rect.h revision 6c3e745a94ef6b25a4ef9f018d350a7535aa45af
/**
* \file
* \brief D2<Interval> specialization to Rect
*/
/*
* Copyright 2007 Michael Sloan <mgsloan@gmail.com>
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, output to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
*/
/* Authors of original rect class:
* Lauris Kaplinski <lauris@kaplinski.com>
* Nathan Hurst <njh@mail.csse.monash.edu.au>
* bulia byak <buliabyak@users.sf.net>
* MenTaLguY <mental@rydia.net>
*/
#include <2geom/d2.h>
#ifndef _2GEOM_RECT
#define _2GEOM_RECT
#include <2geom/matrix.h>
#include <boost/optional/optional.hpp>
namespace Geom {
/** D2<Interval> specialization to Rect */
typedef D2<Interval> Rect;
class OptRect;
Rect unify(const Rect &, const Rect &);
/**
* %Rect class.
* The Rect class is actually a specialisation of D2<Interval>.
*
*/
template<>
class D2<Interval> {
private:
Interval f[2];
public:
/** Best not to use this constructor, do not rely on what it initializes the object to.
*The default constructor creates a rect of default intervals.
*/
D2<Interval>() { f[X] = f[Y] = Interval(); }
public:
D2<Interval>(Interval const &a, Interval const &b) {
f[X] = a;
f[Y] = b;
}
D2<Interval>(Point const & a, Point const & b) {
f[X] = Interval(a[X], b[X]);
f[Y] = Interval(a[Y], b[Y]);
}
inline Interval& operator[](unsigned i) { return f[i]; }
inline Interval const & operator[](unsigned i) const { return f[i]; }
inline Point min() const { return Point(f[X].min(), f[Y].min()); }
inline Point max() const { return Point(f[X].max(), f[Y].max()); }
/** Returns the four corners of the rectangle in positive order
* (clockwise if +Y is up, anticlockwise if +Y is down) */
Point corner(unsigned i) const {
switch(i % 4) {
case 0: return Point(f[X].min(), f[Y].min());
case 1: return Point(f[X].max(), f[Y].min());
case 2: return Point(f[X].max(), f[Y].max());
default: return Point(f[X].min(), f[Y].max());
}
}
//We should probably remove these - they're coord sys gnostic
inline double top() const { return f[Y].min(); }
inline double bottom() const { return f[Y].max(); }
inline double left() const { return f[X].min(); }
inline double right() const { return f[X].max(); }
inline double width() const { return f[X].extent(); }
inline double height() const { return f[Y].extent(); }
/** Returns a vector from min to max. */
inline Point dimensions() const { return Point(f[X].extent(), f[Y].extent()); }
inline Point midpoint() const { return Point(f[X].middle(), f[Y].middle()); }
/**
* \brief Compute the area of this rectangle.
*
* Note that a zero area rectangle is not empty - just as the interval [0,0] contains one point, the rectangle [0,0] x [0,0] contains 1 point and no area.
* \retval For a valid return value, the rect must be tested for emptyness first.
*/
inline double area() const { return f[X].extent() * f[Y].extent(); }
inline bool hasZeroArea(double eps = EPSILON) const { return (area() <= eps); }
inline double maxExtent() const { return std::max(f[X].extent(), f[Y].extent()); }
inline double minExtent() const { return std::min(f[X].extent(), f[Y].extent()); }
// inline bool isEmpty() const {
// return f[X].isEmpty() || f[Y].isEmpty();
// }
inline bool intersects(Rect const &r) const {
return f[X].intersects(r[X]) && f[Y].intersects(r[Y]);
}
inline bool contains(Rect const &r) const {
return f[X].contains(r[X]) && f[Y].contains(r[Y]);
}
inline bool contains(Point const &p) const {
return f[X].contains(p[X]) && f[Y].contains(p[Y]);
}
inline void expandTo(Point p) {
f[X].extendTo(p[X]); f[Y].extendTo(p[Y]);
}
inline void unionWith(Rect const &b) {
f[X].unionWith(b[X]); f[Y].unionWith(b[Y]);
}
void unionWith(OptRect const &b);
inline void expandBy(double amnt) {
f[X].expandBy(amnt); f[Y].expandBy(amnt);
}
inline void expandBy(Point const p) {
f[X].expandBy(p[X]); f[Y].expandBy(p[Y]);
}
};
inline Rect unify(Rect const & a, Rect const & b) {
return Rect(unify(a[X], b[X]), unify(a[Y], b[Y]));
}
inline Rect union_list(std::vector<Rect> const &r) {
if(r.empty()) return Rect(Interval(0,0), Interval(0,0));
Rect ret = r[0];
for(unsigned i = 1; i < r.size(); i++)
ret.unionWith(r[i]);
return ret;
}
inline
double distanceSq( Point const& p, Rect const& rect )
{
double dx = 0, dy = 0;
if ( p[X] < rect.left() )
{
dx = p[X] - rect.left();
}
else if ( p[X] > rect.right() )
{
dx = rect.right() - p[X];
}
if ( p[Y] < rect.top() )
{
dy = rect.top() - p[Y];
}
else if ( p[Y] > rect.bottom() )
{
dy = p[Y] - rect.bottom();
}
return dx*dx + dy*dy;
}
/**
* Returns the smallest distance between p and rect.
*/
inline
double distance( Point const& p, Rect const& rect )
{
return std::sqrt(distanceSq(p, rect));
}
/**
* The OptRect class can represent and empty Rect and non-empty Rects.
* If OptRect is not empty, it means that both X and Y intervals are not empty.
*
*/
class OptRect : public boost::optional<Rect> {
public:
OptRect() : boost::optional<Rect>() {};
OptRect(Rect const &a) : boost::optional<Rect>(a) {};
/**
* Creates an empty OptRect when one of the argument intervals is empty.
*/
OptRect(OptInterval const &x_int, OptInterval const &y_int) {
if (x_int && y_int) {
*this = Rect(*x_int, *y_int);
}
// else, stay empty.
}
/**
* Check whether this OptRect is empty or not.
*/
inline bool isEmpty() { return (*this == false); };
/**
* If \c this is empty, copy argument \c b. Otherwise, union with it (and do nothing when \c b is empty)
*/
inline void unionWith(OptRect const &b) {
if (b) {
if (*this) { // check that we are not empty
(**this)[X].unionWith((*b)[X]);
(**this)[Y].unionWith((*b)[Y]);
} else {
*this = b;
}
}
}
};
/**
* Returns the smallest rectangle that encloses both rectangles.
* An empty argument is assumed to be an empty rectangle
*/
inline OptRect unify(OptRect const & a, OptRect const & b) {
if (!a) {
return b;
} else if (!b) {
return a;
} else {
return unify(*a, *b);
}
}
inline OptRect intersect(Rect const & a, Rect const & b) {
return OptRect(intersect(a[X], b[X]), intersect(a[Y], b[Y]));
}
inline void Rect::unionWith(OptRect const &b) {
if (b) {
unionWith(*b);
}
}
} // end namespace Geom
#endif //_2GEOM_RECT
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=99 :