bezier-utils-test.h revision c0092c87b724182672defa4f5f75a82c27f017dc
#include <cxxtest/TestSuite.h>
#include <glib.h>
#include <libnr/nr-macros.h> /* NR_DF_TEST_CLOSE */
#include <sstream>
/* mental disclaims all responsibility for this evil idea for testing
static functions. The main disadvantages are that we retain the
#define's and `using' directives of the included file. */
#include "bezier-utils.cpp"
/* (Returns false if NaN encountered.) */
static bool range_approx_equal(double const a[], double const b[], unsigned const len) {
for (unsigned i = 0; i < len; ++i) {
if (!( fabs( a[i] - b[i] ) < 1e-4 )) {
return false;
}
}
return true;
}
static inline bool point_approx_equal(Geom::Point const &a, Geom::Point const &b, double const eps)
{
return ( NR_DF_TEST_CLOSE(a[Geom::X], b[Geom::X], eps) &&
NR_DF_TEST_CLOSE(a[Geom::Y], b[Geom::Y], eps) );
}
static inline double square(double const x) {
return x * x;
}
/** Determine whether the found control points are the same as previously found on some developer's
machine. Doesn't call utest__fail, just writes a message to stdout for diagnostic purposes:
the most important test is that the root-mean-square of errors in the estimation are low rather
than that the control points found are the same.
**/
static void compare_ctlpts(Geom::Point const est_b[], Geom::Point const exp_est_b[])
{
unsigned diff_mask = 0;
for (unsigned i = 0; i < 4; ++i) {
for (unsigned d = 0; d < 2; ++d) {
if ( fabs( est_b[i][d] - exp_est_b[i][d] ) > 1.1e-5 ) {
diff_mask |= 1 << ( i * 2 + d );
}
}
}
if ( diff_mask != 0 ) {
std::stringstream msg;
msg << "Got different control points from previously-coded (diffs=0x" << std::hex << diff_mask << "\n";
msg << " Previous:";
for (unsigned i = 0; i < 4; ++i) {
msg << " (" << exp_est_b[i][0] << ", " << exp_est_b[i][1] << ")"; // localizing ok
}
msg << "\n";
msg << " Found: ";
for (unsigned i = 0; i < 4; ++i) {
msg << " (" << est_b[i][0] << ", " << est_b[i][1] << ")"; // localizing ok
}
msg << "\n";
TS_WARN(msg.str().c_str());
}
}
static void compare_rms(Geom::Point const est_b[], double const t[], Geom::Point const d[], unsigned const n,
double const exp_rms_error)
{
double sum_errsq = 0.0;
for (unsigned i = 0; i < n; ++i) {
Geom::Point const fit_pt = bezier_pt(3, est_b, t[i]);
Geom::Point const diff = fit_pt - d[i];
sum_errsq += dot(diff, diff);
}
double const rms_error = sqrt( sum_errsq / n );
TS_ASSERT_LESS_THAN_EQUALS( rms_error , exp_rms_error + 1.1e-6 );
if ( rms_error < exp_rms_error - 1.1e-6 ) {
/* The fitter code appears to have improved [or the floating point calculations differ
on this machine from the machine where exp_rms_error was calculated]. */
char msg[200];
sprintf(msg, "N.B. rms_error regression requirement can be decreased: have rms_error=%g.", rms_error); // localizing ok
TS_TRACE(msg);
}
}
class BezierUtilsTest : public CxxTest::TestSuite {
public:
static Geom::Point const c[4];
static double const t[24];
static unsigned const n;
Geom::Point d[24];
static Geom::Point const src_b[4];
static Geom::Point const tHat1;
static Geom::Point const tHat2;
BezierUtilsTest()
{
/* Feed it some points that can be fit exactly with a single bezier segment, and see how
well it manages. */
for (unsigned i = 0; i < n; ++i) {
d[i] = bezier_pt(3, src_b, t[i]);
}
}
virtual ~BezierUtilsTest() {}
// createSuite and destroySuite get us per-suite setup and teardown
// without us having to worry about static initialization order, etc.
static BezierUtilsTest *createSuite() { return new BezierUtilsTest(); }
static void destroySuite( BezierUtilsTest *suite ) { delete suite; }
void testCopyWithoutNansOrAdjacentDuplicates()
{
Geom::Point const src[] = {
Geom::Point(2., 3.),
Geom::Point(2., 3.),
Geom::Point(0., 0.),
Geom::Point(2., 3.),
Geom::Point(2., 3.),
Geom::Point(1., 9.),
Geom::Point(1., 9.)
};
Geom::Point const exp_dest[] = {
Geom::Point(2., 3.),
Geom::Point(0., 0.),
Geom::Point(2., 3.),
Geom::Point(1., 9.)
};
g_assert( G_N_ELEMENTS(src) == 7 );
Geom::Point dest[7];
struct tst {
unsigned src_ix0;
unsigned src_len;
unsigned exp_dest_ix0;
unsigned exp_dest_len;
} const test_data[] = {
/* src start ix, src len, exp_dest start ix, exp dest len */
{0, 0, 0, 0},
{2, 1, 1, 1},
{0, 1, 0, 1},
{0, 2, 0, 1},
{0, 3, 0, 2},
{1, 3, 0, 3},
{0, 5, 0, 3},
{0, 6, 0, 4},
{0, 7, 0, 4}
};
for (unsigned i = 0 ; i < G_N_ELEMENTS(test_data) ; ++i) {
tst const &t = test_data[i];
TS_ASSERT_EQUALS( t.exp_dest_len,
copy_without_nans_or_adjacent_duplicates(src + t.src_ix0,
t.src_len,
dest) );
TS_ASSERT_SAME_DATA(dest,
exp_dest + t.exp_dest_ix0,
t.exp_dest_len);
}
}
void testBezierPt1()
{
Geom::Point const a[] = {Geom::Point(2.0, 4.0),
Geom::Point(1.0, 8.0)};
TS_ASSERT_EQUALS( bezier_pt(1, a, 0.0) , a[0] );
TS_ASSERT_EQUALS( bezier_pt(1, a, 1.0) , a[1] );
TS_ASSERT_EQUALS( bezier_pt(1, a, 0.5) , Geom::Point(1.5, 6.0) );
double const t[] = {0.5, 0.25, 0.3, 0.6};
for (unsigned i = 0; i < G_N_ELEMENTS(t); ++i) {
double const ti = t[i], si = 1.0 - ti;
TS_ASSERT_EQUALS( bezier_pt(1, a, ti) , si * a[0] + ti * a[1] );
}
}
void testBezierPt2()
{
Geom::Point const b[] = {Geom::Point(1.0, 2.0),
Geom::Point(8.0, 4.0),
Geom::Point(3.0, 1.0)};
TS_ASSERT_EQUALS( bezier_pt(2, b, 0.0) , b[0] );
TS_ASSERT_EQUALS( bezier_pt(2, b, 1.0) , b[2] );
TS_ASSERT_EQUALS( bezier_pt(2, b, 0.5) , Geom::Point(5.0, 2.75) );
double const t[] = {0.5, 0.25, 0.3, 0.6};
for (unsigned i = 0; i < G_N_ELEMENTS(t); ++i) {
double const ti = t[i], si = 1.0 - ti;
Geom::Point const exp_pt( si*si * b[0] + 2*si*ti * b[1] + ti*ti * b[2] );
Geom::Point const pt(bezier_pt(2, b, ti));
TS_ASSERT(point_approx_equal(pt, exp_pt, 1e-11));
}
}
void testBezierPt3()
{
TS_ASSERT_EQUALS( bezier_pt(3, c, 0.0) , c[0] );
TS_ASSERT_EQUALS( bezier_pt(3, c, 1.0) , c[3] );
TS_ASSERT_EQUALS( bezier_pt(3, c, 0.5) , Geom::Point(4.0, 13.0/8.0) );
double const t[] = {0.5, 0.25, 0.3, 0.6};
for (unsigned i = 0; i < G_N_ELEMENTS(t); ++i) {
double const ti = t[i], si = 1.0 - ti;
TS_ASSERT( LInfty( bezier_pt(3, c, ti)
- ( si*si*si * c[0] +
3*si*si*ti * c[1] +
3*si*ti*ti * c[2] +
ti*ti*ti * c[3] ) )
< 1e-4 );
}
}
void testComputeMaxErrorRatio()
{
struct Err_tst {
Geom::Point pt;
double u;
double err;
} const err_tst[] = {
{c[0], 0.0, 0.0},
{Geom::Point(4.0, 13.0/8.0), 0.5, 0.0},
{Geom::Point(4.0, 2.0), 0.5, 9.0/64.0},
{Geom::Point(3.0, 2.0), 0.5, 1.0 + 9.0/64.0},
{Geom::Point(6.0, 2.0), 0.5, 4.0 + 9.0/64.0},
{c[3], 1.0, 0.0},
};
Geom::Point d[G_N_ELEMENTS(err_tst)];
double u[G_N_ELEMENTS(err_tst)];
for (unsigned i = 0; i < G_N_ELEMENTS(err_tst); ++i) {
Err_tst const &t = err_tst[i];
d[i] = t.pt;
u[i] = t.u;
}
g_assert( G_N_ELEMENTS(u) == G_N_ELEMENTS(d) );
unsigned max_ix = ~0u;
double const err_ratio = compute_max_error_ratio(d, u, G_N_ELEMENTS(d), c, 1.0, &max_ix);
TS_ASSERT_LESS_THAN( fabs( sqrt(err_tst[4].err) - err_ratio ) , 1e-12 );
TS_ASSERT_EQUALS( max_ix , 4u );
}
void testChordLengthParameterize()
{
/* n == 2 */
{
Geom::Point const d[] = {Geom::Point(2.9415, -5.8149),
Geom::Point(23.021, 4.9814)};
double u[G_N_ELEMENTS(d)];
double const exp_u[] = {0.0, 1.0};
g_assert( G_N_ELEMENTS(u) == G_N_ELEMENTS(exp_u) );
chord_length_parameterize(d, u, G_N_ELEMENTS(d));
TS_ASSERT_SAME_DATA(u, exp_u, G_N_ELEMENTS(exp_u));
}
/* Straight line. */
{
double const exp_u[] = {0.0, 0.1829, 0.2105, 0.2105, 0.619, 0.815, 0.999, 1.0};
unsigned const n = G_N_ELEMENTS(exp_u);
Geom::Point d[n];
double u[n];
Geom::Point const a(-23.985, 4.915), b(4.9127, 5.203);
for (unsigned i = 0; i < n; ++i) {
double bi = exp_u[i], ai = 1.0 - bi;
d[i] = ai * a + bi * b;
}
chord_length_parameterize(d, u, n);
TS_ASSERT(range_approx_equal(u, exp_u, n));
}
}
void testGenerateBezier()
{
Geom::Point est_b[4];
generate_bezier(est_b, d, t, n, tHat1, tHat2, 1.0);
compare_ctlpts(est_b, src_b);
/* We're being unfair here in using our t[] rather than best t[] for est_b: we
may over-estimate RMS of errors. */
compare_rms(est_b, t, d, n, 1e-8);
}
void testSpBezierFitCubicFull()
{
Geom::Point est_b[4];
int splitpoints[2];
gint const succ = sp_bezier_fit_cubic_full(est_b, splitpoints, d, n, tHat1, tHat2, square(1.2), 1);
TS_ASSERT_EQUALS( succ , 1 );
Geom::Point const exp_est_b[4] = {
Geom::Point(5.000000, -3.000000),
Geom::Point(7.5753, -0.4247),
Geom::Point(4.77533, 1.22467),
Geom::Point(3, 3)
};
compare_ctlpts(est_b, exp_est_b);
/* We're being unfair here in using our t[] rather than best t[] for est_b: we
may over-estimate RMS of errors. */
compare_rms(est_b, t, d, n, .307911);
}
void testSpBezierFitCubic()
{
Geom::Point est_b[4];
gint const succ = sp_bezier_fit_cubic(est_b, d, n, square(1.2));
TS_ASSERT_EQUALS( succ , 1 );
Geom::Point const exp_est_b[4] = {
Geom::Point(5.000000, -3.000000),
Geom::Point(7.57134, -0.423509),
Geom::Point(4.77929, 1.22426),
Geom::Point(3, 3)
};
compare_ctlpts(est_b, exp_est_b);
#if 1 /* A change has been made to right_tangent. I believe that usually this change
will result in better fitting, but it won't do as well for this example where
we happen to be feeding a t=0.999 point to the fitter. */
TS_WARN("TODO: Update this test case for revised right_tangent implementation.");
/* In particular, have a test case to show whether the new implementation
really is likely to be better on average. */
#else
/* We're being unfair here in using our t[] rather than best t[] for est_b: we
may over-estimate RMS of errors. */
compare_rms(est_b, t, d, n, .307983);
#endif
}
};
// This is not very neat, but since we know this header is only included by the generated CxxTest file it shouldn't give any problems
Geom::Point const BezierUtilsTest::c[4] = {
Geom::Point(1.0, 2.0),
Geom::Point(8.0, 4.0),
Geom::Point(3.0, 1.0),
Geom::Point(-2.0, -4.0)};
double const BezierUtilsTest::t[24] = {
0.0, .001, .03, .05, .09, .13, .18, .25, .29, .33, .39, .44,
.51, .57, .62, .69, .75, .81, .91, .93, .97, .98, .999, 1.0};
unsigned const BezierUtilsTest::n = G_N_ELEMENTS(BezierUtilsTest::t);
Geom::Point const BezierUtilsTest::src_b[4] = {
Geom::Point(5., -3.),
Geom::Point(8., 0.),
Geom::Point(4., 2.),
Geom::Point(3., 3.)};
Geom::Point const BezierUtilsTest::tHat1(unit_vector( BezierUtilsTest::src_b[1] - BezierUtilsTest::src_b[0] ));
Geom::Point const BezierUtilsTest::tHat2(unit_vector( BezierUtilsTest::src_b[2] - BezierUtilsTest::src_b[3] ));
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=99 :