nr-filter-gaussian.cpp revision 6f348c5f305a619fd7dde1968960cc47925e952f
/*
* Gaussian blur renderer
*
* Authors:
* Niko Kiirala <niko@kiirala.com>
* bulia byak
* Jasper van de Gronde <th.v.d.gronde@hccnet.nl>
*
* Copyright (C) 2006-2008 authors
*
* Released under GNU GPL, read the file 'COPYING' for more information
*/
#include "config.h" // Needed for HAVE_OPENMP
#include <algorithm>
#include <cmath>
#include <complex>
#include <cstdlib>
#include <glib.h>
#include <limits>
#if HAVE_OPENMP
#include <omp.h>
#endif //HAVE_OPENMP
#include "display/cairo-utils.h"
#include "display/nr-filter-primitive.h"
#include "display/nr-filter-gaussian.h"
#include "display/nr-filter-types.h"
#include "display/nr-filter-units.h"
#include "display/nr-filter-slot.h"
#include <2geom/affine.h>
#include "util/fixed_point.h"
#include "preferences.h"
#ifndef INK_UNUSED
#define INK_UNUSED(x) ((void)(x))
#endif
// IIR filtering method based on:
// L.J. van Vliet, I.T. Young, and P.W. Verbeek, Recursive Gaussian Derivative Filters,
// in: A.K. Jain, S. Venkatesh, B.C. Lovell (eds.),
// ICPR'98, Proc. 14th Int. Conference on Pattern Recognition (Brisbane, Aug. 16-20),
// IEEE Computer Society Press, Los Alamitos, 1998, 509-514.
//
// Using the backwards-pass initialization procedure from:
// Boundary Conditions for Young - van Vliet Recursive Filtering
// Bill Triggs, Michael Sdika
// IEEE Transactions on Signal Processing, Volume 54, Number 5 - may 2006
// Number of IIR filter coefficients used. Currently only 3 is supported.
// "Recursive Gaussian Derivative Filters" says this is enough though (and
// some testing indeed shows that the quality doesn't improve much if larger
// filters are used).
static size_t const N = 3;
template<typename InIt, typename OutIt, typename Size>
inline void copy_n(InIt beg_in, Size N, OutIt beg_out) {
std::copy(beg_in, beg_in+N, beg_out);
}
// Type used for IIR filter coefficients (can be 10.21 signed fixed point, see Anisotropic Gaussian Filtering Using Fixed Point Arithmetic, Christoph H. Lampert & Oliver Wirjadi, 2006)
typedef double IIRValue;
// Type used for FIR filter coefficients (can be 16.16 unsigned fixed point, should have 8 or more bits in the fractional part, the integer part should be capable of storing approximately 20*255)
typedef Inkscape::Util::FixedPoint<unsigned int,16> FIRValue;
template<typename T> static inline T sqr(T const& v) { return v*v; }
template<typename T> static inline T clip(T const& v, T const& a, T const& b) {
if ( v < a ) return a;
if ( v > b ) return b;
return v;
}
template<typename Tt, typename Ts>
static inline Tt round_cast(Ts v) {
static Ts const rndoffset(.5);
return static_cast<Tt>(v+rndoffset);
}
/*
template<>
inline unsigned char round_cast(double v) {
// This (fast) rounding method is based on:
// http://stereopsis.com/sree/fpu2006.html
#if G_BYTE_ORDER==G_LITTLE_ENDIAN
double const dmr = 6755399441055744.0;
v = v + dmr;
return ((unsigned char*)&v)[0];
#elif G_BYTE_ORDER==G_BIG_ENDIAN
double const dmr = 6755399441055744.0;
v = v + dmr;
return ((unsigned char*)&v)[7];
#else
static double const rndoffset(.5);
return static_cast<unsigned char>(v+rndoffset);
#endif
}*/
template<typename Tt, typename Ts>
static inline Tt clip_round_cast(Ts const v) {
Ts const minval = std::numeric_limits<Tt>::min();
Ts const maxval = std::numeric_limits<Tt>::max();
Tt const minval_rounded = std::numeric_limits<Tt>::min();
Tt const maxval_rounded = std::numeric_limits<Tt>::max();
if ( v < minval ) return minval_rounded;
if ( v > maxval ) return maxval_rounded;
return round_cast<Tt>(v);
}
template<typename Tt, typename Ts>
static inline Tt clip_round_cast_varmax(Ts const v, Tt const maxval_rounded) {
Ts const minval = std::numeric_limits<Tt>::min();
Tt const maxval = maxval_rounded;
Tt const minval_rounded = std::numeric_limits<Tt>::min();
if ( v < minval ) return minval_rounded;
if ( v > maxval ) return maxval_rounded;
return round_cast<Tt>(v);
}
namespace Inkscape {
namespace Filters {
FilterGaussian::FilterGaussian()
{
_deviation_x = _deviation_y = 0.0;
}
FilterPrimitive *FilterGaussian::create()
{
return new FilterGaussian();
}
FilterGaussian::~FilterGaussian()
{
// Nothing to do here
}
static int
_effect_area_scr(double const deviation)
{
return (int)std::ceil(std::fabs(deviation) * 3.0);
}
static void
_make_kernel(FIRValue *const kernel, double const deviation)
{
int const scr_len = _effect_area_scr(deviation);
g_assert(scr_len >= 0);
double const d_sq = sqr(deviation) * 2;
double k[scr_len+1]; // This is only called for small kernel sizes (above approximately 10 coefficients the IIR filter is used)
// Compute kernel and sum of coefficients
// Note that actually only half the kernel is computed, as it is symmetric
double sum = 0;
for ( int i = scr_len; i >= 0 ; i-- ) {
k[i] = std::exp(-sqr(i) / d_sq);
if ( i > 0 ) sum += k[i];
}
// the sum of the complete kernel is twice as large (plus the center element which we skipped above to prevent counting it twice)
sum = 2*sum + k[0];
// Normalize kernel (making sure the sum is exactly 1)
double ksum = 0;
FIRValue kernelsum = 0;
for ( int i = scr_len; i >= 1 ; i-- ) {
ksum += k[i]/sum;
kernel[i] = ksum-static_cast<double>(kernelsum);
kernelsum += kernel[i];
}
kernel[0] = FIRValue(1)-2*kernelsum;
}
// Return value (v) should satisfy:
// 2^(2*v)*255<2^32
// 255<2^(32-2*v)
// 2^8<=2^(32-2*v)
// 8<=32-2*v
// 2*v<=24
// v<=12
static int
_effect_subsample_step_log2(double const deviation, int const quality)
{
// To make sure FIR will always be used (unless the kernel is VERY big):
// deviation/step <= 3
// deviation/3 <= step
// log(deviation/3) <= log(step)
// So when x below is >= 1/3 FIR will almost always be used.
// This means IIR is almost only used with the modes BETTER or BEST.
int stepsize_l2;
switch (quality) {
case BLUR_QUALITY_WORST:
// 2 == log(x*8/3))
// 2^2 == x*2^3/3
// x == 3/2
stepsize_l2 = clip(static_cast<int>(log(deviation*(3./2.))/log(2.)), 0, 12);
break;
case BLUR_QUALITY_WORSE:
// 2 == log(x*16/3))
// 2^2 == x*2^4/3
// x == 3/2^2
stepsize_l2 = clip(static_cast<int>(log(deviation*(3./4.))/log(2.)), 0, 12);
break;
case BLUR_QUALITY_BETTER:
// 2 == log(x*32/3))
// 2 == x*2^5/3
// x == 3/2^4
stepsize_l2 = clip(static_cast<int>(log(deviation*(3./16.))/log(2.)), 0, 12);
break;
case BLUR_QUALITY_BEST:
stepsize_l2 = 0; // no subsampling at all
break;
case BLUR_QUALITY_NORMAL:
default:
// 2 == log(x*16/3))
// 2 == x*2^4/3
// x == 3/2^3
stepsize_l2 = clip(static_cast<int>(log(deviation*(3./8.))/log(2.)), 0, 12);
break;
}
return stepsize_l2;
}
static void calcFilter(double const sigma, double b[N]) {
assert(N==3);
std::complex<double> const d1_org(1.40098, 1.00236);
double const d3_org = 1.85132;
double qbeg = 1; // Don't go lower than sigma==2 (we'd probably want a normal convolution in that case anyway)
double qend = 2*sigma;
double const sigmasqr = sqr(sigma);
do { // Binary search for right q (a linear interpolation scheme is suggested, but this should work fine as well)
double const q = (qbeg+qend)/2;
// Compute scaled filter coefficients
std::complex<double> const d1 = pow(d1_org, 1.0/q);
double const d3 = pow(d3_org, 1.0/q);
// Compute actual sigma^2
double const ssqr = 2*(2*(d1/sqr(d1-1.)).real()+d3/sqr(d3-1.));
if ( ssqr < sigmasqr ) {
qbeg = q;
} else {
qend = q;
}
} while(qend-qbeg>(sigma/(1<<30)));
// Compute filter coefficients
double const q = (qbeg+qend)/2;
std::complex<double> const d1 = pow(d1_org, 1.0/q);
double const d3 = pow(d3_org, 1.0/q);
double const absd1sqr = std::norm(d1); // d1*d2 = d1*conj(d1) = |d1|^2 = std::norm(d1)
double const re2d1 = 2*d1.real(); // d1+d2 = d1+conj(d1) = 2*real(d1)
double const bscale = 1.0/(absd1sqr*d3);
b[2] = -bscale;
b[1] = bscale*(d3+re2d1);
b[0] = -bscale*(absd1sqr+d3*re2d1);
}
static void calcTriggsSdikaM(double const b[N], double M[N*N]) {
assert(N==3);
double a1=b[0], a2=b[1], a3=b[2];
double const Mscale = 1.0/((1+a1-a2+a3)*(1-a1-a2-a3)*(1+a2+(a1-a3)*a3));
M[0] = 1-a2-a1*a3-sqr(a3);
M[1] = (a1+a3)*(a2+a1*a3);
M[2] = a3*(a1+a2*a3);
M[3] = a1+a2*a3;
M[4] = (1-a2)*(a2+a1*a3);
M[5] = a3*(1-a2-a1*a3-sqr(a3));
M[6] = a1*(a1+a3)+a2*(1-a2);
M[7] = a1*(a2-sqr(a3))+a3*(1+a2*(a2-1)-sqr(a3));
M[8] = a3*(a1+a2*a3);
for(unsigned int i=0; i<9; i++) M[i] *= Mscale;
}
template<unsigned int SIZE>
static void calcTriggsSdikaInitialization(double const M[N*N], IIRValue const uold[N][SIZE], IIRValue const uplus[SIZE], IIRValue const vplus[SIZE], IIRValue const alpha, IIRValue vold[N][SIZE]) {
for(unsigned int c=0; c<SIZE; c++) {
double uminp[N];
for(unsigned int i=0; i<N; i++) uminp[i] = uold[i][c] - uplus[c];
for(unsigned int i=0; i<N; i++) {
double voldf = 0;
for(unsigned int j=0; j<N; j++) {
voldf += uminp[j]*M[i*N+j];
}
// Properly takes care of the scaling coefficient alpha and vplus (which is already appropriately scaled)
// This was arrived at by starting from a version of the blur filter that ignored the scaling coefficient
// (and scaled the final output by alpha^2) and then gradually reintroducing the scaling coefficient.
vold[i][c] = voldf*alpha;
vold[i][c] += vplus[c];
}
}
}
// Filters over 1st dimension
template<typename PT, unsigned int PC, bool PREMULTIPLIED_ALPHA>
static void
filter2D_IIR(PT *const dest, int const dstr1, int const dstr2,
PT const *const src, int const sstr1, int const sstr2,
int const n1, int const n2, IIRValue const b[N+1], double const M[N*N],
IIRValue *const tmpdata[], int const num_threads)
{
#if G_BYTE_ORDER == G_LITTLE_ENDIAN
static unsigned int const alpha_PC = PC-1;
#define PREMUL_ALPHA_LOOP for(unsigned int c=0; c<PC-1; ++c)
#else
static unsigned int const alpha_PC = 0;
#define PREMUL_ALPHA_LOOP for(unsigned int c=1; c<PC; ++c)
#endif
INK_UNUSED(num_threads); // to suppress unused argument compiler warning
#if HAVE_OPENMP
#pragma omp parallel for num_threads(num_threads)
#endif // HAVE_OPENMP
for ( int c2 = 0 ; c2 < n2 ; c2++ ) {
#if HAVE_OPENMP
unsigned int tid = omp_get_thread_num();
#else
unsigned int tid = 0;
#endif // HAVE_OPENMP
// corresponding line in the source and output buffer
PT const * srcimg = src + c2*sstr2;
PT * dstimg = dest + c2*dstr2 + n1*dstr1;
// Border constants
IIRValue imin[PC]; copy_n(srcimg + (0)*sstr1, PC, imin);
IIRValue iplus[PC]; copy_n(srcimg + (n1-1)*sstr1, PC, iplus);
// Forward pass
IIRValue u[N+1][PC];
for(unsigned int i=0; i<N; i++) copy_n(imin, PC, u[i]);
for ( int c1 = 0 ; c1 < n1 ; c1++ ) {
for(unsigned int i=N; i>0; i--) copy_n(u[i-1], PC, u[i]);
copy_n(srcimg, PC, u[0]);
srcimg += sstr1;
for(unsigned int c=0; c<PC; c++) u[0][c] *= b[0];
for(unsigned int i=1; i<N+1; i++) {
for(unsigned int c=0; c<PC; c++) u[0][c] += u[i][c]*b[i];
}
copy_n(u[0], PC, tmpdata[tid]+c1*PC);
}
// Backward pass
IIRValue v[N+1][PC];
calcTriggsSdikaInitialization<PC>(M, u, iplus, iplus, b[0], v);
dstimg -= dstr1;
if ( PREMULTIPLIED_ALPHA ) {
dstimg[alpha_PC] = clip_round_cast<PT>(v[0][alpha_PC]);
PREMUL_ALPHA_LOOP dstimg[c] = clip_round_cast_varmax<PT>(v[0][c], dstimg[alpha_PC]);
} else {
for(unsigned int c=0; c<PC; c++) dstimg[c] = clip_round_cast<PT>(v[0][c]);
}
int c1=n1-1;
while(c1-->0) {
for(unsigned int i=N; i>0; i--) copy_n(v[i-1], PC, v[i]);
copy_n(tmpdata[tid]+c1*PC, PC, v[0]);
for(unsigned int c=0; c<PC; c++) v[0][c] *= b[0];
for(unsigned int i=1; i<N+1; i++) {
for(unsigned int c=0; c<PC; c++) v[0][c] += v[i][c]*b[i];
}
dstimg -= dstr1;
if ( PREMULTIPLIED_ALPHA ) {
dstimg[alpha_PC] = clip_round_cast<PT>(v[0][alpha_PC]);
PREMUL_ALPHA_LOOP dstimg[c] = clip_round_cast_varmax<PT>(v[0][c], dstimg[alpha_PC]);
} else {
for(unsigned int c=0; c<PC; c++) dstimg[c] = clip_round_cast<PT>(v[0][c]);
}
}
}
}
// Filters over 1st dimension
// Assumes kernel is symmetric
// Kernel should have scr_len+1 elements
template<typename PT, unsigned int PC>
static void
filter2D_FIR(PT *const dst, int const dstr1, int const dstr2,
PT const *const src, int const sstr1, int const sstr2,
int const n1, int const n2, FIRValue const *const kernel, int const scr_len, int const num_threads)
{
// Past pixels seen (to enable in-place operation)
PT history[scr_len+1][PC];
INK_UNUSED(num_threads); // suppresses unused argument compiler warning
#if HAVE_OPENMP
#pragma omp parallel for num_threads(num_threads) private(history)
#endif // HAVE_OPENMP
for ( int c2 = 0 ; c2 < n2 ; c2++ ) {
// corresponding line in the source buffer
int const src_line = c2 * sstr2;
// current line in the output buffer
int const dst_line = c2 * dstr2;
int skipbuf[4] = {INT_MIN, INT_MIN, INT_MIN, INT_MIN};
// history initialization
PT imin[PC]; copy_n(src + src_line, PC, imin);
for(int i=0; i<scr_len; i++) copy_n(imin, PC, history[i]);
for ( int c1 = 0 ; c1 < n1 ; c1++ ) {
int const src_disp = src_line + c1 * sstr1;
int const dst_disp = dst_line + c1 * dstr1;
// update history
for(int i=scr_len; i>0; i--) copy_n(history[i-1], PC, history[i]);
copy_n(src + src_disp, PC, history[0]);
// for all bytes of the pixel
for ( unsigned int byte = 0 ; byte < PC ; byte++) {
if(skipbuf[byte] > c1) continue;
FIRValue sum = 0;
int last_in = -1;
int different_count = 0;
// go over our point's neighbours in the history
for ( int i = 0 ; i <= scr_len ; i++ ) {
// value at the pixel
PT in_byte = history[i][byte];
// is it the same as last one we saw?
if(in_byte != last_in) different_count++;
last_in = in_byte;
// sum pixels weighted by the kernel
sum += in_byte * kernel[i];
}
// go over our point's neighborhood on x axis in the in buffer
int nb_src_disp = src_disp + byte;
for ( int i = 1 ; i <= scr_len ; i++ ) {
// the pixel we're looking at
int c1_in = c1 + i;
if (c1_in >= n1) {
c1_in = n1 - 1;
} else {
nb_src_disp += sstr1;
}
// value at the pixel
PT in_byte = src[nb_src_disp];
// is it the same as last one we saw?
if(in_byte != last_in) different_count++;
last_in = in_byte;
// sum pixels weighted by the kernel
sum += in_byte * kernel[i];
}
// store the result in bufx
dst[dst_disp + byte] = round_cast<PT>(sum);
// optimization: if there was no variation within this point's neighborhood,
// skip ahead while we keep seeing the same last_in byte:
// blurring flat color would not change it anyway
if (different_count <= 1) { // note that different_count is at least 1, because last_in is initialized to -1
int pos = c1 + 1;
int nb_src_disp = src_disp + (1+scr_len)*sstr1 + byte; // src_line + (pos+scr_len) * sstr1 + byte
int nb_dst_disp = dst_disp + (1) *dstr1 + byte; // dst_line + (pos) * sstr1 + byte
while(pos + scr_len < n1 && src[nb_src_disp] == last_in) {
dst[nb_dst_disp] = last_in;
pos++;
nb_src_disp += sstr1;
nb_dst_disp += dstr1;
}
skipbuf[byte] = pos;
}
}
}
}
}
static void
gaussian_pass_IIR(Geom::Dim2 d, double deviation, cairo_surface_t *src, cairo_surface_t *dest,
IIRValue **tmpdata, int num_threads)
{
// Filter variables
IIRValue b[N+1]; // scaling coefficient + filter coefficients (can be 10.21 fixed point)
double bf[N]; // computed filter coefficients
double M[N*N]; // matrix used for initialization procedure (has to be double)
// Compute filter
calcFilter(deviation, bf);
for(size_t i=0; i<N; i++) bf[i] = -bf[i];
b[0] = 1; // b[0] == alpha (scaling coefficient)
for(size_t i=0; i<N; i++) {
b[i+1] = bf[i];
b[0] -= b[i+1];
}
// Compute initialization matrix
calcTriggsSdikaM(bf, M);
int stride = cairo_image_surface_get_stride(src);
int w = cairo_image_surface_get_width(src);
int h = cairo_image_surface_get_height(src);
if (d != Geom::X) std::swap(w, h);
// Filter
switch (cairo_image_surface_get_format(src)) {
case CAIRO_FORMAT_A8: ///< Grayscale
filter2D_IIR<unsigned char,1,false>(
cairo_image_surface_get_data(dest), d == Geom::X ? 1 : stride, d == Geom::X ? stride : 1,
cairo_image_surface_get_data(src), d == Geom::X ? 1 : stride, d == Geom::X ? stride : 1,
w, h, b, M, tmpdata, num_threads);
break;
case CAIRO_FORMAT_ARGB32: ///< Premultiplied 8 bit RGBA
filter2D_IIR<unsigned char,4,true>(
cairo_image_surface_get_data(dest), d == Geom::X ? 4 : stride, d == Geom::X ? stride : 4,
cairo_image_surface_get_data(src), d == Geom::X ? 4 : stride, d == Geom::X ? stride : 4,
w, h, b, M, tmpdata, num_threads);
break;
default:
g_warning("gaussian_pass_IIR: unsupported image format");
};
}
static void
gaussian_pass_FIR(Geom::Dim2 d, double deviation, cairo_surface_t *src, cairo_surface_t *dest,
int num_threads)
{
int scr_len = _effect_area_scr(deviation);
// Filter kernel for x direction
std::vector<FIRValue> kernel(scr_len + 1);
_make_kernel(&kernel[0], deviation);
int stride = cairo_image_surface_get_stride(src);
int w = cairo_image_surface_get_width(src);
int h = cairo_image_surface_get_height(src);
if (d != Geom::X) std::swap(w, h);
// Filter (x)
switch (cairo_image_surface_get_format(src)) {
case CAIRO_FORMAT_A8: ///< Grayscale
filter2D_FIR<unsigned char,1>(
cairo_image_surface_get_data(dest), d == Geom::X ? 1 : stride, d == Geom::X ? stride : 1,
cairo_image_surface_get_data(src), d == Geom::X ? 1 : stride, d == Geom::X ? stride : 1,
w, h, &kernel[0], scr_len, num_threads);
break;
case CAIRO_FORMAT_ARGB32: ///< Premultiplied 8 bit RGBA
filter2D_FIR<unsigned char,4>(
cairo_image_surface_get_data(dest), d == Geom::X ? 4 : stride, d == Geom::X ? stride : 4,
cairo_image_surface_get_data(src), d == Geom::X ? 4 : stride, d == Geom::X ? stride : 4,
w, h, &kernel[0], scr_len, num_threads);
break;
default:
g_warning("gaussian_pass_FIR: unsupported image format");
};
}
void FilterGaussian::render_cairo(FilterSlot &slot)
{
cairo_surface_t *in = slot.getcairo(_input);
if (!in) return;
// We may need to transform input surface to correct color interpolation space. The input surface
// might be used as input to another primitive but it is likely that all the primitives in a given
// filter use the same color interpolation space so we don't copy the input before converting.
SPColorInterpolation ci_fp = SP_CSS_COLOR_INTERPOLATION_AUTO;
if( _style ) {
ci_fp = (SPColorInterpolation)_style->color_interpolation_filters.computed;
}
set_cairo_surface_ci( in, ci_fp );
// zero deviation = no change in output
if (_deviation_x <= 0 && _deviation_y <= 0) {
cairo_surface_t *cp = ink_cairo_surface_copy(in);
slot.set(_output, cp);
cairo_surface_destroy(cp);
return;
}
// Handle bounding box case.
double dx = _deviation_x;
double dy = _deviation_y;
if( slot.get_units().get_primitive_units() == SP_FILTER_UNITS_OBJECTBOUNDINGBOX ) {
Geom::OptRect const bbox = slot.get_units().get_item_bbox();
if( bbox ) {
dx *= (*bbox).width();
dy *= (*bbox).height();
}
}
Geom::Affine trans = slot.get_units().get_matrix_user2pb();
double deviation_x_orig = dx * trans.expansionX();
double deviation_y_orig = dy * trans.expansionY();
cairo_format_t fmt = cairo_image_surface_get_format(in);
int bytes_per_pixel = 0;
switch (fmt) {
case CAIRO_FORMAT_A8:
bytes_per_pixel = 1; break;
case CAIRO_FORMAT_ARGB32:
default:
bytes_per_pixel = 4; break;
}
#if HAVE_OPENMP
Inkscape::Preferences *prefs = Inkscape::Preferences::get();
int threads = prefs->getIntLimited("/options/threading/numthreads", omp_get_num_procs(), 1, 256);
#else
int threads = 1;
#endif
int quality = slot.get_blurquality();
int x_step = 1 << _effect_subsample_step_log2(deviation_x_orig, quality);
int y_step = 1 << _effect_subsample_step_log2(deviation_y_orig, quality);
bool resampling = x_step > 1 || y_step > 1;
int w_orig = ink_cairo_surface_get_width(in);
int h_orig = ink_cairo_surface_get_height(in);
int w_downsampled = resampling ? static_cast<int>(ceil(static_cast<double>(w_orig)/x_step))+1 : w_orig;
int h_downsampled = resampling ? static_cast<int>(ceil(static_cast<double>(h_orig)/y_step))+1 : h_orig;
double deviation_x = deviation_x_orig / x_step;
double deviation_y = deviation_y_orig / y_step;
int scr_len_x = _effect_area_scr(deviation_x);
int scr_len_y = _effect_area_scr(deviation_y);
// Decide which filter to use for X and Y
// This threshold was determined by trial-and-error for one specific machine,
// so there's a good chance that it's not optimal.
// Whatever you do, don't go below 1 (and preferrably not even below 2), as
// the IIR filter gets unstable there.
bool use_IIR_x = deviation_x > 3;
bool use_IIR_y = deviation_y > 3;
// Temporary storage for IIR filter
// NOTE: This can be eliminated, but it reduces the precision a bit
IIRValue * tmpdata[threads];
std::fill_n(tmpdata, threads, (IIRValue*)0);
if ( use_IIR_x || use_IIR_y ) {
for(int i = 0; i < threads; ++i) {
tmpdata[i] = new IIRValue[std::max(w_downsampled,h_downsampled)*bytes_per_pixel];
}
}
cairo_surface_t *downsampled = NULL;
if (resampling) {
downsampled = cairo_surface_create_similar(in, cairo_surface_get_content(in),
w_downsampled, h_downsampled);
cairo_t *ct = cairo_create(downsampled);
cairo_scale(ct, static_cast<double>(w_downsampled)/w_orig, static_cast<double>(h_downsampled)/h_orig);
cairo_set_source_surface(ct, in, 0, 0);
cairo_paint(ct);
cairo_destroy(ct);
} else {
downsampled = ink_cairo_surface_copy(in);
}
cairo_surface_flush(downsampled);
if (scr_len_x > 0) {
if (use_IIR_x) {
gaussian_pass_IIR(Geom::X, deviation_x, downsampled, downsampled, tmpdata, threads);
} else {
gaussian_pass_FIR(Geom::X, deviation_x, downsampled, downsampled, threads);
}
}
if (scr_len_y > 0) {
if (use_IIR_y) {
gaussian_pass_IIR(Geom::Y, deviation_y, downsampled, downsampled, tmpdata, threads);
} else {
gaussian_pass_FIR(Geom::Y, deviation_y, downsampled, downsampled, threads);
}
}
// free the temporary data
if ( use_IIR_x || use_IIR_y ) {
for(int i = 0; i < threads; ++i) {
delete[] tmpdata[i];
}
}
cairo_surface_mark_dirty(downsampled);
if (resampling) {
cairo_surface_t *upsampled = cairo_surface_create_similar(downsampled, cairo_surface_get_content(downsampled),
w_orig, h_orig);
cairo_t *ct = cairo_create(upsampled);
cairo_scale(ct, static_cast<double>(w_orig)/w_downsampled, static_cast<double>(h_orig)/h_downsampled);
cairo_set_source_surface(ct, downsampled, 0, 0);
cairo_paint(ct);
cairo_destroy(ct);
set_cairo_surface_ci( upsampled, ci_fp );
slot.set(_output, upsampled);
cairo_surface_destroy(upsampled);
cairo_surface_destroy(downsampled);
} else {
set_cairo_surface_ci( downsampled, ci_fp );
slot.set(_output, downsampled);
cairo_surface_destroy(downsampled);
}
}
void FilterGaussian::area_enlarge(Geom::IntRect &area, Geom::Affine const &trans)
{
int area_x = _effect_area_scr(_deviation_x * trans.expansionX());
int area_y = _effect_area_scr(_deviation_y * trans.expansionY());
// maximum is used because rotations can mix up these directions
// TODO: calculate a more tight-fitting rendering area
int area_max = std::max(area_x, area_y);
area.expandBy(area_max);
}
bool FilterGaussian::can_handle_affine(Geom::Affine const &)
{
// Previously we tried to be smart and return true for rotations.
// However, the transform passed here is NOT the total transform
// from filter user space to screen.
// TODO: fix this, or replace can_handle_affine() with isotropic().
return false;
}
double FilterGaussian::complexity(Geom::Affine const &trans)
{
int area_x = _effect_area_scr(_deviation_x * trans.expansionX());
int area_y = _effect_area_scr(_deviation_y * trans.expansionY());
return 2.0 * area_x * area_y;
}
void FilterGaussian::set_deviation(double deviation)
{
if(IS_FINITE(deviation) && deviation >= 0) {
_deviation_x = _deviation_y = deviation;
}
}
void FilterGaussian::set_deviation(double x, double y)
{
if(IS_FINITE(x) && x >= 0 && IS_FINITE(y) && y >= 0) {
_deviation_x = x;
_deviation_y = y;
}
}
} /* namespace Filters */
} /* namespace Inkscape */
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :