svg-elliptical-arc.cpp revision fc69b99d41121cdaab54d55eb2efe2dc3c6ac358
/*
* SVG Elliptical Arc Class
*
* Copyright 2008 Marco Cecchetti <mrcekets at gmail.com>
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#include <2geom/svg-elliptical-arc.h>
#include <2geom/ellipse.h>
#include <2geom/sbasis-geometric.h>
#include <2geom/bezier-curve.h>
#include <2geom/poly.h>
#include <cfloat>
#include <limits>
#include <2geom/numeric/vector.h>
#include <2geom/numeric/fitting-tool.h>
#include <2geom/numeric/fitting-model.h>
namespace Geom
{
Rect SVGEllipticalArc::boundsExact() const
{
if (isDegenerate() && is_svg_compliant())
return chord().boundsExact();
std::vector<double> extremes(4);
double cosrot = std::cos(rotation_angle());
double sinrot = std::sin(rotation_angle());
extremes[0] = std::atan2( -ray(Y) * sinrot, ray(X) * cosrot );
extremes[1] = extremes[0] + M_PI;
if ( extremes[0] < 0 ) extremes[0] += 2*M_PI;
extremes[2] = std::atan2( ray(Y) * cosrot, ray(X) * sinrot );
extremes[3] = extremes[2] + M_PI;
if ( extremes[2] < 0 ) extremes[2] += 2*M_PI;
std::vector<double>arc_extremes(4);
arc_extremes[0] = initialPoint()[X];
arc_extremes[1] = finalPoint()[X];
if ( arc_extremes[0] < arc_extremes[1] )
std::swap(arc_extremes[0], arc_extremes[1]);
arc_extremes[2] = initialPoint()[Y];
arc_extremes[3] = finalPoint()[Y];
if ( arc_extremes[2] < arc_extremes[3] )
std::swap(arc_extremes[2], arc_extremes[3]);
if ( start_angle() < end_angle() )
{
if ( sweep_flag() )
{
for ( unsigned int i = 0; i < extremes.size(); ++i )
{
if ( start_angle() < extremes[i] && extremes[i] < end_angle() )
{
arc_extremes[i] = pointAtAngle(extremes[i])[i >> 1];
}
}
}
else
{
for ( unsigned int i = 0; i < extremes.size(); ++i )
{
if ( start_angle() > extremes[i] || extremes[i] > end_angle() )
{
arc_extremes[i] = pointAtAngle(extremes[i])[i >> 1];
}
}
}
}
else
{
if ( sweep_flag() )
{
for ( unsigned int i = 0; i < extremes.size(); ++i )
{
if ( start_angle() < extremes[i] || extremes[i] < end_angle() )
{
arc_extremes[i] = pointAtAngle(extremes[i])[i >> 1];
}
}
}
else
{
for ( unsigned int i = 0; i < extremes.size(); ++i )
{
if ( start_angle() > extremes[i] && extremes[i] > end_angle() )
{
arc_extremes[i] = pointAtAngle(extremes[i])[i >> 1];
}
}
}
}
return Rect( Point(arc_extremes[1], arc_extremes[3]) ,
Point(arc_extremes[0], arc_extremes[2]) );
}
double SVGEllipticalArc::valueAtAngle(Coord t, Dim2 d) const
{
double sin_rot_angle = std::sin(rotation_angle());
double cos_rot_angle = std::cos(rotation_angle());
if ( d == X )
{
return ray(X) * cos_rot_angle * std::cos(t)
- ray(Y) * sin_rot_angle * std::sin(t)
+ center(X);
}
else if ( d == Y )
{
return ray(X) * sin_rot_angle * std::cos(t)
+ ray(Y) * cos_rot_angle * std::sin(t)
+ center(Y);
}
THROW_RANGEERROR("dimension parameter out of range");
}
std::vector<double>
SVGEllipticalArc::roots(double v, Dim2 d) const
{
if ( d > Y )
{
THROW_RANGEERROR("dimention out of range");
}
std::vector<double> sol;
if (isDegenerate() && is_svg_compliant())
{
return chord().roots(v, d);
}
else
{
if ( are_near(ray(X), 0) && are_near(ray(Y), 0) )
{
if ( center(d) == v )
sol.push_back(0);
return sol;
}
const char* msg[2][2] =
{
{ "d == X; ray(X) == 0; "
"s = (v - center(X)) / ( -ray(Y) * std::sin(rotation_angle()) ); "
"s should be contained in [-1,1]",
"d == X; ray(Y) == 0; "
"s = (v - center(X)) / ( ray(X) * std::cos(rotation_angle()) ); "
"s should be contained in [-1,1]"
},
{ "d == Y; ray(X) == 0; "
"s = (v - center(X)) / ( ray(Y) * std::cos(rotation_angle()) ); "
"s should be contained in [-1,1]",
"d == Y; ray(Y) == 0; "
"s = (v - center(X)) / ( ray(X) * std::sin(rotation_angle()) ); "
"s should be contained in [-1,1]"
},
};
for ( unsigned int dim = 0; dim < 2; ++dim )
{
if ( are_near(ray(dim), 0) )
{
if ( initialPoint()[d] == v && finalPoint()[d] == v )
{
THROW_INFINITESOLUTIONS(0);
}
if ( (initialPoint()[d] < finalPoint()[d])
&& (initialPoint()[d] > v || finalPoint()[d] < v) )
{
return sol;
}
if ( (initialPoint()[d] > finalPoint()[d])
&& (finalPoint()[d] > v || initialPoint()[d] < v) )
{
return sol;
}
double ray_prj;
switch(d)
{
case X:
switch(dim)
{
case X: ray_prj = -ray(Y) * std::sin(rotation_angle());
break;
case Y: ray_prj = ray(X) * std::cos(rotation_angle());
break;
}
break;
case Y:
switch(dim)
{
case X: ray_prj = ray(Y) * std::cos(rotation_angle());
break;
case Y: ray_prj = ray(X) * std::sin(rotation_angle());
break;
}
break;
}
double s = (v - center(d)) / ray_prj;
if ( s < -1 || s > 1 )
{
THROW_LOGICALERROR(msg[d][dim]);
}
switch(dim)
{
case X:
s = std::asin(s); // return a value in [-PI/2,PI/2]
if ( logical_xor( sweep_flag(), are_near(start_angle(), M_PI/2) ) )
{
if ( s < 0 ) s += 2*M_PI;
}
else
{
s = M_PI - s;
if (!(s < 2*M_PI) ) s -= 2*M_PI;
}
break;
case Y:
s = std::acos(s); // return a value in [0,PI]
if ( logical_xor( sweep_flag(), are_near(start_angle(), 0) ) )
{
s = 2*M_PI - s;
if ( !(s < 2*M_PI) ) s -= 2*M_PI;
}
break;
}
//std::cerr << "s = " << rad_to_deg(s);
s = map_to_01(s);
//std::cerr << " -> t: " << s << std::endl;
if ( !(s < 0 || s > 1) )
sol.push_back(s);
return sol;
}
}
}
double rotx, roty;
switch(d)
{
case X:
rotx = std::cos(rotation_angle());
roty = -std::sin(rotation_angle());
break;
case Y:
rotx = std::sin(rotation_angle());
roty = std::cos(rotation_angle());
break;
}
double rxrotx = ray(X) * rotx;
double c_v = center(d) - v;
double a = -rxrotx + c_v;
double b = ray(Y) * roty;
double c = rxrotx + c_v;
//std::cerr << "a = " << a << std::endl;
//std::cerr << "b = " << b << std::endl;
//std::cerr << "c = " << c << std::endl;
if ( are_near(a,0) )
{
sol.push_back(M_PI);
if ( !are_near(b,0) )
{
double s = 2 * std::atan(-c/(2*b));
if ( s < 0 ) s += 2*M_PI;
sol.push_back(s);
}
}
else
{
double delta = b * b - a * c;
//std::cerr << "delta = " << delta << std::endl;
if ( are_near(delta, 0) )
{
double s = 2 * std::atan(-b/a);
if ( s < 0 ) s += 2*M_PI;
sol.push_back(s);
}
else if ( delta > 0 )
{
double sq = std::sqrt(delta);
double s = 2 * std::atan( (-b - sq) / a );
if ( s < 0 ) s += 2*M_PI;
sol.push_back(s);
s = 2 * std::atan( (-b + sq) / a );
if ( s < 0 ) s += 2*M_PI;
sol.push_back(s);
}
}
std::vector<double> arc_sol;
for (unsigned int i = 0; i < sol.size(); ++i )
{
//std::cerr << "s = " << rad_to_deg(sol[i]);
sol[i] = map_to_01(sol[i]);
//std::cerr << " -> t: " << sol[i] << std::endl;
if ( !(sol[i] < 0 || sol[i] > 1) )
arc_sol.push_back(sol[i]);
}
return arc_sol;
}
// D(E(t,C),t) = E(t+PI/2,O)
Curve* SVGEllipticalArc::derivative() const
{
if (isDegenerate() && is_svg_compliant())
return chord().derivative();
SVGEllipticalArc* result = new SVGEllipticalArc(*this);
result->m_center[X] = result->m_center[Y] = 0;
result->m_start_angle += M_PI/2;
if( !( result->m_start_angle < 2*M_PI ) )
{
result->m_start_angle -= 2*M_PI;
}
result->m_end_angle += M_PI/2;
if( !( result->m_end_angle < 2*M_PI ) )
{
result->m_end_angle -= 2*M_PI;
}
result->m_initial_point = result->pointAtAngle( result->start_angle() );
result->m_final_point = result->pointAtAngle( result->end_angle() );
return result;
}
std::vector<Point>
SVGEllipticalArc::pointAndDerivatives(Coord t, unsigned int n) const
{
if (isDegenerate() && is_svg_compliant())
return chord().pointAndDerivatives(t, n);
unsigned int nn = n+1; // nn represents the size of the result vector.
std::vector<Point> result;
result.reserve(nn);
double angle = map_unit_interval_on_circular_arc(t, start_angle(),
end_angle(), sweep_flag());
SVGEllipticalArc ea(*this);
ea.m_center = Point(0,0);
unsigned int m = std::min(nn, 4u);
for ( unsigned int i = 0; i < m; ++i )
{
result.push_back( ea.pointAtAngle(angle) );
angle += M_PI/2;
if ( !(angle < 2*M_PI) ) angle -= 2*M_PI;
}
m = nn / 4;
for ( unsigned int i = 1; i < m; ++i )
{
for ( unsigned int j = 0; j < 4; ++j )
result.push_back( result[j] );
}
m = nn - 4 * m;
for ( unsigned int i = 0; i < m; ++i )
{
result.push_back( result[i] );
}
if ( !result.empty() ) // nn != 0
result[0] = pointAtAngle(angle);
return result;
}
bool SVGEllipticalArc::containsAngle(Coord angle) const
{
if ( sweep_flag() )
if ( start_angle() < end_angle() )
return ( !( angle < start_angle() || angle > end_angle() ) );
else
return ( !( angle < start_angle() && angle > end_angle() ) );
else
if ( start_angle() > end_angle() )
return ( !( angle > start_angle() || angle < end_angle() ) );
else
return ( !( angle > start_angle() && angle < end_angle() ) );
}
Curve* SVGEllipticalArc::portion(double f, double t) const
{
if (f < 0) f = 0;
if (f > 1) f = 1;
if (t < 0) t = 0;
if (t > 1) t = 1;
if ( are_near(f, t) )
{
SVGEllipticalArc* arc = new SVGEllipticalArc();
arc->m_center = arc->m_initial_point = arc->m_final_point = pointAt(f);
arc->m_start_angle = arc->m_end_angle = m_start_angle;
arc->m_rot_angle = m_rot_angle;
arc->m_sweep = m_sweep;
arc->m_large_arc = m_large_arc;
}
SVGEllipticalArc* arc = new SVGEllipticalArc( *this );
arc->m_initial_point = pointAt(f);
arc->m_final_point = pointAt(t);
double sa = sweep_flag() ? sweep_angle() : -sweep_angle();
arc->m_start_angle = m_start_angle + sa * f;
if ( !(arc->m_start_angle < 2*M_PI) )
arc->m_start_angle -= 2*M_PI;
if ( arc->m_start_angle < 0 )
arc->m_start_angle += 2*M_PI;
arc->m_end_angle = m_start_angle + sa * t;
if ( !(arc->m_end_angle < 2*M_PI) )
arc->m_end_angle -= 2*M_PI;
if ( arc->m_end_angle < 0 )
arc->m_end_angle += 2*M_PI;
if ( f > t ) arc->m_sweep = !sweep_flag();
if ( large_arc_flag() && (arc->sweep_angle() < M_PI) )
arc->m_large_arc = false;
return arc;
}
std::vector<double> SVGEllipticalArc::
allNearestPoints( Point const& p, double from, double to ) const
{
std::vector<double> result;
if (isDegenerate() && is_svg_compliant())
{
result.push_back( chord().nearestPoint(p, from, to) );
return result;
}
if ( from > to ) std::swap(from, to);
if ( from < 0 || to > 1 )
{
THROW_RANGEERROR("[from,to] interval out of range");
}
if ( ( are_near(ray(X), 0) && are_near(ray(Y), 0) ) || are_near(from, to) )
{
result.push_back(from);
return result;
}
else if ( are_near(ray(X), 0) || are_near(ray(Y), 0) )
{
LineSegment seg(pointAt(from), pointAt(to));
Point np = seg.pointAt( seg.nearestPoint(p) );
if ( are_near(ray(Y), 0) )
{
if ( are_near(rotation_angle(), M_PI/2)
|| are_near(rotation_angle(), 3*M_PI/2) )
{
result = roots(np[Y], Y);
}
else
{
result = roots(np[X], X);
}
}
else
{
if ( are_near(rotation_angle(), M_PI/2)
|| are_near(rotation_angle(), 3*M_PI/2) )
{
result = roots(np[X], X);
}
else
{
result = roots(np[Y], Y);
}
}
return result;
}
else if ( are_near(ray(X), ray(Y)) )
{
Point r = p - center();
if ( are_near(r, Point(0,0)) )
{
THROW_INFINITESOLUTIONS(0);
}
// TODO: implement case r != 0
// Point np = ray(X) * unit_vector(r);
// std::vector<double> solX = roots(np[X],X);
// std::vector<double> solY = roots(np[Y],Y);
// double t;
// if ( are_near(solX[0], solY[0]) || are_near(solX[0], solY[1]))
// {
// t = solX[0];
// }
// else
// {
// t = solX[1];
// }
// if ( !(t < from || t > to) )
// {
// result.push_back(t);
// }
// else
// {
//
// }
}
// solve the equation <D(E(t),t)|E(t)-p> == 0
// that provides min and max distance points
// on the ellipse E wrt the point p
// after the substitutions:
// cos(t) = (1 - s^2) / (1 + s^2)
// sin(t) = 2t / (1 + s^2)
// where s = tan(t/2)
// we get a 4th degree equation in s
/*
* ry s^4 ((-cy + py) Cos[Phi] + (cx - px) Sin[Phi]) +
* ry ((cy - py) Cos[Phi] + (-cx + px) Sin[Phi]) +
* 2 s^3 (rx^2 - ry^2 + (-cx + px) rx Cos[Phi] + (-cy + py) rx Sin[Phi]) +
* 2 s (-rx^2 + ry^2 + (-cx + px) rx Cos[Phi] + (-cy + py) rx Sin[Phi])
*/
Point p_c = p - center();
double rx2_ry2 = (ray(X) - ray(Y)) * (ray(X) + ray(Y));
double cosrot = std::cos( rotation_angle() );
double sinrot = std::sin( rotation_angle() );
double expr1 = ray(X) * (p_c[X] * cosrot + p_c[Y] * sinrot);
Poly coeff;
coeff.resize(5);
coeff[4] = ray(Y) * ( p_c[Y] * cosrot - p_c[X] * sinrot );
coeff[3] = 2 * ( rx2_ry2 + expr1 );
coeff[2] = 0;
coeff[1] = 2 * ( -rx2_ry2 + expr1 );
coeff[0] = -coeff[4];
// for ( unsigned int i = 0; i < 5; ++i )
// std::cerr << "c[" << i << "] = " << coeff[i] << std::endl;
std::vector<double> real_sol;
// gsl_poly_complex_solve raises an error
// if the leading coefficient is zero
if ( are_near(coeff[4], 0) )
{
real_sol.push_back(0);
if ( !are_near(coeff[3], 0) )
{
double sq = -coeff[1] / coeff[3];
if ( sq > 0 )
{
double s = std::sqrt(sq);
real_sol.push_back(s);
real_sol.push_back(-s);
}
}
}
else
{
real_sol = solve_reals(coeff);
}
for ( unsigned int i = 0; i < real_sol.size(); ++i )
{
real_sol[i] = 2 * std::atan(real_sol[i]);
if ( real_sol[i] < 0 ) real_sol[i] += 2*M_PI;
}
// when s -> Infinity then <D(E)|E-p> -> 0 iff coeff[4] == 0
// so we add M_PI to the solutions being lim arctan(s) = PI when s->Infinity
if ( (real_sol.size() % 2) != 0 )
{
real_sol.push_back(M_PI);
}
double mindistsq1 = std::numeric_limits<double>::max();
double mindistsq2 = std::numeric_limits<double>::max();
double dsq;
unsigned int mi1, mi2;
for ( unsigned int i = 0; i < real_sol.size(); ++i )
{
dsq = distanceSq(p, pointAtAngle(real_sol[i]));
if ( mindistsq1 > dsq )
{
mindistsq2 = mindistsq1;
mi2 = mi1;
mindistsq1 = dsq;
mi1 = i;
}
else if ( mindistsq2 > dsq )
{
mindistsq2 = dsq;
mi2 = i;
}
}
double t = map_to_01( real_sol[mi1] );
if ( !(t < from || t > to) )
{
result.push_back(t);
}
bool second_sol = false;
t = map_to_01( real_sol[mi2] );
if ( real_sol.size() == 4 && !(t < from || t > to) )
{
if ( result.empty() || are_near(mindistsq1, mindistsq2) )
{
result.push_back(t);
second_sol = true;
}
}
// we need to test extreme points too
double dsq1 = distanceSq(p, pointAt(from));
double dsq2 = distanceSq(p, pointAt(to));
if ( second_sol )
{
if ( mindistsq2 > dsq1 )
{
result.clear();
result.push_back(from);
mindistsq2 = dsq1;
}
else if ( are_near(mindistsq2, dsq) )
{
result.push_back(from);
}
if ( mindistsq2 > dsq2 )
{
result.clear();
result.push_back(to);
}
else if ( are_near(mindistsq2, dsq2) )
{
result.push_back(to);
}
}
else
{
if ( result.empty() )
{
if ( are_near(dsq1, dsq2) )
{
result.push_back(from);
result.push_back(to);
}
else if ( dsq2 > dsq1 )
{
result.push_back(from);
}
else
{
result.push_back(to);
}
}
}
return result;
}
/*
* NOTE: this implementation follows Standard SVG 1.1 implementation guidelines
* for elliptical arc curves. See Appendix F.6.
*/
void SVGEllipticalArc::calculate_center_and_extreme_angles()
{
Point d = initialPoint() - finalPoint();
if (is_svg_compliant())
{
if ( initialPoint() == finalPoint() )
{
m_rx = m_ry = m_rot_angle = m_start_angle = m_end_angle = 0;
m_center = initialPoint();
m_large_arc = m_sweep = false;
return;
}
m_rx = std::fabs(m_rx);
m_ry = std::fabs(m_ry);
if ( are_near(ray(X), 0) || are_near(ray(Y), 0) )
{
m_rx = L2(d) / 2;
m_ry = 0;
m_rot_angle = std::atan2(d[Y], d[X]);
if (m_rot_angle < 0) m_rot_angle += 2*M_PI;
m_start_angle = 0;
m_end_angle = M_PI;
m_center = middle_point(initialPoint(), finalPoint());
m_large_arc = false;
m_sweep = false;
return;
}
}
else
{
if ( are_near(initialPoint(), finalPoint()) )
{
if ( are_near(ray(X), 0) && are_near(ray(Y), 0) )
{
m_start_angle = m_end_angle = 0;
m_center = initialPoint();
return;
}
else
{
THROW_RANGEERROR("initial and final point are the same");
}
}
if ( are_near(ray(X), 0) && are_near(ray(Y), 0) )
{ // but initialPoint != finalPoint
THROW_RANGEERROR(
"there is no ellipse that satisfies the given constraints: "
"ray(X) == 0 && ray(Y) == 0 but initialPoint != finalPoint"
);
}
if ( are_near(ray(Y), 0) )
{
Point v = initialPoint() - finalPoint();
if ( are_near(L2sq(v), 4*ray(X)*ray(X)) )
{
double angle = std::atan2(v[Y], v[X]);
if (angle < 0) angle += 2*M_PI;
if ( are_near( angle, rotation_angle() ) )
{
m_start_angle = 0;
m_end_angle = M_PI;
m_center = v/2 + finalPoint();
return;
}
angle -= M_PI;
if ( angle < 0 ) angle += 2*M_PI;
if ( are_near( angle, rotation_angle() ) )
{
m_start_angle = M_PI;
m_end_angle = 0;
m_center = v/2 + finalPoint();
return;
}
THROW_RANGEERROR(
"there is no ellipse that satisfies the given constraints: "
"ray(Y) == 0 "
"and slope(initialPoint - finalPoint) != rotation_angle "
"and != rotation_angle + PI"
);
}
if ( L2sq(v) > 4*ray(X)*ray(X) )
{
THROW_RANGEERROR(
"there is no ellipse that satisfies the given constraints: "
"ray(Y) == 0 and distance(initialPoint, finalPoint) > 2*ray(X)"
);
}
else
{
THROW_RANGEERROR(
"there is infinite ellipses that satisfy the given constraints: "
"ray(Y) == 0 and distance(initialPoint, finalPoint) < 2*ray(X)"
);
}
}
if ( are_near(ray(X), 0) )
{
Point v = initialPoint() - finalPoint();
if ( are_near(L2sq(v), 4*ray(Y)*ray(Y)) )
{
double angle = std::atan2(v[Y], v[X]);
if (angle < 0) angle += 2*M_PI;
double rot_angle = rotation_angle() + M_PI/2;
if ( !(rot_angle < 2*M_PI) ) rot_angle -= 2*M_PI;
if ( are_near( angle, rot_angle ) )
{
m_start_angle = M_PI/2;
m_end_angle = 3*M_PI/2;
m_center = v/2 + finalPoint();
return;
}
angle -= M_PI;
if ( angle < 0 ) angle += 2*M_PI;
if ( are_near( angle, rot_angle ) )
{
m_start_angle = 3*M_PI/2;
m_end_angle = M_PI/2;
m_center = v/2 + finalPoint();
return;
}
THROW_RANGEERROR(
"there is no ellipse that satisfies the given constraints: "
"ray(X) == 0 "
"and slope(initialPoint - finalPoint) != rotation_angle + PI/2 "
"and != rotation_angle + (3/2)*PI"
);
}
if ( L2sq(v) > 4*ray(Y)*ray(Y) )
{
THROW_RANGEERROR(
"there is no ellipse that satisfies the given constraints: "
"ray(X) == 0 and distance(initialPoint, finalPoint) > 2*ray(Y)"
);
}
else
{
THROW_RANGEERROR(
"there is infinite ellipses that satisfy the given constraints: "
"ray(X) == 0 and distance(initialPoint, finalPoint) < 2*ray(Y)"
);
}
}
}
double sin_rot_angle = std::sin(rotation_angle());
double cos_rot_angle = std::cos(rotation_angle());
Matrix m( cos_rot_angle, -sin_rot_angle,
sin_rot_angle, cos_rot_angle,
0, 0 );
Point p = (d / 2) * m;
double rx2 = m_rx * m_rx;
double ry2 = m_ry * m_ry;
double rxpy = m_rx * p[Y];
double rypx = m_ry * p[X];
double rx2py2 = rxpy * rxpy;
double ry2px2 = rypx * rypx;
double num = rx2 * ry2;
double den = rx2py2 + ry2px2;
assert(den != 0);
double rad = num / den;
Point c(0,0);
if (rad > 1)
{
rad -= 1;
rad = std::sqrt(rad);
if (m_large_arc == m_sweep) rad = -rad;
c = rad * Point(rxpy / m_ry, -rypx / m_rx);
m[1] = -m[1];
m[2] = -m[2];
m_center = c * m + middle_point(initialPoint(), finalPoint());
}
else if (rad == 1 || is_svg_compliant())
{
double lamda = std::sqrt(1 / rad);
m_rx *= lamda;
m_ry *= lamda;
m_center = middle_point(initialPoint(), finalPoint());
}
else
{
THROW_RANGEERROR(
"there is no ellipse that satisfies the given constraints"
);
}
Point sp((p[X] - c[X]) / m_rx, (p[Y] - c[Y]) / m_ry);
Point ep((-p[X] - c[X]) / m_rx, (-p[Y] - c[Y]) / m_ry);
Point v(1, 0);
m_start_angle = angle_between(v, sp);
double sweep_angle = angle_between(sp, ep);
if (!m_sweep && sweep_angle > 0) sweep_angle -= 2*M_PI;
if (m_sweep && sweep_angle < 0) sweep_angle += 2*M_PI;
if (m_start_angle < 0) m_start_angle += 2*M_PI;
m_end_angle = m_start_angle + sweep_angle;
if (m_end_angle < 0) m_end_angle += 2*M_PI;
if (m_end_angle >= 2*M_PI) m_end_angle -= 2*M_PI;
}
D2<SBasis> SVGEllipticalArc::toSBasis() const
{
if (isDegenerate() && is_svg_compliant())
return chord().toSBasis();
D2<SBasis> arc;
// the interval of parametrization has to be [0,1]
Coord et = start_angle() + ( sweep_flag() ? sweep_angle() : -sweep_angle() );
Linear param(start_angle(), et);
Coord cos_rot_angle = std::cos(rotation_angle());
Coord sin_rot_angle = std::sin(rotation_angle());
// order = 4 seems to be enough to get a perfect looking elliptical arc
// should it be choosen in function of the arc length anyway ?
// or maybe a user settable parameter: toSBasis(unsigned int order) ?
SBasis arc_x = ray(X) * cos(param,4);
SBasis arc_y = ray(Y) * sin(param,4);
arc[0] = arc_x * cos_rot_angle - arc_y * sin_rot_angle + Linear(center(X),center(X));
arc[1] = arc_x * sin_rot_angle + arc_y * cos_rot_angle + Linear(center(Y),center(Y));
// ensure that endpoints remain exact
for ( int d = 0 ; d < 2 ; d++ ) {
arc[d][0][0] = initialPoint()[d];
arc[d][0][1] = finalPoint()[d];
}
return arc;
}
Curve* SVGEllipticalArc::transformed(Matrix const& m) const
{
// return SBasisCurve(toSBasis()).transformed(m);
Ellipse e(center(X), center(Y), ray(X), ray(Y), rotation_angle());
Ellipse et = e.transformed(m);
Point inner_point = pointAt(0.5);
SVGEllipticalArc ea = et.arc( initialPoint() * m,
inner_point * m,
finalPoint() * m,
is_svg_compliant() );
return ea.duplicate();
}
Coord SVGEllipticalArc::map_to_02PI(Coord t) const
{
Coord angle = start_angle();
if ( sweep_flag() )
{
angle += sweep_angle() * t;
}
else
{
angle -= sweep_angle() * t;
}
angle = std::fmod(angle, 2*M_PI);
if ( angle < 0 ) angle += 2*M_PI;
return angle;
}
Coord SVGEllipticalArc::map_to_01(Coord angle) const
{
return map_circular_arc_on_unit_interval(angle, start_angle(),
end_angle(), sweep_flag());
}
namespace detail
{
struct ellipse_equation
{
ellipse_equation(double a, double b, double c, double d, double e, double f)
: A(a), B(b), C(c), D(d), E(e), F(f)
{
}
double operator()(double x, double y) const
{
// A * x * x + B * x * y + C * y * y + D * x + E * y + F;
return (A * x + B * y + D) * x + (C * y + E) * y + F;
}
double operator()(Point const& p) const
{
return (*this)(p[X], p[Y]);
}
Point normal(double x, double y) const
{
Point n( 2 * A * x + B * y + D, 2 * C * y + B * x + E );
return unit_vector(n);
}
Point normal(Point const& p) const
{
return normal(p[X], p[Y]);
}
double A, B, C, D, E, F;
};
}
make_elliptical_arc::
make_elliptical_arc( SVGEllipticalArc& _ea,
curve_type const& _curve,
unsigned int _total_samples,
double _tolerance )
: ea(_ea), curve(_curve),
dcurve( unitVector(derivative(curve)) ),
model(), fitter(model, _total_samples),
tolerance(_tolerance), tol_at_extr(tolerance/2),
tol_at_center(0.1), angle_tol(0.1),
initial_point(curve.at0()), final_point(curve.at1()),
N(_total_samples), last(N-1), partitions(N-1), p(N),
svg_compliant(true)
{
}
bool
make_elliptical_arc::
bound_exceeded( unsigned int k, detail::ellipse_equation const & ee,
double e1x, double e1y, double e2 )
{
dist_err = std::fabs( ee(p[k]) );
dist_bound = std::fabs( e1x * p[k][X] + e1y * p[k][Y] + e2 );
angle_err = std::fabs( dot( dcurve(k/partitions), ee.normal(p[k]) ) );
//angle_err *= angle_err;
return ( dist_err > dist_bound || angle_err > angle_tol );
}
bool
make_elliptical_arc::
check_bound(double A, double B, double C, double D, double E, double F)
{
// check error magnitude
detail::ellipse_equation ee(A, B, C, D, E, F);
double e1x = (2*A + B) * tol_at_extr;
double e1y = (B + 2*C) * tol_at_extr;
double e2 = ((D + E) + (A + B + C) * tol_at_extr) * tol_at_extr;
if ( bound_exceeded(0, ee, e1x, e1y, e2) )
{
print_bound_error(0);
return false;
}
if ( bound_exceeded(0, ee, e1x, e1y, e2) )
{
print_bound_error(last);
return false;
}
e1x = (2*A + B) * tolerance;
e1y = (B + 2*C) * tolerance;
e2 = ((D + E) + (A + B + C) * tolerance) * tolerance;
// std::cerr << "e1x = " << e1x << std::endl;
// std::cerr << "e1y = " << e1y << std::endl;
// std::cerr << "e2 = " << e2 << std::endl;
for ( unsigned int k = 1; k < last; ++k )
{
if ( bound_exceeded(k, ee, e1x, e1y, e2) )
{
print_bound_error(k);
return false;
}
}
return true;
}
void make_elliptical_arc::fit()
{
for (unsigned int k = 0; k < N; ++k)
{
p[k] = curve( k / partitions );
fitter.append(p[k]);
}
fitter.update();
NL::Vector z(N, 0.0);
fitter.result(z);
}
bool make_elliptical_arc::make_elliptiarc()
{
const NL::Vector & coeff = fitter.result();
Ellipse e;
try
{
e.set(1, coeff[0], coeff[1], coeff[2], coeff[3], coeff[4]);
}
catch(LogicalError exc)
{
return false;
}
Point inner_point = curve(0.5);
if (svg_compliant_flag())
{
ea = e.arc(initial_point, inner_point, final_point);
}
else
{
try
{
ea = e.arc(initial_point, inner_point, final_point, false);
}
catch(RangeError exc)
{
return false;
}
}
if ( !are_near( e.center(),
ea.center(),
tol_at_center * std::min(e.ray(X),e.ray(Y))
)
)
{
return false;
}
return true;
}
} // end namespace Geom
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=99 :