(128, 128, &eht); // Initialize the eht structure
char *ansi_uri = (char *) utf8_fn;
// width and height in px
_width = doc->getWidth().value("px");
_height = doc->getHeight().value("px");
// initialize a few global variables
hbrush = hbrushOld = hpen = 0;
htextalignment = U_TA_BASELINE | U_TA_LEFT;
use_stroke = use_fill = simple_shape = usebk = false;
Inkscape::XML::Node *nv = sp_repr_lookup_name(doc->rroot, "sodipodi:namedview");
if (nv) {
const char *p1 = nv->attribute("pagecolor");
char *p2;
uint32_t lc = strtoul(&p1[1], &p2, 16); // it looks like "#ABC123"
if (*p2) {
lc = 0;
}
gv.bgc = _gethexcolor(lc);
gv.rgb[0] = (float) U_RGBAGetR(gv.bgc) / 255.0;
gv.rgb[1] = (float) U_RGBAGetG(gv.bgc) / 255.0;
gv.rgb[2] = (float) U_RGBAGetB(gv.bgc) / 255.0;
}
bool pageBoundingBox;
pageBoundingBox = mod->get_param_bool("pageBoundingBox");
Geom::Rect d;
if (pageBoundingBox) {
d = Geom::Rect::from_xywh(0, 0, _width, _height);
} else {
SPItem *doc_item = doc->getRoot();
Geom::OptRect bbox = doc_item->desktopVisualBounds();
if (bbox) {
d = *bbox;
}
}
d *= Geom::Scale(Inkscape::Util::Quantity::convert(1, "px", "in"));
float dwInchesX = d.width();
float dwInchesY = d.height();
// dwInchesX x dwInchesY in micrometer units, 1200 dpi/25.4 -> dpmm
(void) drawing_size((int) ceil(dwInchesX * 25.4), (int) ceil(dwInchesY * 25.4),1200.0/25.4, &rclBounds, &rclFrame);
// set up the reference device as 100 X A4 horizontal, (1200 dpi/25.4 -> dpmm). Extra digits maintain dpi better in EMF
int MMX = 216;
int MMY = 279;
(void) device_size(MMX, MMY, 1200.0 / 25.4, &szlDev, &szlMm);
int PixelsX = szlDev.cx;
int PixelsY = szlDev.cy;
// set up the description: (version string)0(file)00
char buff[1024];
memset(buff, 0, sizeof(buff));
char *p1 = strrchr(ansi_uri, '\\');
char *p2 = strrchr(ansi_uri, '/');
char *p = MAX(p1, p2);
if (p) {
p++;
} else {
p = ansi_uri;
}
snprintf(buff, sizeof(buff) - 1, "Inkscape %s (%s)\1%s\1", Inkscape::version_string, __DATE__, p);
uint16_t *Description = U_Utf8ToUtf16le(buff, 0, NULL);
int cbDesc = 2 + wchar16len(Description); // also count the final terminator
(void) U_Utf16leEdit(Description, '\1', '\0'); // swap the temporary \1 characters for nulls
// construct the EMRHEADER record and append it to the EMF in memory
rec = U_EMRHEADER_set(rclBounds, rclFrame, NULL, cbDesc, Description, szlDev, szlMm, 0);
free(Description);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::begin at EMRHEADER");
}
// Simplest mapping mode, supply all coordinates in pixels
rec = U_EMRSETMAPMODE_set(U_MM_TEXT);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::begin at EMRSETMAPMODE");
}
// In earlier versions this was used to scale from inkscape's dpi of 90 to
// the files 1200 dpi, taking into account PX2WORLD which was 20. Now PX2WORLD
// is set so that this matrix is unitary. The usual value of PX2WORLD is 1200/90,
// but might be different if the internal dpi is changed.
U_XFORM worldTransform;
worldTransform.eM11 = 1.0;
worldTransform.eM12 = 0.0;
worldTransform.eM21 = 0.0;
worldTransform.eM22 = 1.0;
worldTransform.eDx = 0;
worldTransform.eDy = 0;
rec = U_EMRMODIFYWORLDTRANSFORM_set(worldTransform, U_MWT_LEFTMULTIPLY);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::begin at EMRMODIFYWORLDTRANSFORM");
}
if (1) {
snprintf(buff, sizeof(buff) - 1, "Screen=%dx%dpx, %dx%dmm", PixelsX, PixelsY, MMX, MMY);
rec = textcomment_set(buff);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::begin at textcomment_set 1");
}
snprintf(buff, sizeof(buff) - 1, "Drawing=%.1lfx%.1lfpx, %.1lfx%.1lfmm", _width, _height, Inkscape::Util::Quantity::convert(dwInchesX, "in", "mm"), Inkscape::Util::Quantity::convert(dwInchesY, "in", "mm"));
rec = textcomment_set(buff);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::begin at textcomment_set 1");
}
}
/* set some parameters, else the program that reads the EMF may default to other values */
rec = U_EMRSETBKMODE_set(U_TRANSPARENT);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::begin at U_EMRSETBKMODE_set");
}
hpolyfillmode = U_WINDING;
rec = U_EMRSETPOLYFILLMODE_set(U_WINDING);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::begin at U_EMRSETPOLYFILLMODE_set");
}
// Text alignment: (only changed if RTL text is encountered )
// - (x,y) coordinates received by this filter are those of the point where the text
// actually starts, and already takes into account the text object's alignment;
// - for this reason, the EMF text alignment must always be TA_BASELINE|TA_LEFT.
htextalignment = U_TA_BASELINE | U_TA_LEFT;
rec = U_EMRSETTEXTALIGN_set(U_TA_BASELINE | U_TA_LEFT);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::begin at U_EMRSETTEXTALIGN_set");
}
htextcolor_rgb[0] = htextcolor_rgb[1] = htextcolor_rgb[2] = 0.0;
rec = U_EMRSETTEXTCOLOR_set(U_RGB(0, 0, 0));
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::begin at U_EMRSETTEXTCOLOR_set");
}
rec = U_EMRSETROP2_set(U_R2_COPYPEN);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::begin at U_EMRSETROP2_set");
}
/* miterlimit is set with eah pen, so no need to check for it changes as in WMF */
return 0;
}
unsigned int PrintEmf::finish(Inkscape::Extension::Print * /*mod*/)
{
char *rec;
if (!et) {
return 0;
}
// earlier versions had flush of fill here, but it never executed and was removed
rec = U_EMREOF_set(0, NULL, et); // generate the EOF record
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::finish");
}
(void) emf_finish(et, eht); // Finalize and write out the EMF
emf_free(&et); // clean up
htable_free(&eht); // clean up
return 0;
}
unsigned int PrintEmf::comment(
Inkscape::Extension::Print * /*module*/,
const char * /*comment*/)
{
if (!et) {
return 0;
}
// earlier versions had flush of fill here, but it never executed and was removed
return 0;
}
// fcolor is defined when gradients are being expanded, it is the color of one stripe or ring.
int PrintEmf::create_brush(SPStyle const *style, PU_COLORREF fcolor)
{
float rgb[3];
char *rec;
U_LOGBRUSH lb;
uint32_t brush, fmode;
MFDrawMode fill_mode;
Inkscape::Pixbuf *pixbuf;
uint32_t brushStyle;
int hatchType;
U_COLORREF hatchColor;
U_COLORREF bkColor;
uint32_t width = 0; // quiets a harmless compiler warning, initialization not otherwise required.
uint32_t height = 0;
if (!et) {
return 0;
}
// set a default fill in case we can't figure out a better way to do it
fmode = U_ALTERNATE;
fill_mode = DRAW_PAINT;
brushStyle = U_BS_SOLID;
hatchType = U_HS_SOLIDCLR;
bkColor = U_RGB(0, 0, 0);
if (fcolor) {
hatchColor = *fcolor;
} else {
hatchColor = U_RGB(0, 0, 0);
}
if (!fcolor && style) {
if (style->fill.isColor()) {
fill_mode = DRAW_PAINT;
#if 0
// opacity not supported by EMF
float opacity = SP_SCALE24_TO_FLOAT(style->fill_opacity.value);
if (opacity <= 0.0) {
opacity = 0.0; // basically the same as no fill
}
#endif
sp_color_get_rgb_floatv(&style->fill.value.color, rgb);
hatchColor = U_RGB(255 * rgb[0], 255 * rgb[1], 255 * rgb[2]);
fmode = style->fill_rule.computed == 0 ? U_WINDING : (style->fill_rule.computed == 2 ? U_ALTERNATE : U_ALTERNATE);
} else if (SP_IS_PATTERN(SP_STYLE_FILL_SERVER(style))) { // must be paint-server
SPPaintServer *paintserver = style->fill.value.href->getObject();
SPPattern *pat = SP_PATTERN(paintserver);
double dwidth = pattern_width(pat);
double dheight = pattern_height(pat);
width = dwidth;
height = dheight;
brush_classify(pat, 0, &pixbuf, &hatchType, &hatchColor, &bkColor);
if (pixbuf) {
fill_mode = DRAW_IMAGE;
} else { // pattern
fill_mode = DRAW_PATTERN;
if (hatchType == -1) { // Not a standard hatch, so force it to something
hatchType = U_HS_CROSS;
hatchColor = U_RGB(0xFF, 0xC3, 0xC3);
}
}
if (FixPPTPatternAsHatch) {
if (hatchType == -1) { // image or unclassified
fill_mode = DRAW_PATTERN;
hatchType = U_HS_DIAGCROSS;
hatchColor = U_RGB(0xFF, 0xC3, 0xC3);
}
}
brushStyle = U_BS_HATCHED;
} else if (SP_IS_GRADIENT(SP_STYLE_FILL_SERVER(style))) { // must be a gradient
// currently we do not do anything with gradients, the code below just sets the color to the average of the stops
SPPaintServer *paintserver = style->fill.value.href->getObject();
SPLinearGradient *lg = NULL;
SPRadialGradient *rg = NULL;
if (SP_IS_LINEARGRADIENT(paintserver)) {
lg = SP_LINEARGRADIENT(paintserver);
SP_GRADIENT(lg)->ensureVector(); // when exporting from commandline, vector is not built
fill_mode = DRAW_LINEAR_GRADIENT;
} else if (SP_IS_RADIALGRADIENT(paintserver)) {
rg = SP_RADIALGRADIENT(paintserver);
SP_GRADIENT(rg)->ensureVector(); // when exporting from commandline, vector is not built
fill_mode = DRAW_RADIAL_GRADIENT;
} else {
// default fill
}
if (rg) {
if (FixPPTGrad2Polys) {
return hold_gradient(rg, fill_mode);
} else {
hatchColor = avg_stop_color(rg);
}
} else if (lg) {
if (FixPPTGrad2Polys || FixPPTLinGrad) {
return hold_gradient(lg, fill_mode);
} else {
hatchColor = avg_stop_color(lg);
}
}
}
} else { // if (!style)
// default fill
}
lb = logbrush_set(brushStyle, hatchColor, hatchType);
switch (fill_mode) {
case DRAW_LINEAR_GRADIENT: // fill with average color unless gradients are converted to slices
case DRAW_RADIAL_GRADIENT: // ditto
case DRAW_PAINT:
case DRAW_PATTERN:
// SVG text has no background attribute, so OPAQUE mode ALWAYS cancels after the next draw, otherwise it would mess up future text output.
if (usebk) {
rec = U_EMRSETBKCOLOR_set(bkColor);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::create_brush at U_EMRSETBKCOLOR_set");
}
rec = U_EMRSETBKMODE_set(U_OPAQUE);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::create_brush at U_EMRSETBKMODE_set");
}
}
rec = createbrushindirect_set(&brush, eht, lb);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::create_brush at createbrushindirect_set");
}
break;
case DRAW_IMAGE:
char *px;
char *rgba_px;
uint32_t cbPx;
uint32_t colortype;
PU_RGBQUAD ct;
int numCt;
U_BITMAPINFOHEADER Bmih;
PU_BITMAPINFO Bmi;
rgba_px = (char *) pixbuf->pixels(); // Do NOT free this!!!
colortype = U_BCBM_COLOR32;
(void) RGBA_to_DIB(&px, &cbPx, &ct, &numCt, rgba_px, width, height, width * 4, colortype, 0, 1);
// Not sure why the next swap is needed because the preceding does it, and the code is identical
// to that in stretchdibits_set, which does not need this.
swapRBinRGBA(px, width * height);
Bmih = bitmapinfoheader_set(width, height, 1, colortype, U_BI_RGB, 0, PXPERMETER, PXPERMETER, numCt, 0);
Bmi = bitmapinfo_set(Bmih, ct);
rec = createdibpatternbrushpt_set(&brush, eht, U_DIB_RGB_COLORS, Bmi, cbPx, px);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::create_brush at createdibpatternbrushpt_set");
}
free(px);
free(Bmi); // ct will be NULL because of colortype
break;
}
hbrush = brush; // need this later for destroy_brush
rec = selectobject_set(brush, eht);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::create_brush at selectobject_set");
}
if (fmode != hpolyfillmode) {
hpolyfillmode = fmode;
rec = U_EMRSETPOLYFILLMODE_set(fmode);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::create_brush at U_EMRSETPOLYdrawmode_set");
}
}
return 0;
}
void PrintEmf::destroy_brush()
{
char *rec;
// before an object may be safely deleted it must no longer be selected
// select in a stock object to deselect this one, the stock object should
// never be used because we always select in a new one before drawing anythingrestore previous brush, necessary??? Would using a default stock object not work?
rec = selectobject_set(U_NULL_BRUSH, eht);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::destroy_brush at selectobject_set");
}
if (hbrush) {
rec = deleteobject_set(&hbrush, eht);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::destroy_brush");
}
hbrush = 0;
}
}
int PrintEmf::create_pen(SPStyle const *style, const Geom::Affine &transform)
{
U_EXTLOGPEN *elp;
U_NUM_STYLEENTRY n_dash = 0;
U_STYLEENTRY *dash = NULL;
char *rec = NULL;
int linestyle = U_PS_SOLID;
int linecap = 0;
int linejoin = 0;
uint32_t pen;
uint32_t brushStyle;
Inkscape::Pixbuf *pixbuf;
int hatchType;
U_COLORREF hatchColor;
U_COLORREF bkColor;
uint32_t width, height;
char *px = NULL;
char *rgba_px;
uint32_t cbPx = 0;
uint32_t colortype;
PU_RGBQUAD ct = NULL;
int numCt = 0;
U_BITMAPINFOHEADER Bmih;
PU_BITMAPINFO Bmi = NULL;
if (!et) {
return 0;
}
// set a default stroke in case we can't figure out a better way to do it
brushStyle = U_BS_SOLID;
hatchColor = U_RGB(0, 0, 0);
hatchType = U_HS_HORIZONTAL;
bkColor = U_RGB(0, 0, 0);
if (style) {
float rgb[3];
if (SP_IS_PATTERN(SP_STYLE_STROKE_SERVER(style))) { // must be paint-server
SPPaintServer *paintserver = style->stroke.value.href->getObject();
SPPattern *pat = SP_PATTERN(paintserver);
double dwidth = pattern_width(pat);
double dheight = pattern_height(pat);
width = dwidth;
height = dheight;
brush_classify(pat, 0, &pixbuf, &hatchType, &hatchColor, &bkColor);
if (pixbuf) {
brushStyle = U_BS_DIBPATTERN;
rgba_px = (char *) pixbuf->pixels(); // Do NOT free this!!!
colortype = U_BCBM_COLOR32;
(void) RGBA_to_DIB(&px, &cbPx, &ct, &numCt, rgba_px, width, height, width * 4, colortype, 0, 1);
// Not sure why the next swap is needed because the preceding does it, and the code is identical
// to that in stretchdibits_set, which does not need this.
swapRBinRGBA(px, width * height);
Bmih = bitmapinfoheader_set(width, height, 1, colortype, U_BI_RGB, 0, PXPERMETER, PXPERMETER, numCt, 0);
Bmi = bitmapinfo_set(Bmih, ct);
} else { // pattern
brushStyle = U_BS_HATCHED;
if (usebk) { // OPAQUE mode ALWAYS cancels after the next draw, otherwise it would mess up future text output.
rec = U_EMRSETBKCOLOR_set(bkColor);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::create_pen at U_EMRSETBKCOLOR_set");
}
rec = U_EMRSETBKMODE_set(U_OPAQUE);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::create_pen at U_EMRSETBKMODE_set");
}
}
if (hatchType == -1) { // Not a standard hatch, so force it to something
hatchType = U_HS_CROSS;
hatchColor = U_RGB(0xFF, 0xC3, 0xC3);
}
}
if (FixPPTPatternAsHatch) {
if (hatchType == -1) { // image or unclassified
brushStyle = U_BS_HATCHED;
hatchType = U_HS_DIAGCROSS;
hatchColor = U_RGB(0xFF, 0xC3, 0xC3);
}
}
} else if (SP_IS_GRADIENT(SP_STYLE_STROKE_SERVER(style))) { // must be a gradient
// currently we do not do anything with gradients, the code below has no net effect.
SPPaintServer *paintserver = style->stroke.value.href->getObject();
if (SP_IS_LINEARGRADIENT(paintserver)) {
SPLinearGradient *lg = SP_LINEARGRADIENT(paintserver);
SP_GRADIENT(lg)->ensureVector(); // when exporting from commandline, vector is not built
Geom::Point p1(lg->x1.computed, lg->y1.computed);
Geom::Point p2(lg->x2.computed, lg->y2.computed);
if (lg->gradientTransform_set) {
p1 = p1 * lg->gradientTransform;
p2 = p2 * lg->gradientTransform;
}
hatchColor = avg_stop_color(lg);
} else if (SP_IS_RADIALGRADIENT(paintserver)) {
SPRadialGradient *rg = SP_RADIALGRADIENT(paintserver);
SP_GRADIENT(rg)->ensureVector(); // when exporting from commandline, vector is not built
double r = rg->r.computed;
Geom::Point c(rg->cx.computed, rg->cy.computed);
Geom::Point xhandle_point(r, 0);
Geom::Point yhandle_point(0, -r);
yhandle_point += c;
xhandle_point += c;
if (rg->gradientTransform_set) {
c = c * rg->gradientTransform;
yhandle_point = yhandle_point * rg->gradientTransform;
xhandle_point = xhandle_point * rg->gradientTransform;
}
hatchColor = avg_stop_color(rg);
} else {
// default fill
}
} else if (style->stroke.isColor()) { // test last, always seems to be set, even for other types above
sp_color_get_rgb_floatv(&style->stroke.value.color, rgb);
brushStyle = U_BS_SOLID;
hatchColor = U_RGB(255 * rgb[0], 255 * rgb[1], 255 * rgb[2]);
hatchType = U_HS_SOLIDCLR;
} else {
// default fill
}
using Geom::X;
using Geom::Y;
Geom::Point zero(0, 0);
Geom::Point one(1, 1);
Geom::Point p0(zero * transform);
Geom::Point p1(one * transform);
Geom::Point p(p1 - p0);
double scale = sqrt((p[X] * p[X]) + (p[Y] * p[Y])) / sqrt(2);
if (!style->stroke_width.computed) {
return 0; //if width is 0 do not (reset) the pen, it should already be NULL_PEN
}
uint32_t linewidth = MAX(1, (uint32_t) round(scale * style->stroke_width.computed * PX2WORLD));
if (style->stroke_linecap.computed == 0) {
linecap = U_PS_ENDCAP_FLAT;
} else if (style->stroke_linecap.computed == 1) {
linecap = U_PS_ENDCAP_ROUND;
} else if (style->stroke_linecap.computed == 2) {
linecap = U_PS_ENDCAP_SQUARE;
}
if (style->stroke_linejoin.computed == 0) {
linejoin = U_PS_JOIN_MITER;
} else if (style->stroke_linejoin.computed == 1) {
linejoin = U_PS_JOIN_ROUND;
} else if (style->stroke_linejoin.computed == 2) {
linejoin = U_PS_JOIN_BEVEL;
}
if (!style->stroke_dasharray.values.empty()) {
if (FixPPTDashLine) { // will break up line into many smaller lines. Override gradient if that was set, cannot do both.
brushStyle = U_BS_SOLID;
hatchType = U_HS_HORIZONTAL;
} else {
unsigned i = 0;
while ((linestyle != U_PS_USERSTYLE) && (i < style->stroke_dasharray.values.size())) {
if (style->stroke_dasharray.values[i] > 0.00000001) {
linestyle = U_PS_USERSTYLE;
}
i++;
}
if (linestyle == U_PS_USERSTYLE) {
n_dash = style->stroke_dasharray.values.size();
dash = new uint32_t[n_dash];
for (i = 0; i < n_dash; i++) {
dash[i] = (uint32_t)(Inkscape::Util::Quantity::convert(1, "mm", "px") * style->stroke_dasharray.values[i]);
}
}
}
}
elp = extlogpen_set(
U_PS_GEOMETRIC | linestyle | linecap | linejoin,
linewidth,
brushStyle,
hatchColor,
hatchType,
n_dash,
dash);
} else { // if (!style)
linejoin = 0;
elp = extlogpen_set(
linestyle,
1,
U_BS_SOLID,
U_RGB(0, 0, 0),
U_HS_HORIZONTAL,
0,
NULL);
}
rec = extcreatepen_set(&pen, eht, Bmi, cbPx, px, elp);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::create_pen at extcreatepen_set");
}
free(elp);
if (Bmi) {
free(Bmi);
}
if (px) {
free(px); // ct will always be NULL
}
rec = selectobject_set(pen, eht);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::create_pen at selectobject_set");
}
hpen = pen; // need this later for destroy_pen
if (linejoin == U_PS_JOIN_MITER) {
float miterlimit = style->stroke_miterlimit.value; // This is a ratio.
if (miterlimit < 1) {
miterlimit = 1;
}
rec = U_EMRSETMITERLIMIT_set((uint32_t) miterlimit);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::create_pen at U_EMRSETMITERLIMIT_set");
}
}
if (n_dash) {
delete[] dash;
}
return 0;
}
// set the current pen to the stock object NULL_PEN and then delete the defined pen object, if there is one.
void PrintEmf::destroy_pen()
{
char *rec = NULL;
// before an object may be safely deleted it must no longer be selected
// select in a stock object to deselect this one, the stock object should
// never be used because we always select in a new one before drawing anythingrestore previous brush, necessary??? Would using a default stock object not work?
rec = selectobject_set(U_NULL_PEN, eht);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::destroy_pen at selectobject_set");
}
if (hpen) {
rec = deleteobject_set(&hpen, eht);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::destroy_pen");
}
hpen = 0;
}
}
/* Return a Path consisting of just the corner points of the single path in a a PathVector. If the
PathVector has more than one path, or that one path is open, or any of its segments are curved, then the
returned PathVector is . If the input path is already just straight lines and vertices the output will be the
same as the sole path in the input. */
Geom::Path PrintEmf::pathv_to_simple_polygon(Geom::PathVector const &pathv, int *vertices)
{
Geom::Point P1_trail;
Geom::Point P1;
Geom::Point P1_lead;
Geom::Point v1,v2;
Geom::Path output;
Geom::Path bad;
Geom::PathVector pv = pathv_to_linear_and_cubic_beziers(pathv);
Geom::PathVector::const_iterator pit = pv.begin();
Geom::PathVector::const_iterator pit2 = pv.begin();
++pit2;
*vertices = 0;
if(pit->end_closed() != pit->end_default())return(bad); // path must be closed
if(pit2 != pv.end())return(bad); // there may only be one path
P1_trail = pit->finalPoint();
Geom::Path::const_iterator cit = pit->begin();
P1 = cit->initialPoint();
for(;cit != pit->end_closed();++cit) {
if (!is_straight_curve(*cit)) {
*vertices = 0;
return(bad);
}
P1_lead = cit->finalPoint();
if(Geom::are_near(P1_lead, P1, 1e-5))continue; // duplicate points at the same coordinate
v1 = unit_vector(P1 - P1_trail);
v2 = unit_vector(P1_lead - P1 );
if(Geom::are_near(dot(v1,v2), 1.0, 1e-5)){ // P1 is within a straight line
P1 = P1_lead;
continue;
}
// P1 is the center point of a turn of some angle
if(!*vertices){
output.start( P1 );
output.close( pit->closed() );
}
*vertices += 1;
Geom::LineSegment ls(P1_trail, P1);
output.append(ls);
P1_trail = P1;
P1 = P1_lead;
}
return(output);
}
/* Returns the simplified PathVector (no matter what).
Sets is_rect if it is a rectangle.
Sets angle that will rotate side closest to horizontal onto horizontal.
*/
Geom::Path PrintEmf::pathv_to_rect(Geom::PathVector const &pathv, bool *is_rect, double *angle)
{
Geom::Point P1_trail;
Geom::Point P1;
Geom::Point P1_lead;
Geom::Point v1,v2;
int vertices;
Geom::Path pR = pathv_to_simple_polygon(pathv, &vertices);
*is_rect = false;
if(vertices==4){ // or else it cannot be a rectangle
int vertex_count=0;
/* Get the ends of the LAST line segment.
Find minimum rotation to align rectangle with X,Y axes. (Very degenerate if it is rotated 45 degrees.) */
*angle = 10.0; /* must be > than the actual angle in radians. */
for(Geom::Path::const_iterator cit = pR.begin(); cit != pR.end_open(); ++cit){
P1_trail = cit->initialPoint();
P1 = cit->finalPoint();
v1 = unit_vector(P1 - P1_trail);
if(v1[Geom::X] > 0){ // only check the 1 or 2 points on vectors aimed the same direction as unit X
double ang = asin(v1[Geom::Y]); // because component is rotation by ang of {1,0| vector
if(fabs(ang) < fabs(*angle))*angle = -ang; // y increases down, flips sign on angle
}
}
/* For increased numerical stability, snap the angle to the nearest 1/100th of a degree. */
double convert = 36000.0/ (2.0 * M_PI);
*angle = round(*angle * convert)/convert;
for(Geom::Path::const_iterator cit = pR.begin(); cit != pR.end_open();++cit) {
P1_lead = cit->finalPoint();
v1 = unit_vector(P1 - P1_trail);
v2 = unit_vector(P1_lead - P1 );
// P1 is center of a turn that is not 90 degrees. Limit comes from cos(89.9) = .001745
if(!Geom::are_near(dot(v1,v2), 0.0, 2e-3))break;
P1_trail = P1;
P1 = P1_lead;
vertex_count++;
}
if(vertex_count == 4){
*is_rect=true;
}
}
return(pR);
}
/* Compare a vector with a rectangle's orientation (angle needed to rotate side(s)
closest to horizontal to exactly horizontal) and return:
0 none of the following
1 parallel to horizontal
2 parallel to vertical
3 antiparallel to horizontal
4 antiparallel to vertical
*/
int PrintEmf::vector_rect_alignment(double angle, Geom::Point vtest){
int stat = 0;
Geom::Point v1 = Geom::unit_vector(vtest); // unit vector to test alignment
Geom::Point v2 = Geom::Point(1,0) * Geom::Rotate(-angle); // unit horizontal side (sign change because Y increases DOWN)
if( Geom::are_near(dot(v1,v2), 1.0, 1e-5)){ stat = 1; }
else if(Geom::are_near(dot(v1,v2),-1.0, 1e-5)){ stat = 2; }
if(!stat){
v2 = Geom::Point(0,1) * Geom::Rotate(-angle); // unit vertical side
if( Geom::are_near(dot(v1,v2), 1.0, 1e-5)){ stat = 3; }
else if(Geom::are_near(dot(v1,v2),-1.0, 1e-5)){ stat = 4; }
}
return(stat);
}
/* retrieve the point at the indicated corner:
0 UL (and default)
1 UR
2 LR
3 LL
Needed because the start can be any point, and the direction could run either
clockwise or counterclockwise. This should work even if the corners of the rectangle
are slightly displaced.
*/
Geom::Point PrintEmf::get_pathrect_corner(Geom::Path pathRect, double angle, int corner){
Geom::Point center(0,0);
for(Geom::Path::const_iterator cit = pathRect.begin(); cit != pathRect.end_open(); ++cit) {
center += cit->initialPoint()/4.0;
}
int LR; // 1 if Left, 0 if Right
int UL; // 1 if Lower, 0 if Upper (as viewed on screen, y coordinates increase downwards)
switch(corner){
case 1: //UR
LR = 0;
UL = 0;
break;
case 2: //LR
LR = 0;
UL = 1;
break;
case 3: //LL
LR = 1;
UL = 1;
break;
default: //UL
LR = 1;
UL = 0;
break;
}
Geom::Point v1 = Geom::Point(1,0) * Geom::Rotate(-angle); // unit horizontal side (sign change because Y increases DOWN)
Geom::Point v2 = Geom::Point(0,1) * Geom::Rotate(-angle); // unit vertical side (sign change because Y increases DOWN)
Geom::Point P1;
for(Geom::Path::const_iterator cit = pathRect.begin(); cit != pathRect.end_open(); ++cit) {
P1 = cit->initialPoint();
if ( ( LR == (dot(P1 - center,v1) > 0 ? 0 : 1) )
&& ( UL == (dot(P1 - center,v2) > 0 ? 1 : 0) ) ) break;
}
return(P1);
}
U_TRIVERTEX PrintEmf::make_trivertex(Geom::Point Pt, U_COLORREF uc){
U_TRIVERTEX tv;
using Geom::X;
using Geom::Y;
tv.x = (int32_t) round(Pt[X]);
tv.y = (int32_t) round(Pt[Y]);
tv.Red = uc.Red << 8;
tv.Green = uc.Green << 8;
tv.Blue = uc.Blue << 8;
tv.Alpha = uc.Reserved << 8; // EMF will ignore this
return(tv);
}
unsigned int PrintEmf::fill(
Inkscape::Extension::Print * /*mod*/,
Geom::PathVector const &pathv, Geom::Affine const & /*transform*/, SPStyle const *style,
Geom::OptRect const &/*pbox*/, Geom::OptRect const &/*dbox*/, Geom::OptRect const &/*bbox*/)
{
using Geom::X;
using Geom::Y;
SPItem *item = SP_ITEM(style->object);
SPClipPath *scp = (item->clip_ref ? item->clip_ref->getObject() : NULL);
Geom::Affine tf = m_tr_stack.top();
use_fill = true;
use_stroke = false;
fill_transform = tf;
int brush_stat = create_brush(style, NULL);
/* native linear gradients are only used if the object is a rectangle AND the gradient is parallel to the sides of the object */
bool is_Rect = false;
double angle;
int rectDir=0;
Geom::Path pathRect;
if(FixPPTLinGrad && brush_stat && gv.mode == DRAW_LINEAR_GRADIENT){
Geom::PathVector pvr = pathv * fill_transform;
pathRect = pathv_to_rect(pvr, &is_Rect, &angle);
if(is_Rect){
/* Gradientfill records can only be used if the gradient is parallel to the sides of the rectangle.
That must be checked here so that we can fall back to another form of gradient fill if it is not
the case. */
rectDir = vector_rect_alignment(angle, (gv.p2 - gv.p1) * fill_transform);
if(!rectDir)is_Rect = false;
}
if(!is_Rect && !FixPPTGrad2Polys)brush_stat=0; // fall all the way back to a solid fill
}
if (brush_stat) { // only happens if the style is a gradient
/*
Handle gradients. Uses modified livarot as 2geom boolops is currently broken.
Can handle gradients with multiple stops.
The overlap is needed to avoid antialiasing artifacts when edges are not strictly aligned on pixel boundaries.
There is an inevitable loss of accuracy saving through an EMF file because of the integer coordinate system.
Keep the overlap quite large so that loss of accuracy does not remove an overlap.
*/
destroy_pen(); //this sets the NULL_PEN, otherwise gradient slices may display with boundaries, see longer explanation below
Geom::Path cutter;
float rgb[3];
U_COLORREF wc, c1, c2;
FillRule frb = SPWR_to_LVFR((SPWindRule) style->fill_rule.computed);
double doff, doff_base, doff_range;
double divisions = 128.0;
int nstops;
int istop = 1;
float opa; // opacity at stop
SPRadialGradient *tg = (SPRadialGradient *)(gv.grad); // linear/radial are the same here
nstops = tg->vector.stops.size();
sp_color_get_rgb_floatv(&tg->vector.stops[0].color, rgb);
opa = tg->vector.stops[0].opacity; // first stop
c1 = U_RGBA(255 * rgb[0], 255 * rgb[1], 255 * rgb[2], 255 * opa);
sp_color_get_rgb_floatv(&tg->vector.stops[nstops - 1].color, rgb);
opa = tg->vector.stops[nstops - 1].opacity; // last stop
c2 = U_RGBA(255 * rgb[0], 255 * rgb[1], 255 * rgb[2], 255 * opa);
doff = 0.0;
doff_base = 0.0;
doff_range = tg->vector.stops[1].offset; // next or last stop
if (gv.mode == DRAW_RADIAL_GRADIENT) {
Geom::Point xv = gv.p2 - gv.p1; // X' vector
Geom::Point yv = gv.p3 - gv.p1; // Y' vector
Geom::Point xuv = Geom::unit_vector(xv); // X' unit vector
double rx = hypot(xv[X], xv[Y]);
double ry = hypot(yv[X], yv[Y]);
double range = fmax(rx, ry); // length along the gradient
double step = range / divisions; // adequate approximation for gradient
double overlap = step / 4.0; // overlap slices slightly
double start;
double stop;
Geom::PathVector pathvc, pathvr;
/* radial gradient might stop part way through the shape, fill with outer color from there to "infinity".
Do this first so that outer colored ring will overlay it.
*/
pathvc = center_elliptical_hole_as_SVG_PathV(gv.p1, rx * (1.0 - overlap / range), ry * (1.0 - overlap / range), asin(xuv[Y]));
pathvr = sp_pathvector_boolop(pathvc, pathv, bool_op_inters, (FillRule) fill_oddEven, frb);
wc = weight_opacity(c2);
(void) create_brush(style, &wc);
print_pathv(pathvr, fill_transform);
sp_color_get_rgb_floatv(&tg->vector.stops[istop].color, rgb);
opa = tg->vector.stops[istop].opacity;
c2 = U_RGBA(255 * rgb[0], 255 * rgb[1], 255 * rgb[2], 255 * opa);
for (start = 0.0; start < range; start += step, doff += 1. / divisions) {
stop = start + step + overlap;
if (stop > range) {
stop = range;
}
wc = weight_colors(c1, c2, (doff - doff_base) / (doff_range - doff_base));
(void) create_brush(style, &wc);
pathvc = center_elliptical_ring_as_SVG_PathV(gv.p1, rx * start / range, ry * start / range, rx * stop / range, ry * stop / range, asin(xuv[Y]));
pathvr = sp_pathvector_boolop(pathvc, pathv, bool_op_inters, (FillRule) fill_nonZero, frb);
print_pathv(pathvr, fill_transform); // show the intersection
if (doff >= doff_range) {
istop++;
if (istop >= nstops) {
istop = nstops - 1;
continue; // could happen on a rounding error
}
doff_base = doff_range;
doff_range = tg->vector.stops[istop].offset; // next or last stop
c1 = c2;
sp_color_get_rgb_floatv(&tg->vector.stops[istop].color, rgb);
opa = tg->vector.stops[istop].opacity;
c2 = U_RGBA(255 * rgb[0], 255 * rgb[1], 255 * rgb[2], 255 * opa);
}
}
} else if (gv.mode == DRAW_LINEAR_GRADIENT) {
if(is_Rect){
char *rec;
int gMode;
Geom::Point ul, ur, lr;
Geom::Point outUL, outLR; // UL,LR corners of a stop rectangle, in OUTPUT coordinates
U_TRIVERTEX ut[2];
U_GRADIENT4 ug4;
U_RECTL rcb;
U_XFORM tmpTransform;
double wRect, hRect;
/* coordinates: upper left, upper right, and lower right corners of the rectangle.
inkscape transform already applied, but needs to be scaled to EMF coordinates. */
ul = get_pathrect_corner(pathRect, angle, 0) * PX2WORLD;
ur = get_pathrect_corner(pathRect, angle, 1) * PX2WORLD;
lr = get_pathrect_corner(pathRect, angle, 2) * PX2WORLD;
wRect = Geom::distance(ul,ur);
hRect = Geom::distance(ur,lr);
/* The basic rectangle for all of these is placed with its UL corner at 0,0 with a size wRect,hRect.
Apply a world transform to place/scale it into the appropriate position on the drawing.
Actual gradientfill records are either this entire rectangle or slices of it as defined by the stops.
This rectangle has already been transformed by tf (whatever rotation/scale) Inkscape had applied to it.
*/
Geom::Affine tf2 = Geom::Rotate(-angle); // the rectangle may be drawn skewed to the coordinate system
tmpTransform.eM11 = tf2[0];
tmpTransform.eM12 = tf2[1];
tmpTransform.eM21 = tf2[2];
tmpTransform.eM22 = tf2[3];
tmpTransform.eDx = round((ul)[Geom::X]); // use explicit round for better stability
tmpTransform.eDy = round((ul)[Geom::Y]);
rec = U_EMRSAVEDC_set();
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::image at U_EMRSAVEDC_set");
}
rec = U_EMRMODIFYWORLDTRANSFORM_set(tmpTransform, U_MWT_LEFTMULTIPLY);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::image at EMRMODIFYWORLDTRANSFORM");
}
for(;istop<nstops;istop++){
doff_range = tg->vector.stops[istop].offset; // next or last stop
if(rectDir == 1 || rectDir == 2){
outUL = Geom::Point(doff_base *wRect, 0 );
outLR = Geom::Point(doff_range*wRect, hRect);
gMode = U_GRADIENT_FILL_RECT_H;
}
else {
outUL = Geom::Point(0, doff_base *hRect);
outLR = Geom::Point(wRect,doff_range*hRect);
gMode = U_GRADIENT_FILL_RECT_V;
}
doff_base = doff_range;
rcb.left = round(outUL[X]); // use explicit round for better stability
rcb.top = round(outUL[Y]);
rcb.right = round(outLR[X]);
rcb.bottom = round(outLR[Y]);
sp_color_get_rgb_floatv(&tg->vector.stops[istop].color, rgb);
opa = tg->vector.stops[istop].opacity;
c2 = U_RGBA(255 * rgb[0], 255 * rgb[1], 255 * rgb[2], 255 * opa);
if(rectDir == 2 || rectDir == 4){ // gradient is reversed, so swap colors
ut[0] = make_trivertex(outUL, c2);
ut[1] = make_trivertex(outLR, c1);
}
else {
ut[0] = make_trivertex(outUL, c1);
ut[1] = make_trivertex(outLR, c2);
}
c1 = c2; // for next stop
ug4.UpperLeft = 0;
ug4.LowerRight= 1;
rec = U_EMRGRADIENTFILL_set(rcb, 2, 1, gMode, ut, (uint32_t *) &ug4 );
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::fill at U_EMRGRADIENTFILL_set");
}
}
rec = U_EMRRESTOREDC_set(-1);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::fill at U_EMRRESTOREDC_set");
}
}
else {
Geom::Point uv = Geom::unit_vector(gv.p2 - gv.p1); // unit vector
Geom::Point puv = uv.cw(); // perp. to unit vector
double range = Geom::distance(gv.p1, gv.p2); // length along the gradient
double step = range / divisions; // adequate approximation for gradient
double overlap = step / 4.0; // overlap slices slightly
double start;
double stop;
Geom::PathVector pathvc, pathvr;
/* before lower end of gradient, overlap first slice position */
wc = weight_opacity(c1);
(void) create_brush(style, &wc);
pathvc = rect_cutter(gv.p1, uv * (overlap), uv * (-50000.0), puv * 50000.0);
pathvr = sp_pathvector_boolop(pathvc, pathv, bool_op_inters, (FillRule) fill_nonZero, frb);
print_pathv(pathvr, fill_transform);
/* after high end of gradient, overlap last slice position */
wc = weight_opacity(c2);
(void) create_brush(style, &wc);
pathvc = rect_cutter(gv.p2, uv * (-overlap), uv * (50000.0), puv * 50000.0);
pathvr = sp_pathvector_boolop(pathvc, pathv, bool_op_inters, (FillRule) fill_nonZero, frb);
print_pathv(pathvr, fill_transform);
sp_color_get_rgb_floatv(&tg->vector.stops[istop].color, rgb);
opa = tg->vector.stops[istop].opacity;
c2 = U_RGBA(255 * rgb[0], 255 * rgb[1], 255 * rgb[2], 255 * opa);
for (start = 0.0; start < range; start += step, doff += 1. / divisions) {
stop = start + step + overlap;
if (stop > range) {
stop = range;
}
pathvc = rect_cutter(gv.p1, uv * start, uv * stop, puv * 50000.0);
wc = weight_colors(c1, c2, (doff - doff_base) / (doff_range - doff_base));
(void) create_brush(style, &wc);
Geom::PathVector pathvr = sp_pathvector_boolop(pathvc, pathv, bool_op_inters, (FillRule) fill_nonZero, frb);
print_pathv(pathvr, fill_transform); // show the intersection
if (doff >= doff_range) {
istop++;
if (istop >= nstops) {
istop = nstops - 1;
continue; // could happen on a rounding error
}
doff_base = doff_range;
doff_range = tg->vector.stops[istop].offset; // next or last stop
c1 = c2;
sp_color_get_rgb_floatv(&tg->vector.stops[istop].color, rgb);
opa = tg->vector.stops[istop].opacity;
c2 = U_RGBA(255 * rgb[0], 255 * rgb[1], 255 * rgb[2], 255 * opa);
}
}
}
} else {
g_error("Fatal programming error in PrintEmf::fill, invalid gradient type detected");
}
use_fill = false; // gradients handled, be sure stroke does not use stroke and fill
} else {
/*
Inkscape was not calling create_pen for objects with no border.
This was because it never called stroke() (next method).
PPT, and presumably others, pick whatever they want for the border if it is not specified, so no border can
become a visible border.
To avoid this force the pen to NULL_PEN if we can determine that no pen will be needed after the fill.
*/
if (style->stroke.noneSet || style->stroke_width.computed == 0.0) {
destroy_pen(); //this sets the NULL_PEN
}
/* postpone fill in case stroke also required AND all stroke paths closed
Dashes converted to line segments will "open" a closed path.
*/
bool all_closed = true;
for (Geom::PathVector::const_iterator pit = pathv.begin(); pit != pathv.end(); ++pit) {
for (Geom::Path::const_iterator cit = pit->begin(); cit != pit->end_open(); ++cit) {
if (pit->end_default() != pit->end_closed()) {
all_closed = false;
}
}
}
if (
(style->stroke.isNone() || style->stroke.noneSet || style->stroke_width.computed == 0.0) ||
(!style->stroke_dasharray.values.empty() && FixPPTDashLine) ||
!all_closed
) {
print_pathv(pathv, fill_transform); // do any fills. side effect: clears fill_pathv
use_fill = false;
}
}
return 0;
}
unsigned int PrintEmf::stroke(
Inkscape::Extension::Print * /*mod*/,
Geom::PathVector const &pathv, const Geom::Affine &/*transform*/, const SPStyle *style,
Geom::OptRect const &/*pbox*/, Geom::OptRect const &/*dbox*/, Geom::OptRect const &/*bbox*/)
{
char *rec = NULL;
Geom::Affine tf = m_tr_stack.top();
use_stroke = true;
// use_fill was set in ::fill, if it is needed
if (create_pen(style, tf)) {
return 0;
}
if (!style->stroke_dasharray.values.empty() && FixPPTDashLine) {
// convert the path, gets its complete length, and then make a new path with parameter length instead of t
Geom::Piecewise<Geom::D2<Geom::SBasis> > tmp_pathpw; // pathv-> sbasis
Geom::Piecewise<Geom::D2<Geom::SBasis> > tmp_pathpw2; // sbasis using arc length parameter
Geom::Piecewise<Geom::D2<Geom::SBasis> > tmp_pathpw3; // new (discontinuous) path, composed of dots/dashes
Geom::Piecewise<Geom::D2<Geom::SBasis> > first_frag; // first fragment, will be appended at end
int n_dash = style->stroke_dasharray.values.size();
int i = 0; //dash index
double tlength; // length of tmp_pathpw
double slength = 0.0; // start of gragment
double elength; // end of gragment
for (unsigned int i = 0; i < pathv.size(); i++) {
tmp_pathpw.concat(pathv[i].toPwSb());
}
tlength = length(tmp_pathpw, 0.1);
tmp_pathpw2 = arc_length_parametrization(tmp_pathpw);
// go around the dash array repeatedly until the entire path is consumed (but not beyond).
while (slength < tlength) {
elength = slength + style->stroke_dasharray.values[i++];
if (elength > tlength) {
elength = tlength;
}
Geom::Piecewise<Geom::D2<Geom::SBasis> > fragment(portion(tmp_pathpw2, slength, elength));
if (slength) {
tmp_pathpw3.concat(fragment);
} else {
first_frag = fragment;
}
slength = elength;
slength += style->stroke_dasharray.values[i++]; // the gap
if (i >= n_dash) {
i = 0;
}
}
tmp_pathpw3.concat(first_frag); // may merge line around start point
Geom::PathVector out_pathv = Geom::path_from_piecewise(tmp_pathpw3, 0.01);
print_pathv(out_pathv, tf);
} else {
print_pathv(pathv, tf);
}
use_stroke = false;
use_fill = false;
if (usebk) { // OPAQUE was set, revert to TRANSPARENT
usebk = false;
rec = U_EMRSETBKMODE_set(U_TRANSPARENT);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::stroke at U_EMRSETBKMODE_set");
}
}
return 0;
}
// Draws simple_shapes, those with closed EMR_* primitives, like polygons, rectangles and ellipses.
// These use whatever the current pen/brush are and need not be followed by a FILLPATH or STROKEPATH.
// For other paths it sets a few flags and returns.
bool PrintEmf::print_simple_shape(Geom::PathVector const &pathv, const Geom::Affine &transform)
{
Geom::PathVector pv = pathv_to_linear_and_cubic_beziers(pathv * transform);
int nodes = 0;
int moves = 0;
int lines = 0;
int curves = 0;
char *rec = NULL;
for (Geom::PathVector::const_iterator pit = pv.begin(); pit != pv.end(); ++pit) {
moves++;
nodes++;
for (Geom::Path::const_iterator cit = pit->begin(); cit != pit->end_open(); ++cit) {
nodes++;
if (is_straight_curve(*cit)) {
lines++;
} else if (&*cit) {
curves++;
}
}
}
if (!nodes) {
return false;
}
U_POINT *lpPoints = new U_POINT[moves + lines + curves * 3];
int i = 0;
/**
* For all Subpaths in the <path>
*/
for (Geom::PathVector::const_iterator pit = pv.begin(); pit != pv.end(); ++pit) {
using Geom::X;
using Geom::Y;
Geom::Point p0 = pit->initialPoint();
p0[X] = (p0[X] * PX2WORLD);
p0[Y] = (p0[Y] * PX2WORLD);
int32_t const x0 = (int32_t) round(p0[X]);
int32_t const y0 = (int32_t) round(p0[Y]);
lpPoints[i].x = x0;
lpPoints[i].y = y0;
i = i + 1;
/**
* For all segments in the subpath
*/
for (Geom::Path::const_iterator cit = pit->begin(); cit != pit->end_open(); ++cit) {
if (is_straight_curve(*cit)) {
//Geom::Point p0 = cit->initialPoint();
Geom::Point p1 = cit->finalPoint();
//p0[X] = (p0[X] * PX2WORLD);
p1[X] = (p1[X] * PX2WORLD);
//p0[Y] = (p0[Y] * PX2WORLD);
p1[Y] = (p1[Y] * PX2WORLD);
//int32_t const x0 = (int32_t) round(p0[X]);
//int32_t const y0 = (int32_t) round(p0[Y]);
int32_t const x1 = (int32_t) round(p1[X]);
int32_t const y1 = (int32_t) round(p1[Y]);
lpPoints[i].x = x1;
lpPoints[i].y = y1;
i = i + 1;
} else if (Geom::CubicBezier const *cubic = dynamic_cast<Geom::CubicBezier const *>(&*cit)) {
std::vector<Geom::Point> points = cubic->points();
//Geom::Point p0 = points[0];
Geom::Point p1 = points[1];
Geom::Point p2 = points[2];
Geom::Point p3 = points[3];
//p0[X] = (p0[X] * PX2WORLD);
p1[X] = (p1[X] * PX2WORLD);
p2[X] = (p2[X] * PX2WORLD);
p3[X] = (p3[X] * PX2WORLD);
//p0[Y] = (p0[Y] * PX2WORLD);
p1[Y] = (p1[Y] * PX2WORLD);
p2[Y] = (p2[Y] * PX2WORLD);
p3[Y] = (p3[Y] * PX2WORLD);
//int32_t const x0 = (int32_t) round(p0[X]);
//int32_t const y0 = (int32_t) round(p0[Y]);
int32_t const x1 = (int32_t) round(p1[X]);
int32_t const y1 = (int32_t) round(p1[Y]);
int32_t const x2 = (int32_t) round(p2[X]);
int32_t const y2 = (int32_t) round(p2[Y]);
int32_t const x3 = (int32_t) round(p3[X]);
int32_t const y3 = (int32_t) round(p3[Y]);
lpPoints[i].x = x1;
lpPoints[i].y = y1;
lpPoints[i + 1].x = x2;
lpPoints[i + 1].y = y2;
lpPoints[i + 2].x = x3;
lpPoints[i + 2].y = y3;
i = i + 3;
}
}
}
bool done = false;
bool closed = (lpPoints[0].x == lpPoints[i - 1].x) && (lpPoints[0].y == lpPoints[i - 1].y);
bool polygon = false;
bool rectangle = false;
bool ellipse = false;
if (moves == 1 && moves + lines == nodes && closed) {
polygon = true;
// if (nodes==5) { // disable due to LP Bug 407394
// if (lpPoints[0].x == lpPoints[3].x && lpPoints[1].x == lpPoints[2].x &&
// lpPoints[0].y == lpPoints[1].y && lpPoints[2].y == lpPoints[3].y)
// {
// rectangle = true;
// }
// }
} else if (moves == 1 && nodes == 5 && moves + curves == nodes && closed) {
// if (lpPoints[0].x == lpPoints[1].x && lpPoints[1].x == lpPoints[11].x &&
// lpPoints[5].x == lpPoints[6].x && lpPoints[6].x == lpPoints[7].x &&
// lpPoints[2].x == lpPoints[10].x && lpPoints[3].x == lpPoints[9].x && lpPoints[4].x == lpPoints[8].x &&
// lpPoints[2].y == lpPoints[3].y && lpPoints[3].y == lpPoints[4].y &&
// lpPoints[8].y == lpPoints[9].y && lpPoints[9].y == lpPoints[10].y &&
// lpPoints[5].y == lpPoints[1].y && lpPoints[6].y == lpPoints[0].y && lpPoints[7].y == lpPoints[11].y)
// { // disable due to LP Bug 407394
// ellipse = true;
// }
}
if (polygon || ellipse) {
if (use_fill && !use_stroke) { // only fill
rec = selectobject_set(U_NULL_PEN, eht);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::print_simple_shape at selectobject_set pen");
}
} else if (!use_fill && use_stroke) { // only stroke
rec = selectobject_set(U_NULL_BRUSH, eht);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::print_simple_shape at selectobject_set brush");
}
}
if (polygon) {
if (rectangle) {
U_RECTL rcl = rectl_set((U_POINTL) {
lpPoints[0].x, lpPoints[0].y
}, (U_POINTL) {
lpPoints[2].x, lpPoints[2].y
});
rec = U_EMRRECTANGLE_set(rcl);
} else {
rec = U_EMRPOLYGON_set(U_RCL_DEF, nodes, lpPoints);
}
} else if (ellipse) {
U_RECTL rcl = rectl_set((U_POINTL) {
lpPoints[6].x, lpPoints[3].y
}, (U_POINTL) {
lpPoints[0].x, lpPoints[9].y
});
rec = U_EMRELLIPSE_set(rcl);
}
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::print_simple_shape at retangle/ellipse/polygon");
}
done = true;
// replace the handle we moved above, assuming there was something set already
if (use_fill && !use_stroke && hpen) { // only fill
rec = selectobject_set(hpen, eht);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::print_simple_shape at selectobject_set pen");
}
} else if (!use_fill && use_stroke && hbrush) { // only stroke
rec = selectobject_set(hbrush, eht);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::print_simple_shape at selectobject_set brush");
}
}
}
delete[] lpPoints;
return done;
}
/** Some parts based on win32.cpp by Lauris Kaplinski <lauris@kaplinski.com>. Was a part of Inkscape
in the past (or will be in the future?) Not in current trunk. (4/19/2012)
Limitations of this code:
1. Transparency is lost on export. (Apparently a limitation of the EMF format.)
2. Probably messes up if row stride != w*4
3. There is still a small memory leak somewhere, possibly in a pixbuf created in a routine
that calls this one and passes px, but never removes the rest of the pixbuf. The first time
this is called it leaked 5M (in one test) and each subsequent call leaked around 200K more.
If this routine is reduced to
if(1)return(0);
and called for a single 1280 x 1024 image then the program leaks 11M per call, or roughly the
size of two bitmaps.
*/
unsigned int PrintEmf::image(
Inkscape::Extension::Print * /* module */, /** not used */
unsigned char *rgba_px, /** array of pixel values, Gdk::Pixbuf bitmap format */
unsigned int w, /** width of bitmap */
unsigned int h, /** height of bitmap */
unsigned int rs, /** row stride (normally w*4) */
Geom::Affine const &tf_rect, /** affine transform only used for defining location and size of rect, for all other tranforms, use the one from m_tr_stack */
SPStyle const * /*style*/) /** provides indirect link to image object */
{
double x1, y1, dw, dh;
char *rec = NULL;
Geom::Affine tf = m_tr_stack.top();
rec = U_EMRSETSTRETCHBLTMODE_set(U_COLORONCOLOR);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::image at EMRHEADER");
}
x1 = tf_rect[4];
y1 = tf_rect[5];
dw = ((double) w) * tf_rect[0];
dh = ((double) h) * tf_rect[3];
Geom::Point pLL(x1, y1);
Geom::Point pLL2 = pLL * tf; //location of LL corner in Inkscape coordinates
char *px;
uint32_t cbPx;
uint32_t colortype;
PU_RGBQUAD ct;
int numCt;
U_BITMAPINFOHEADER Bmih;
PU_BITMAPINFO Bmi;
colortype = U_BCBM_COLOR32;
(void) RGBA_to_DIB(&px, &cbPx, &ct, &numCt, (char *) rgba_px, w, h, w * 4, colortype, 0, 1);
Bmih = bitmapinfoheader_set(w, h, 1, colortype, U_BI_RGB, 0, PXPERMETER, PXPERMETER, numCt, 0);
Bmi = bitmapinfo_set(Bmih, ct);
U_POINTL Dest = pointl_set(round(pLL2[Geom::X] * PX2WORLD), round(pLL2[Geom::Y] * PX2WORLD));
U_POINTL cDest = pointl_set(round(dw * PX2WORLD), round(dh * PX2WORLD));
U_POINTL Src = pointl_set(0, 0);
U_POINTL cSrc = pointl_set(w, h);
/* map the integer Dest coordinates back into pLL2, so that the rounded part does not destabilize the transform offset below */
pLL2[Geom::X] = Dest.x;
pLL2[Geom::Y] = Dest.y;
pLL2 /= PX2WORLD;
if (!FixImageRot) { /* Rotate images - some programs cannot read them in correctly if they are rotated */
tf[4] = tf[5] = 0.0; // get rid of the offset in the transform
Geom::Point pLL2prime = pLL2 * tf;
U_XFORM tmpTransform;
tmpTransform.eM11 = tf[0];
tmpTransform.eM12 = tf[1];
tmpTransform.eM21 = tf[2];
tmpTransform.eM22 = tf[3];
tmpTransform.eDx = (pLL2[Geom::X] - pLL2prime[Geom::X]) * PX2WORLD;
tmpTransform.eDy = (pLL2[Geom::Y] - pLL2prime[Geom::Y]) * PX2WORLD;
rec = U_EMRSAVEDC_set();
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::image at U_EMRSAVEDC_set");
}
rec = U_EMRMODIFYWORLDTRANSFORM_set(tmpTransform, U_MWT_LEFTMULTIPLY);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::image at EMRMODIFYWORLDTRANSFORM");
}
}
rec = U_EMRSTRETCHDIBITS_set(
U_RCL_DEF, //! Bounding rectangle in device units
Dest, //! Destination UL corner in logical units
cDest, //! Destination W & H in logical units
Src, //! Source UL corner in logical units
cSrc, //! Source W & H in logical units
U_DIB_RGB_COLORS, //! DIBColors Enumeration
U_SRCCOPY, //! RasterOPeration Enumeration
Bmi, //! (Optional) bitmapbuffer (U_BITMAPINFO section)
h * rs, //! size in bytes of px
px //! (Optional) bitmapbuffer (U_BITMAPINFO section)
);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::image at U_EMRSTRETCHDIBITS_set");
}
free(px);
free(Bmi);
if (numCt) {
free(ct);
}
if (!FixImageRot) {
rec = U_EMRRESTOREDC_set(-1);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::image at U_EMRRESTOREDC_set");
}
}
return 0;
}
// may also be called with a simple_shape or an empty path, whereupon it just returns without doing anything
unsigned int PrintEmf::print_pathv(Geom::PathVector const &pathv, const Geom::Affine &transform)
{
Geom::Affine tf = transform;
char *rec = NULL;
simple_shape = print_simple_shape(pathv, tf);
if (simple_shape || pathv.empty()) {
if (use_fill) {
destroy_brush(); // these must be cleared even if nothing is drawn or hbrush,hpen fill up
}
if (use_stroke) {
destroy_pen();
}
return TRUE;
}
/* inkscape to EMF scaling is done below, but NOT the rotation/translation transform,
that is handled by the EMF MODIFYWORLDTRANSFORM record
*/
Geom::PathVector pv = pathv_to_linear_and_cubic_beziers(pathv * tf);
rec = U_EMRBEGINPATH_set();
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::print_pathv at U_EMRBEGINPATH_set");
}
/**
* For all Subpaths in the <path>
*/
for (Geom::PathVector::const_iterator pit = pv.begin(); pit != pv.end(); ++pit) {
using Geom::X;
using Geom::Y;
Geom::Point p0 = pit->initialPoint();
p0[X] = (p0[X] * PX2WORLD);
p0[Y] = (p0[Y] * PX2WORLD);
U_POINTL ptl = pointl_set((int32_t) round(p0[X]), (int32_t) round(p0[Y]));
rec = U_EMRMOVETOEX_set(ptl);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::print_pathv at U_EMRMOVETOEX_set");
}
/**
* For all segments in the subpath
*/
for (Geom::Path::const_iterator cit = pit->begin(); cit != pit->end_open(); ++cit) {
if (is_straight_curve(*cit)) {
//Geom::Point p0 = cit->initialPoint();
Geom::Point p1 = cit->finalPoint();
//p0[X] = (p0[X] * PX2WORLD);
p1[X] = (p1[X] * PX2WORLD);
//p0[Y] = (p0[Y] * PX2WORLD);
p1[Y] = (p1[Y] * PX2WORLD);
//int32_t const x0 = (int32_t) round(p0[X]);
//int32_t const y0 = (int32_t) round(p0[Y]);
ptl = pointl_set((int32_t) round(p1[X]), (int32_t) round(p1[Y]));
rec = U_EMRLINETO_set(ptl);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::print_pathv at U_EMRLINETO_set");
}
} else if (Geom::CubicBezier const *cubic = dynamic_cast<Geom::CubicBezier const *>(&*cit)) {
std::vector<Geom::Point> points = cubic->points();
//Geom::Point p0 = points[0];
Geom::Point p1 = points[1];
Geom::Point p2 = points[2];
Geom::Point p3 = points[3];
//p0[X] = (p0[X] * PX2WORLD);
p1[X] = (p1[X] * PX2WORLD);
p2[X] = (p2[X] * PX2WORLD);
p3[X] = (p3[X] * PX2WORLD);
//p0[Y] = (p0[Y] * PX2WORLD);
p1[Y] = (p1[Y] * PX2WORLD);
p2[Y] = (p2[Y] * PX2WORLD);
p3[Y] = (p3[Y] * PX2WORLD);
//int32_t const x0 = (int32_t) round(p0[X]);
//int32_t const y0 = (int32_t) round(p0[Y]);
int32_t const x1 = (int32_t) round(p1[X]);
int32_t const y1 = (int32_t) round(p1[Y]);
int32_t const x2 = (int32_t) round(p2[X]);
int32_t const y2 = (int32_t) round(p2[Y]);
int32_t const x3 = (int32_t) round(p3[X]);
int32_t const y3 = (int32_t) round(p3[Y]);
U_POINTL pt[3];
pt[0].x = x1;
pt[0].y = y1;
pt[1].x = x2;
pt[1].y = y2;
pt[2].x = x3;
pt[2].y = y3;
rec = U_EMRPOLYBEZIERTO_set(U_RCL_DEF, 3, pt);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::print_pathv at U_EMRPOLYBEZIERTO_set");
}
} else {
g_warning("logical error, because pathv_to_linear_and_cubic_beziers was used");
}
}
if (pit->end_default() == pit->end_closed()) { // there may be multiples of this on a single path
rec = U_EMRCLOSEFIGURE_set();
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::print_pathv at U_EMRCLOSEFIGURE_set");
}
}
}
rec = U_EMRENDPATH_set(); // there may be only be one of these on a single path
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::print_pathv at U_EMRENDPATH_set");
}
// explicit FILL/STROKE commands are needed for each sub section of the path
if (use_fill && !use_stroke) {
rec = U_EMRFILLPATH_set(U_RCL_DEF);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::fill at U_EMRFILLPATH_set");
}
} else if (use_fill && use_stroke) {
rec = U_EMRSTROKEANDFILLPATH_set(U_RCL_DEF);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::stroke at U_EMRSTROKEANDFILLPATH_set");
}
} else if (!use_fill && use_stroke) {
rec = U_EMRSTROKEPATH_set(U_RCL_DEF);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::stroke at U_EMRSTROKEPATH_set");
}
}
// clean out brush and pen, but only after all parts of the draw complete
if (use_fill) {
destroy_brush();
}
if (use_stroke) {
destroy_pen();
}
return TRUE;
}
unsigned int PrintEmf::text(Inkscape::Extension::Print * /*mod*/, char const *text, Geom::Point const &p,
SPStyle const *const style)
{
if (!et) {
return 0;
}
char *rec = NULL;
int ccount, newfont;
int fix90n = 0;
uint32_t hfont = 0;
Geom::Affine tf = m_tr_stack.top();
double rot = -1800.0 * std::atan2(tf[1], tf[0]) / M_PI; // 0.1 degree rotation, - sign for MM_TEXT
double rotb = -std::atan2(tf[1], tf[0]); // rotation for baseline offset for superscript/subscript, used below
double dx, dy;
double ky;
// the dx array is smuggled in like: text<nul>w1 w2 w3 ...wn<nul><nul>, where the widths are floats 7 characters wide, including the space
int ndx, rtl;
uint32_t *adx;
smuggle_adxkyrtl_out(text, &adx, &ky, &rtl, &ndx, PX2WORLD * std::min(tf.expansionX(), tf.expansionY())); // side effect: free() adx
uint32_t textalignment;
if (rtl > 0) {
textalignment = U_TA_BASELINE | U_TA_LEFT;
} else {
textalignment = U_TA_BASELINE | U_TA_RIGHT | U_TA_RTLREADING;
}
if (textalignment != htextalignment) {
htextalignment = textalignment;
rec = U_EMRSETTEXTALIGN_set(textalignment);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::text at U_EMRSETTEXTALIGN_set");
}
}
char *text2 = strdup(text); // because U_Utf8ToUtf16le calls iconv which does not like a const char *
uint16_t *unicode_text = U_Utf8ToUtf16le(text2, 0, NULL);
free(text2);
//translates Unicode to NonUnicode, if possible. If any translate, all will, and all to
//the same font, because of code in Layout::print
UnicodeToNon(unicode_text, &ccount, &newfont);
//PPT gets funky with text within +-1 degree of a multiple of 90, but only for SOME fonts.Snap those to the central value
//Some funky ones: Arial, Times New Roman
//Some not funky ones: Symbol and Verdana.
//Without a huge table we cannot catch them all, so just the most common problem ones.
FontfixParams params;
if (FixPPTCharPos) {
switch (newfont) {
case CVTSYM:
_lookup_ppt_fontfix("Convert To Symbol", params);
break;
case CVTZDG:
_lookup_ppt_fontfix("Convert To Zapf Dingbats", params);
break;
case CVTWDG:
_lookup_ppt_fontfix("Convert To Wingdings", params);
break;
default: //also CVTNON
_lookup_ppt_fontfix(style->font_family.value, params);
break;
}
if (params.f2 != 0 || params.f3 != 0) {
int irem = ((int) round(rot)) % 900 ;
if (irem <= 9 && irem >= -9) {
fix90n = 1; //assume vertical
rot = (double)(((int) round(rot)) - irem);
rotb = rot * M_PI / 1800.0;
if (abs(rot) == 900.0) {
fix90n = 2;
}
}
}
}
/* Note that text font sizes are stored into the EMF as fairly small integers and that limits their precision.
The EMF output files produced here have been designed so that the integer valued pt sizes
land right on an integer value in the EMF file, so those are exact. However, something like 18.1 pt will be
somewhat off, so that when it is read back in it becomes 18.11 pt. (For instance.)
*/
int textheight = round(-style->font_size.computed * PX2WORLD * std::min(tf.expansionX(), tf.expansionY()));
if (!hfont) {
// Get font face name. Use changed font name if unicode mapped to one
// of the special fonts.
uint16_t *wfacename;
if (!newfont) {
wfacename = U_Utf8ToUtf16le(style->font_family.value, 0, NULL);
} else {
wfacename = U_Utf8ToUtf16le(FontName(newfont), 0, NULL);
}
// Scale the text to the minimum stretch. (It tends to stay within bounding rectangles even if
// it was streteched asymmetrically.) Few applications support text from EMF which is scaled
// differently by height/width, so leave lfWidth alone.
U_LOGFONT lf = logfont_set(
textheight,
0,
round(rot),
round(rot),
_translate_weight(style->font_weight.computed),
(style->font_style.computed == SP_CSS_FONT_STYLE_ITALIC),
style->text_decoration_line.underline,
style->text_decoration_line.line_through,
U_DEFAULT_CHARSET,
U_OUT_DEFAULT_PRECIS,
U_CLIP_DEFAULT_PRECIS,
U_DEFAULT_QUALITY,
U_DEFAULT_PITCH | U_FF_DONTCARE,
wfacename);
free(wfacename);
rec = extcreatefontindirectw_set(&hfont, eht, (char *) &lf, NULL);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::text at extcreatefontindirectw_set");
}
}
rec = selectobject_set(hfont, eht);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::text at selectobject_set");
}
float rgb[3];
sp_color_get_rgb_floatv(&style->fill.value.color, rgb);
// only change the text color when it needs to be changed
if (memcmp(htextcolor_rgb, rgb, 3 * sizeof(float))) {
memcpy(htextcolor_rgb, rgb, 3 * sizeof(float));
rec = U_EMRSETTEXTCOLOR_set(U_RGB(255 * rgb[0], 255 * rgb[1], 255 * rgb[2]));
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::text at U_EMRSETTEXTCOLOR_set");
}
}
Geom::Point p2 = p * tf;
//Handle super/subscripts and vertical kerning
/* Previously used this, but vertical kerning was not supported
p2[Geom::X] -= style->baseline_shift.computed * std::sin( rotb );
p2[Geom::Y] -= style->baseline_shift.computed * std::cos( rotb );
*/
p2[Geom::X] += ky * std::sin(rotb);
p2[Geom::Y] += ky * std::cos(rotb);
//Conditionally handle compensation for PPT EMF import bug (affects PPT 2003-2010, at least)
if (FixPPTCharPos) {
if (fix90n == 1) { //vertical
dx = 0.0;
dy = params.f3 * style->font_size.computed * std::cos(rotb);
} else if (fix90n == 2) { //horizontal
dx = params.f2 * style->font_size.computed * std::sin(rotb);
dy = 0.0;
} else {
dx = params.f1 * style->font_size.computed * std::sin(rotb);
dy = params.f1 * style->font_size.computed * std::cos(rotb);
}
p2[Geom::X] += dx;
p2[Geom::Y] += dy;
}
p2[Geom::X] = (p2[Geom::X] * PX2WORLD);
p2[Geom::Y] = (p2[Geom::Y] * PX2WORLD);
int32_t const xpos = (int32_t) round(p2[Geom::X]);
int32_t const ypos = (int32_t) round(p2[Geom::Y]);
// The number of characters in the string is a bit fuzzy. ndx, the number of entries in adx is
// the number of VISIBLE characters, since some may combine from the UTF (8 originally,
// now 16) encoding. Conversely strlen() or wchar16len() would give the absolute number of
// encoding characters. Unclear if emrtext wants the former or the latter but for now assume the former.
// This is currently being smuggled in from caller as part of text, works
// MUCH better than the fallback hack below
// uint32_t *adx = dx_set(textheight, U_FW_NORMAL, slen); // dx is needed, this makes one up
char *rec2;
if (rtl > 0) {
rec2 = emrtext_set((U_POINTL) {
xpos, ypos
}, ndx, 2, unicode_text, U_ETO_NONE, U_RCL_DEF, adx);
} else { // RTL text, U_TA_RTLREADING should be enough, but set this one too just in case
rec2 = emrtext_set((U_POINTL) {
xpos, ypos
}, ndx, 2, unicode_text, U_ETO_RTLREADING, U_RCL_DEF, adx);
}
free(unicode_text);
free(adx);
rec = U_EMREXTTEXTOUTW_set(U_RCL_DEF, U_GM_COMPATIBLE, 1.0, 1.0, (PU_EMRTEXT)rec2);
free(rec2);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::text at U_EMREXTTEXTOUTW_set");
}
// Must deselect an object before deleting it. Put the default font (back) in.
rec = selectobject_set(U_DEVICE_DEFAULT_FONT, eht);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::text at selectobject_set");
}
if (hfont) {
rec = deleteobject_set(&hfont, eht);
if (!rec || emf_append((PU_ENHMETARECORD)rec, et, U_REC_FREE)) {
g_error("Fatal programming error in PrintEmf::text at deleteobject_set");
}
}
return 0;
}
void PrintEmf::init(void)
{
_load_ppt_fontfix_data();
/* EMF print */
Inkscape::Extension::build_from_mem(
"<inkscape-extension xmlns=\"" INKSCAPE_EXTENSION_URI "\">\n"
"<name>Enhanced Metafile Print</name>\n"
"<id>org.inkscape.print.emf</id>\n"
"<param name=\"destination\" type=\"string\"></param>\n"
"<param name=\"textToPath\" type=\"boolean\">true</param>\n"
"<param name=\"pageBoundingBox\" type=\"boolean\">true</param>\n"
"<param name=\"FixPPTCharPos\" type=\"boolean\">false</param>\n"
"<param name=\"FixPPTDashLine\" type=\"boolean\">false</param>\n"
"<param name=\"FixPPTGrad2Polys\" type=\"boolean\">false</param>\n"
"<param name=\"FixPPTLinGrad\" type=\"boolean\">false</param>\n"
"<param name=\"FixPPTPatternAsHatch\" type=\"boolean\">false</param>\n"
"<param name=\"FixImageRot\" type=\"boolean\">false</param>\n"
"<print/>\n"
"</inkscape-extension>", new PrintEmf());
return;
}
} /* namespace Internal */
} /* namespace Extension */
} /* namespace Inkscape */
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :