shape.cpp revision e88f1eca443c9f97550088469932d9cea9ac0475
#include "shape.h"
#include "utils.h"
#include "sweep.h"
#include "ord.h"
#include <iostream>
#include <algorithm>
#include <cstdlib>
namespace Geom {
// A little sugar for appending a list to another
template<typename T>
void append(T &a, T const &b) {
a.insert(a.end(), b.begin(), b.end());
}
//Orders a list of indices according to their containment within eachother.
struct ContainmentOrder {
std::vector<Region> const *rs;
explicit ContainmentOrder(std::vector<Region> const *r) : rs(r) {}
bool operator()(unsigned a, unsigned b) const { return (*rs)[b].contains((*rs)[a]); }
};
//Returns the list of regions containing a particular point. Useful in tandem with ContainmentOrder
std::vector<unsigned> Shape::containment_list(Point p) const {
std::vector<Rect> pnt;
pnt.push_back(Rect(p, p));
std::vector<std::vector<unsigned> > cull = sweep_bounds(pnt, bounds(*this));
std::vector<unsigned> containers;
if(cull[0].size() == 0) return containers;
for(unsigned i = 0; i < cull[0].size(); i++)
if(content[cull[0][i]].contains(p)) containers.push_back(cull[0][i]);
return containers;
}
/* Used within shape_boolean and related functions, as the name describes, finds the
* first false within the list of lists of booleans.
*/
void first_false(std::vector<std::vector<bool> > visited, unsigned &i, unsigned &j) {
for(i = 0, j = 0; i < visited.size(); i++) {
std::vector<bool>::iterator unvisited = std::find(visited[i].begin(), visited[i].end(), false);
if(unvisited != visited[i].end()) {
j = unvisited - visited[i].begin();
break;
}
}
}
// Finds a crossing in a list of them, given the sorting index.
unsigned find_crossing(Crossings const &cr, Crossing x, unsigned i) {
return std::lower_bound(cr.begin(), cr.end(), x, CrossingOrder(i)) - cr.begin();
}
/* This function handles boolean ops on shapes. The first parameter is a bool
* which determines its behavior in each combination of cases. For proper
* fill information and noncrossing behavior, the fill data of the regions
* must be correct. The boolean parameter determines whether the operation
* is a union or a subtraction. Reversed paths represent inverse regions,
* where everything is included in the fill except for the insides.
*
* Here is a chart of the behavior under various circumstances:
*
* rev = false (union)
* A
* F H
* F A+B -> F A-B -> H
*B
* H B-A -> H AxB -> H
*
* rev = true (intersect)
* A
* F H
* F AxB -> F B-A -> F
*B
* H A-B -> F A+B -> H
*
* F/H = Fill outer / Hole outer
* A/B specify operands
* + = union, - = subtraction, x = intersection
* -> read as "produces"
*
* This is the main function of boolops, yet its operation isn't very complicated.
* It traverses the crossings, and uses the crossing direction to decide whether
* the next segment should be taken from A or from B. The second half of the
* function deals with figuring out what to do with bits that have no intersection.
*/
Shape shape_boolean(bool rev, Shape const & a, Shape const & b, CrossingSet const & crs) {
const Regions ac = a.content, bc = b.content;
//Keep track of which crossings we've hit.
std::vector<std::vector<bool> > visited;
for(unsigned i = 0; i < crs.size(); i++)
visited.push_back(std::vector<bool>(crs[i].size(), false));
//Traverse the crossings, creating chunks
Regions chunks;
while(true) {
unsigned i, j;
first_false(visited, i, j);
if(i == visited.size()) break;
Path res;
do {
Crossing cur = crs[i][j];
visited[i][j] = true;
//get indices of the dual:
unsigned io = cur.getOther(i), jo = find_crossing(crs[io], cur, io);
if(jo < visited[io].size()) visited[io][jo] = true;
//main driving logic
if(logical_xor(cur.dir, rev)) {
if(i >= ac.size()) { i = io; j = jo; }
j++;
if(j >= crs[i].size()) j = 0;
Crossing next = crs[i][j];
ac[next.a].boundary.appendPortionTo(res, cur.ta, next.ta);
} else {
if(i < ac.size()) { i = io; j = jo; }
j++;
if(j >= crs[i].size()) j = 0;
Crossing next = crs[i][j];
bc[next.b - ac.size()].boundary.appendPortionTo(res, cur.tb, next.tb);
}
} while (!visited[i][j]);
if(res.size() > 0) chunks.push_back(Region(res));
}
//If true, then we are on the 'subtraction diagonal'
bool const on_sub = logical_xor(a.fill, b.fill);
//If true, outer paths are filled
bool const res_fill = rev ? (on_sub || (a.fill && b.fill)) : (a.fill && b.fill);
//Handle unintersecting portions
for(unsigned i = 0; i < crs.size(); i++) {
if(crs[i].size() == 0) {
bool env;
bool on_a = i < ac.size();
Region const & r(on_a ? ac[i] : bc[i - ac.size()]);
Shape const & other(on_a ? b : a);
std::vector<unsigned> containers = other.containment_list(r.boundary.initialPoint());
if(containers.empty()) {
//not included in any container, the environment fill is the opposite of the outer fill
env = !res_fill;
if(on_sub && logical_xor(other.fill, res_fill)) env = !env; //If on the subtractor, invert the environment fill
} else {
//environment fill is the same as the inner-most container
std::vector<unsigned>::iterator cit = std::min_element(containers.begin(), containers.end(), ContainmentOrder(&other.content));
env = other[*cit].isFill();
}
if(!logical_xor(rev, env)) chunks.push_back(r); //When unioning, environment must be hole for inclusion, when intersecting, it must be filled
}
}
return Shape(chunks, res_fill);
}
// Just a convenience wrapper for shape_boolean, which handles the crossings
Shape shape_boolean(bool rev, Shape const & a, Shape const & b) {
CrossingSet crs = crossings_between(a, b);
return shape_boolean(rev, a, b, crs);
}
// Some utility functions for boolop:
std::vector<double> region_sizes(Shape const &a) {
std::vector<double> ret;
for(unsigned i = 0; i < a.size(); i++) {
ret.push_back(double(a[i].size()));
}
return ret;
}
Shape shape_boolean_ra(bool rev, Shape const &a, Shape const &b, CrossingSet const &crs) {
return shape_boolean(rev, a.inverse(), b, reverse_ta(crs, a.size(), region_sizes(a)));
}
Shape shape_boolean_rb(bool rev, Shape const &a, Shape const &b, CrossingSet const &crs) {
return shape_boolean(rev, a, b.inverse(), reverse_tb(crs, a.size(), region_sizes(b)));
}
/* This is a function based on shape_boolean which allows boolean operations
* to be specified as a logic table. This logic table is 4 bit-flags, which
* correspond to the elements of the 'truth table' for a particular operation.
* These flags are defined with the enums starting with BOOLOP_ .
*
* NOTE: currently doesn't work, as the CrossingSet reversal functions crash
*/
Shape boolop(Shape const &a, Shape const &b, unsigned flags, CrossingSet const &crs) {
throwNotImplemented();
flags &= 15;
if(flags <= BOOLOP_UNION) {
switch(flags) {
case BOOLOP_INTERSECT: return shape_boolean(true, a, b, crs);
case BOOLOP_SUBTRACT_A_B: return shape_boolean_rb(true, a, b, crs);
case BOOLOP_IDENTITY_A: return a;
case BOOLOP_SUBTRACT_B_A: return shape_boolean_ra(true, a, b, crs);
case BOOLOP_IDENTITY_B: return b;
case BOOLOP_EXCLUSION: {
Shape res = shape_boolean_rb(true, a, b, crs);
append(res.content, shape_boolean_ra(true, a, b, crs).content);
return res;
}
case BOOLOP_UNION: return shape_boolean(false, a, b);
}
} else {
flags = ~flags & 15;
switch(flags - BOOLOP_NEITHER) {
case BOOLOP_SUBTRACT_A_B: return shape_boolean_ra(false, a, b, crs);
case BOOLOP_SUBTRACT_B_A: return shape_boolean_rb(false, a, b, crs);
case BOOLOP_EXCLUSION: {
Shape res = shape_boolean_ra(false, a, b, CrossingSet(crs));
append(res.content, shape_boolean_rb(false, a, b, CrossingSet(crs)).content);
return res;
}
}
return boolop(a, b, flags, crs).inverse();
}
return Shape();
}
/* This version of the boolop function doesn't require a set of crossings, as
* it computes them for you. This is more efficient in some cases, as the
* shape can be inverted before finding crossings. In the special case of
* exclusion it uses the other version of boolop.
*/
Shape boolop(Shape const &a, Shape const &b, unsigned flags) {
flags &= 15;
if(flags <= BOOLOP_UNION) {
switch(flags) {
case BOOLOP_INTERSECT: return shape_boolean(true, a, b);
case BOOLOP_SUBTRACT_A_B: return shape_boolean(true, a, b.inverse());
case BOOLOP_IDENTITY_A: return a;
case BOOLOP_SUBTRACT_B_A: return shape_boolean(true, b, a.inverse());
case BOOLOP_IDENTITY_B: return b;
case BOOLOP_EXCLUSION: {
Shape res = shape_boolean(true, a, b.inverse());
append(res.content, shape_boolean(true, b, a.inverse()).content);
return res;
} //return boolop(a, b, flags, crossings_between(a, b));
case BOOLOP_UNION: return shape_boolean(false, a, b);
}
} else {
flags = ~flags & 15;
switch(flags) {
case BOOLOP_SUBTRACT_A_B: return shape_boolean(false, b, a.inverse());
case BOOLOP_SUBTRACT_B_A: return shape_boolean(false, a, b.inverse());
case BOOLOP_EXCLUSION: {
Shape res = shape_boolean(false, a, b.inverse());
append(res.content, shape_boolean(false, b, a.inverse()).content);
return res;
} //return boolop(a, b, flags, crossings_between(a, b));
}
return boolop(a, b, flags).inverse();
}
return Shape();
}
int paths_winding(std::vector<Path> const &ps, Point p) {
int ret = 0;
for(unsigned i = 0; i < ps.size(); i++)
ret += winding(ps[i], p);
return ret;
}
void add_to_shape(Shape &s, Path const &p, bool fill) {
if(fill)
s.content.push_back(Region(p).asFill());
else
s.content.push_back(Region(p).asHole());
}
int inner_winding(Path const & p, std::vector<Path> const &ps) {
Point pnt = p.initialPoint();
return paths_winding(ps, pnt) - winding(p, pnt) + 1;
}
double fudgerize(double d, bool rev) {
double ret = rev ? d - 0.01 : d + 0.01;
if(ret < 0) ret = 0;
return ret;
}
unsigned pick_coincident(unsigned ix, unsigned jx, bool &rev, std::vector<Path> const &ps, CrossingSet const &crs) {
unsigned ex_jx = jx;
unsigned oix = crs[ix][jx].getOther(ix);
double otime = crs[ix][jx].getTime(oix);
Point cross_point = ps[oix].pointAt(otime),
along = ps[oix].pointAt(fudgerize(otime, rev)) - cross_point,
prev = -along;
bool ex_dir = rev;
for(unsigned k = jx; k < crs[ix].size(); k++) {
unsigned koix = crs[ix][k].getOther(ix);
if(koix == oix) {
if(!are_near(otime, crs[ix][k].getTime(oix))) break;
for(unsigned dir = 0; dir < 2; dir++) {
Point val = ps[ix].pointAt(fudgerize(crs[ix][k].getTime(ix), dir)) - cross_point;
Cmp to_prev = cmp(cross(val, prev), 0);
Cmp from_along = cmp(cross(along, val), 0);
Cmp c = cmp(from_along, to_prev);
if(c == EQUAL_TO && from_along == LESS_THAN) {
ex_jx = k;
prev = val;
ex_dir = dir;
}
}
}
}
rev = ex_dir;
return ex_jx;
}
unsigned crossing_along(double t, unsigned ix, unsigned jx, bool dir, Crossings const & crs) {
Crossing cur = Crossing(t, t, ix, ix, false);
if(jx < crs.size()) {
double ct = crs[jx].getTime(ix);
if(t == ct) {
cur = crs[jx];
if(cur.a == cur.b) {
if(jx+1 <= crs.size() && crs[jx+1].getOther(ix) == ix) return jx+1;
if(jx > 0 && crs[jx-1].getOther(ix) == ix) return jx-1;
}
}
}
if(!dir) {
jx = std::upper_bound(crs.begin(), crs.end(), cur, CrossingOrder(ix)) - crs.begin();
} else {
jx = std::lower_bound(crs.begin(), crs.end(), cur, CrossingOrder(ix)) - crs.begin();
if(jx == 0) jx = crs.size() - 1; else jx--;
jx = std::lower_bound(crs.begin(), crs.end(), crs[jx], CrossingOrder(ix)) - crs.begin();
}
if(jx >= crs.size()) jx = 0;
return jx;
}
void crossing_dual(unsigned &i, unsigned &j, CrossingSet const & crs) {
Crossing cur = crs[i][j];
i = cur.getOther(i);
std::cout << i << "\n";
if(crs[i].empty())
j = 0;
else
j = std::lower_bound(crs[i].begin(), crs[i].end(), cur, CrossingOrder(i)) - crs[i].begin();
}
//locate a crossing on the outside, by casting a ray through the middle of the bbox
void outer_crossing(unsigned &ix, unsigned &jx, bool & dir, std::vector<Path> const & ps, CrossingSet const & crs) {
Rect bounds = ps[ix].boundsFast();
double ry = bounds[Y].middle();
double max_val = bounds.left(), max_t = 0;
ix = ps.size();
for(unsigned i = 0; i < ps.size(); i++) {
if(!crs[i].empty()) {
std::vector<double> rts = ps[i].roots(ry, Y);
for(unsigned j = 0; j < rts.size(); j++) {
double val = ps[i].valueAt(rts[j], X);
if(val > max_val) {
ix = i;
max_val = val;
max_t = rts[j];
}
}
}
}
if(ix != ps.size()) {
dir = ps[ix].valueAt(max_t + 0.01, Y) >
ps[ix].valueAt(max_t - 0.01, Y);
jx = crossing_along(max_t, ix, jx, dir, crs[ix]);
}
}
std::vector<Path> inner_sanitize(std::vector<Path> const & ps) {
CrossingSet crs(crossings_among(ps));
Regions chunks;
std::vector<bool> used_path(ps.size(), false);
std::vector<std::vector<bool> > visited;
for(unsigned i = 0; i < crs.size(); i++)
visited.push_back(std::vector<bool>(crs[i].size(), false));
std::vector<Path> result_paths;
while(true) {
unsigned ix = 0, jx = 0;
bool dir = false;
//find an outer crossing by trying various paths and checking if the crossings are used
for(; ix < crs.size(); ix++) {
//TODO: optimize so it doesn't unecessarily check stuff
bool cont = true;
for(unsigned j = 0; j < crs[ix].size(); j++) {
if(!visited[ix][j]) { cont = false; break; }
}
if(cont) continue;
unsigned rix = ix, rjx = jx;
outer_crossing(rix, rjx, dir, ps, crs);
if(rix >= crs.size() || visited[rix][rjx]) continue;
ix = rix; jx = rjx;
break;
}
if(ix == crs.size()) break;
crossing_dual(ix, jx, crs);
dir = !dir;
Path res;
do {
visited[ix][jx] = true;
//unsigned nix = ix, njx = jx;
//crossing_dual(nix, njx, crs);
//visited[nix][njx] = true;
unsigned fix = ix, fjx = jx;
bool new_dir = dir;
jx = crossing_along(crs[ix][jx].getTime(ix), ix, jx, dir, crs[ix]);
if(crs[ix][jx].a != crs[ix][jx].b) crossing_dual(ix, jx, crs); else new_dir = !new_dir;
jx = pick_coincident(ix, jx, new_dir, ps, crs);
//unsigned nix = ix, njx = jx;
//crossing_dual(nix, njx, crs);
Crossing from = crs[fix][fjx],
to = crs[ix][jx];
if(dir) {
// backwards
std::cout << "r" << ix << "[" << from.getTime(ix) << ", " << to.getTime(ix) << "]\n";
Path p = ps[ix].portion(from.getTime(ix), to.getTime(ix)).reverse();
for(unsigned i = 0; i < p.size(); i++)
res.append(p[i]);
} else {
// forwards
std::cout << "f" << ix << "[" << from.getTime(ix) << ", " << to.getTime(ix) << "]\n";
ps[ix].appendPortionTo(res, from.getTime(ix), to.getTime(ix));
}
dir = new_dir;
} while(!visited[ix][jx]);
std::cout << "added " << res.size() << "\n";
result_paths.push_back(res);
}
for(unsigned i = 0; i < crs.size(); i++) {
if(crs[i].empty() && !used_path[i])
result_paths.push_back(ps[i]);
}
return result_paths;
}
Shape sanitize(std::vector<Path> const & ps) {
std::vector<Path> res;
for(unsigned i = 0; i < ps.size(); i++) {
append(res, inner_sanitize(std::vector<Path>(1, ps[i])));
}
return stopgap_cleaner(res);
}
/* WIP sanitizer:
unsigned pick_coincident(unsigned ix, unsigned jx, bool pref, bool &rev, std::vector<Path> const &ps, CrossingSet const &crs) {
unsigned ex_jx = jx;
unsigned oix = crs[ix][jx].getOther(ix);
double otime = crs[ix][jx].getTime(oix);
Point cross_point = ps[oix].pointAt(otime),
along = ps[oix].pointAt(otime + (rev ? -0.01 : 0.01)) - cross_point,
prev = -along;
bool ex_dir = rev;
for(unsigned k = jx; k < crs[ix].size(); k++) {
unsigned koix = crs[ix][k].getOther(ix);
if(koix == oix) {
if(!are_near(otime, crs[ix][k].getTime(oix))) break;
for(unsigned dir = 0; dir < 2; dir++) {
Point val = ps[ix].pointAt(crs[ix][k].getTime(ix) + (dir ? -0.01 : 0.01)) - cross_point;
Cmp to_prev = cmp(cross(val, prev), 0);
Cmp from_along = cmp(cross(along, val), 0);
Cmp c = cmp(from_along, to_prev);
if(c == EQUAL_TO && (from_along == LESS_THAN) == pref) {
ex_jx = k;
prev = val;
ex_dir = dir;
}
}
}
}
rev = ex_dir;
return ex_jx;
}
unsigned corner_index(unsigned &i) {
div_t div_res = div(i, 4);
i = div_res.quot;
return div_res.rem;
}
bool corner_direction(unsigned ix, unsigned jc, unsigned corner, CrossingSet const &crs) {
if(crs[ix][jc].a == ix) return corner > 1; else return corner %2 == 1;
}
Shape sanitize(std::vector<Path> const & ps) {
CrossingSet crs = crossings_among(ps);
//Keep track of which CORNERS we've hit.
// FF FR RF RR, first is A dir, second B dir
std::vector<std::vector<bool> > visited;
for(unsigned i = 0; i < crs.size(); i++)
visited.push_back(std::vector<bool>(crs[i].size()*4, false));
Regions chunks;
while(true) {
unsigned i, j;
first_false(visited, i, j);
unsigned corner = corner_index(j);
if(i == visited.size()) break;
bool dir = corner_direction(i, j, corner, crs);
//Figure out whether we hug the path cw or ccw, based on the orientation of the initial corner:
unsigned oix = crs[i][j].getOther(i);
double otime = crs[i][j].getTime(oix);
bool odir = (oix == crs[i][j].a) ? corner > 1 : corner % 2 == 1;
Point cross_point = ps[oix].pointAt(otime),
along = ps[oix].pointAt(otime + (odir ? -0.01 : 0.01)) - cross_point,
val = ps[i].pointAt(crs[i][j].getTime(i) + (dir ? -0.01 : 0.01)) - cross_point;
Cmp from_along = cmp(cross(along, val), 0);
bool cw = from_along == LESS_THAN;
std::cout << "cw = " << cw << "\n";
Path res;
do {
Crossing cur = crs[i][j];
visited[i][j*4+corner] = true;
unsigned fix = i, fjx = j;
crossing_dual(i, j, crs);
visited[i][j*4+corner] = true;
i = fix; j = fjx;
j = crossing_along(crs[i][j].getTime(i), i, j, dir, crs[i]);
crossing_dual(i, j, crs);
bool new_dir = dir;
pick_coincident(i, j, cw, new_dir, ps, crs);
Crossing from = crs[fix][fjx],
to = crs[i][j];
if(dir) {
// backwards
std::cout << "r" << i << "[" << to.getTime(i) << ", " << from.getTime(i) << "]\n";
Path p = ps[i].portion(to.getTime(i) + 0.001, from.getTime(i)).reverse();
for(unsigned k = 0; k < p.size(); k++)
res.append(p[k]);
} else {
// forwards
std::cout << "f" << i << "[" << from.getTime(i) << ", " << to.getTime(i) << "]\n";
ps[i].appendPortionTo(res, from.getTime(i) + 0.001, to.getTime(i));
}
if(i == to.a)
corner = (new_dir ? 2 : 0) + (dir ? 1 : 0);
else
corner = (new_dir ? 1 : 0) + (dir ? 2 : 0);
dir = new_dir;
} while(!visited[i][j*4+corner]);
chunks.push_back(Region(res));
// if(use) {
// chunks.push_back(Region(res, true));
// }
}
return Shape(chunks);
// return ret;
} */
/* This transforms a shape by a matrix. In the case that the matrix flips
* the shape, it reverses the paths in order to preserve the fill.
*/
Shape Shape::operator*(Matrix const &m) const {
Shape ret;
for(unsigned i = 0; i < size(); i++)
ret.content.push_back(content[i] * m);
ret.fill = fill;
return ret;
}
// Inverse is a boolean not, and simply reverses all the paths & fill flags
Shape Shape::inverse() const {
Shape ret;
for(unsigned i = 0; i < size(); i++)
ret.content.push_back(content[i].inverse());
ret.fill = !fill;
return ret;
}
bool Shape::contains(Point const &p) const {
std::vector<unsigned> containers = containment_list(p);
if(containers.empty()) return !isFill();
unsigned ix = *min_element(containers.begin(), containers.end(), ContainmentOrder(&content));
return content[ix].isFill();
}
Shape stopgap_cleaner(std::vector<Path> const &ps) {
if(ps.empty()) return Shape(false);
Shape ret;
for(unsigned i = 0; i < ps.size(); i++)
add_to_shape(ret, ps[i], inner_winding(ps[i], ps) % 2 != 0);
return ret;
}
bool Shape::inside_invariants() const { //semi-slow & easy to violate
for(unsigned i = 0; i < size(); i++)
if( logical_xor(content[i].isFill(), contains(content[i].boundary.initialPoint())) ) return false;
return true;
}
bool Shape::region_invariants() const { //semi-slow
for(unsigned i = 0; i < size(); i++)
if(!content[i].invariants()) return false;
return true;
}
bool Shape::cross_invariants() const { //slow
CrossingSet crs; // = crossings_among(paths_from_regions(content));
for(unsigned i = 0; i < crs.size(); i++)
if(!crs[i].empty()) return false;
return true;
}
bool Shape::invariants() const {
return inside_invariants() && region_invariants() && cross_invariants();
}
}
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=99 :