path.h revision e3727c190ff3697e379586bb41c33b8e5929a08a
/*
* Path - Series of continuous curves
*
* Authors:
* MenTaLguY <mental@rydia.net>
* Marco Cecchetti <mrcekets at gmail.com>
*
* Copyright 2007-2008 authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#ifndef SEEN_GEOM_PATH_H
#define SEEN_GEOM_PATH_H
#include "point.h"
#include "angle.h"
#include <iterator>
#include <algorithm>
#include "exception.h"
#include "d2.h"
#include "matrix.h"
#include "bezier.h"
#include "crossing.h"
#include "utils.h"
namespace Geom {
class Curve;
struct CurveHelpers {
protected:
static int root_winding(Curve const &c, Point p);
};
class Curve : private CurveHelpers {
public:
virtual ~Curve() {}
virtual Point initialPoint() const = 0;
virtual Point finalPoint() const = 0;
virtual bool isDegenerate() const = 0;
virtual Curve *duplicate() const = 0;
virtual Rect boundsFast() const = 0;
virtual Rect boundsExact() const = 0;
virtual Rect boundsLocal(Interval i, unsigned deg) const = 0;
Rect boundsLocal(Interval i) const { return boundsLocal(i, 0); }
virtual std::vector<double> roots(double v, Dim2 d) const = 0;
virtual int winding(Point p) const { return root_winding(*this, p); }
//mental: review these
virtual Curve *portion(double f, double t) const = 0;
virtual Curve *reverse() const { return portion(1, 0); }
virtual Curve *derivative() const = 0;
virtual void setInitial(Point v) = 0;
virtual void setFinal(Point v) = 0;
virtual Curve *transformed(Matrix const &m) const = 0;
virtual Point pointAt(Coord t) const { return pointAndDerivatives(t, 1).front(); }
virtual Coord valueAt(Coord t, Dim2 d) const { return pointAt(t)[d]; }
virtual std::vector<Point> pointAndDerivatives(Coord t, unsigned n) const = 0;
virtual D2<SBasis> toSBasis() const = 0;
};
class SBasisCurve : public Curve {
private:
SBasisCurve();
D2<SBasis> inner;
public:
explicit SBasisCurve(D2<SBasis> const &sb) : inner(sb) {}
explicit SBasisCurve(Curve const &other) : inner(other.toSBasis()) {}
Curve *duplicate() const { return new SBasisCurve(*this); }
Point initialPoint() const { return inner.at0(); }
Point finalPoint() const { return inner.at1(); }
bool isDegenerate() const { return inner.isConstant(); }
Point pointAt(Coord t) const { return inner.valueAt(t); }
std::vector<Point> pointAndDerivatives(Coord t, unsigned n) const {
return inner.valueAndDerivatives(t, n);
}
double valueAt(Coord t, Dim2 d) const { return inner[d].valueAt(t); }
void setInitial(Point v) { for(unsigned d = 0; d < 2; d++) { inner[d][0][0] = v[d]; } }
void setFinal(Point v) { for(unsigned d = 0; d < 2; d++) { inner[d][0][1] = v[d]; } }
Rect boundsFast() const { return bounds_fast(inner); }
Rect boundsExact() const { return bounds_exact(inner); }
Rect boundsLocal(Interval i, unsigned deg) const { return bounds_local(inner, i, deg); }
std::vector<double> roots(double v, Dim2 d) const { return Geom::roots(inner[d] - v); }
Curve *portion(double f, double t) const {
return new SBasisCurve(Geom::portion(inner, f, t));
}
Curve *transformed(Matrix const &m) const {
return new SBasisCurve(inner * m);
}
Curve *derivative() const {
return new SBasisCurve(Geom::derivative(inner));
}
D2<SBasis> toSBasis() const { return inner; }
};
template <unsigned order>
class BezierCurve : public Curve {
private:
D2<Bezier > inner;
public:
template <unsigned required_degree>
static void assert_degree(BezierCurve<required_degree> const *) {}
BezierCurve() : inner(Bezier::Order(order), Bezier::Order(order)) {
}
explicit BezierCurve(D2<Bezier > const &x) : inner(x) {}
BezierCurve(Bezier x, Bezier y) : inner(x, y) {}
// default copy
// default assign
BezierCurve(Point c0, Point c1) {
assert_degree<1>(this);
for(unsigned d = 0; d < 2; d++)
inner[d] = Bezier(c0[d], c1[d]);
}
BezierCurve(Point c0, Point c1, Point c2) {
assert_degree<2>(this);
for(unsigned d = 0; d < 2; d++)
inner[d] = Bezier(c0[d], c1[d], c2[d]);
}
BezierCurve(Point c0, Point c1, Point c2, Point c3) {
assert_degree<3>(this);
for(unsigned d = 0; d < 2; d++)
inner[d] = Bezier(c0[d], c1[d], c2[d], c3[d]);
}
unsigned degree() const { return order; }
Curve *duplicate() const { return new BezierCurve(*this); }
Point initialPoint() const { return inner.at0(); }
Point finalPoint() const { return inner.at1(); }
bool isDegenerate() const { return inner.isConstant(); }
void setInitial(Point v) { setPoint(0, v); }
void setFinal(Point v) { setPoint(1, v); }
void setPoint(unsigned ix, Point v) { inner[X].setPoint(ix, v[X]); inner[Y].setPoint(ix, v[Y]); }
Point const operator[](unsigned ix) const { return Point(inner[X][ix], inner[Y][ix]); }
Rect boundsFast() const { return bounds_fast(inner); }
Rect boundsExact() const { return bounds_exact(inner); }
Rect boundsLocal(Interval i, unsigned deg) const {
if(i.min() == 0 && i.max() == 1) return boundsFast();
if(deg == 0) return bounds_local(inner, i);
// TODO: UUUUUUGGGLLY
if(deg == 1 && order > 1) return Rect(bounds_local(Geom::derivative(inner[X]), i),
bounds_local(Geom::derivative(inner[Y]), i));
return Rect(Interval(0,0), Interval(0,0));
}
//TODO: local
//TODO: implement next 3 natively
int winding(Point p) const {
return SBasisCurve(toSBasis()).winding(p);
}
std::vector<double>
roots(double v, Dim2 d) const {
return (inner[d] - v).roots();
}
void setPoints(std::vector<Point> ps) {
for(unsigned i = 0; i <= order; i++) {
setPoint(i, ps[i]);
}
}
std::vector<Point> points() const { return bezier_points(inner); }
std::pair<BezierCurve<order>, BezierCurve<order> > subdivide(Coord t) const {
std::pair<Bezier, Bezier > sx = inner[X].subdivide(t), sy = inner[Y].subdivide(t);
return std::pair<BezierCurve<order>, BezierCurve<order> >(
BezierCurve<order>(sx.first, sy.first),
BezierCurve<order>(sx.second, sy.second));
}
Curve *portion(double f, double t) const {
return new BezierCurve(Geom::portion(inner, f, t));
}
Curve *reverse() const {
return new BezierCurve(Geom::reverse(inner));
}
Curve *transformed(Matrix const &m) const {
BezierCurve *ret = new BezierCurve();
std::vector<Point> ps = points();
for(unsigned i = 0; i <= order; i++) ps[i] = ps[i] * m;
ret->setPoints(ps);
return ret;
}
Curve *derivative() const {
if(order > 1)
return new BezierCurve<order-1>(Geom::derivative(inner[X]), Geom::derivative(inner[Y]));
else if (order == 1) {
double dx = inner[X][1] - inner[X][0], dy = inner[Y][1] - inner[Y][0];
return new BezierCurve<1>(Point(dx,dy),Point(dx,dy));
}
}
Point pointAt(double t) const { return inner.valueAt(t); }
std::vector<Point> pointAndDerivatives(Coord t, unsigned n) const { return inner.valueAndDerivatives(t, n); }
double valueAt(double t, Dim2 d) const { return inner[d].valueAt(t); }
D2<SBasis> toSBasis() const {return inner.toSBasis(); }
protected:
BezierCurve(Point c[]) {
Coord x[order+1], y[order+1];
for(unsigned i = 0; i <= order; i++) {
x[i] = c[i][X]; y[i] = c[i][Y];
}
inner = Bezier(x, y);
}
};
// BezierCurve<0> is meaningless; specialize it out
template<> class BezierCurve<0> : public BezierCurve<1> { public: BezierCurve(); BezierCurve(Bezier x, Bezier y); };
typedef BezierCurve<1> LineSegment;
typedef BezierCurve<2> QuadraticBezier;
typedef BezierCurve<3> CubicBezier;
class SVGEllipticalArc : public Curve
{
public:
SVGEllipticalArc()
{}
SVGEllipticalArc( Point _initial_point, double _rx, double _ry,
double _rot_angle, bool _large_arc, bool _sweep,
Point _final_point
)
: m_initial_point(_initial_point), m_final_point(_final_point),
m_rx(_rx), m_ry(_ry), m_rot_angle(_rot_angle),
m_large_arc(_large_arc), m_sweep(_sweep)
{
//assert( (ray(X) >= 0) && (ray(Y) >= 0) );
if ( are_near(initialPoint(), finalPoint()) )
{
m_start_angle = m_end_angle = 0;
m_center = initialPoint();
}
else
{
calculate_center_and_extreme_angles();
}
}
Curve* duplicate() const
{
return new SVGEllipticalArc(*this);
}
double center(Dim2 i) const
{
return m_center[i];
}
Point center() const
{
return m_center;
}
Point initialPoint() const
{
return m_initial_point;
}
Point finalPoint() const
{
return m_final_point;
}
double start_angle() const
{
return m_start_angle;
}
double end_angle() const
{
return m_end_angle;
}
double ray(Dim2 i) const
{
return (i == 0) ? m_rx : m_ry;
}
bool large_arc_flag() const
{
return m_large_arc;
}
bool sweep_flag() const
{
return m_sweep;
}
double rotation_angle() const
{
return m_rot_angle;
}
void setInitial( const Point _point)
{
m_initial_point = _point;
calculate_center_and_extreme_angles();
}
void setFinal( const Point _point)
{
m_final_point = _point;
calculate_center_and_extreme_angles();
}
void setExtremes( const Point& _initial_point, const Point& _final_point )
{
m_initial_point = _initial_point;
m_final_point = _final_point;
calculate_center_and_extreme_angles();
}
bool isDegenerate() const
{
return are_near(initialPoint(), finalPoint());
}
// TODO: native implementation of the following methods
Rect boundsFast() const
{
return SBasisCurve(toSBasis()).boundsFast();
}
Rect boundsExact() const
{
return SBasisCurve(toSBasis()).boundsExact();
}
Rect boundsLocal(Interval i, unsigned int deg) const
{
return SBasisCurve(toSBasis()).boundsLocal(i, deg);
}
std::vector<double> roots(double v, Dim2 d) const
{
return SBasisCurve(toSBasis()).roots(v, d);
}
int winding(Point p) const
{
return SBasisCurve(toSBasis()).winding(p);
}
Curve *derivative() const
{
return SBasisCurve(toSBasis()).derivative();
}
Curve *transformed(Matrix const &m) const
{
return SBasisCurve(toSBasis()).transformed(m);
}
std::vector<Point> pointAndDerivatives(Coord t, unsigned n) const
{
return SBasisCurve(toSBasis()).pointAndDerivatives(t, n);
}
D2<SBasis> toSBasis() const;
double valueAt(Coord t, Dim2 d) const;
Point pointAt(Coord t) const
{
Coord tt = from_01_to_02PI(t);
double sin_rot_angle = std::sin(rotation_angle());
double cos_rot_angle = std::cos(rotation_angle());
Matrix m( ray(X) * cos_rot_angle, ray(X) * sin_rot_angle,
-ray(Y) * sin_rot_angle, ray(Y) * cos_rot_angle,
center(X), center(Y) );
Point p( std::cos(tt), std::sin(tt) );
return p * m;
}
std::pair<SVGEllipticalArc, SVGEllipticalArc>
subdivide(Coord t) const
{
SVGEllipticalArc* arc1 = static_cast<SVGEllipticalArc*>(portion(0, t));
SVGEllipticalArc* arc2 = static_cast<SVGEllipticalArc*>(portion(t, 1));
assert( arc1 != NULL && arc2 != NULL);
std::pair<SVGEllipticalArc, SVGEllipticalArc> arc_pair(*arc1, *arc2);
delete arc1;
delete arc2;
return arc_pair;
}
Curve* portion(double f, double t) const;
// the arc is the same but traversed in the opposite direction
Curve* reverse() const
{
SVGEllipticalArc* rarc = new SVGEllipticalArc( *this );
rarc->m_sweep = !m_sweep;
rarc->m_initial_point = m_final_point;
rarc->m_final_point = m_initial_point;
rarc->m_start_angle = m_end_angle;
rarc->m_end_angle = m_start_angle;
return rarc;
}
private:
double sweep_angle() const
{
Coord d = end_angle() - start_angle();
if ( !sweep_flag() ) d = -d;
if ( d < 0 )
d += 2*M_PI;
return d;
}
Coord from_01_to_02PI(Coord t) const;
void calculate_center_and_extreme_angles();
private:
Point m_initial_point, m_final_point;
double m_rx, m_ry, m_rot_angle;
bool m_large_arc, m_sweep;
double m_start_angle, m_end_angle;
Point m_center;
}; // end class SVGEllipticalArc
template <typename IteratorImpl>
class BaseIterator
: public std::iterator<std::forward_iterator_tag, Curve const>
{
public:
BaseIterator() {}
// default construct
// default copy
bool operator==(BaseIterator const &other) {
return other.impl_ == impl_;
}
bool operator!=(BaseIterator const &other) {
return other.impl_ != impl_;
}
Curve const &operator*() const { return **impl_; }
Curve const *operator->() const { return *impl_; }
BaseIterator &operator++() {
++impl_;
return *this;
}
BaseIterator operator++(int) {
BaseIterator old=*this;
++(*this);
return old;
}
private:
BaseIterator(IteratorImpl const &pos) : impl_(pos) {}
IteratorImpl impl_;
friend class Path;
};
template <typename Iterator>
class DuplicatingIterator
: public std::iterator<std::input_iterator_tag, Curve *>
{
public:
DuplicatingIterator() {}
DuplicatingIterator(Iterator const &iter) : impl_(iter) {}
bool operator==(DuplicatingIterator const &other) {
return other.impl_ == impl_;
}
bool operator!=(DuplicatingIterator const &other) {
return other.impl_ != impl_;
}
Curve *operator*() const { return (*impl_)->duplicate(); }
DuplicatingIterator &operator++() {
++impl_;
return *this;
}
DuplicatingIterator operator++(int) {
DuplicatingIterator old=*this;
++(*this);
return old;
}
private:
Iterator impl_;
};
class Path {
private:
typedef std::vector<Curve *> Sequence;
public:
typedef BaseIterator<Sequence::iterator> iterator;
typedef BaseIterator<Sequence::const_iterator> const_iterator;
typedef Sequence::size_type size_type;
typedef Sequence::difference_type difference_type;
Path()
: final_(new LineSegment()), closed_(false)
{
curves_.push_back(final_);
}
Path(Path const &other)
: final_(new LineSegment()), closed_(other.closed_)
{
curves_.push_back(final_);
insert(begin(), other.begin(), other.end());
}
explicit Path(Point p)
: final_(new LineSegment(p, p)), closed_(false)
{
curves_.push_back(final_);
}
template <typename Impl>
Path(BaseIterator<Impl> first, BaseIterator<Impl> last, bool closed=false)
: closed_(closed), final_(new LineSegment())
{
curves_.push_back(final_);
insert(begin(), first, last);
}
virtual ~Path() {
delete_range(curves_.begin(), curves_.end()-1);
delete final_;
}
Path &operator=(Path const &other) {
clear();
insert(begin(), other.begin(), other.end());
close(other.closed_);
return *this;
}
void swap(Path &other);
Curve const &operator[](unsigned i) const { return *curves_[i]; }
iterator begin() { return curves_.begin(); }
iterator end() { return curves_.end()-1; }
Curve const &front() const { return *curves_[0]; }
Curve const &back() const { return *curves_[curves_.size()-2]; }
const_iterator begin() const { return curves_.begin(); }
const_iterator end() const { return curves_.end()-1; }
const_iterator end_open() const { return curves_.end()-1; }
const_iterator end_closed() const { return curves_.end(); }
const_iterator end_default() const {
return ( closed_ ? end_closed() : end_open() );
}
size_type size() const { return curves_.size()-1; }
size_type max_size() const { return curves_.max_size()-1; }
bool empty() const { return curves_.size() == 1; }
bool closed() const { return closed_; }
void close(bool closed=true) { closed_ = closed; }
Rect boundsFast() const;
Rect boundsExact() const;
Piecewise<D2<SBasis> > toPwSb() const {
Piecewise<D2<SBasis> > ret;
ret.push_cut(0);
unsigned i = 1;
// ignore that path is closed or open. pw<d2<>> is always open.
for(const_iterator it = begin(); it != end(); ++it) {
if (!it->isDegenerate()) {
ret.push(it->toSBasis(), i++);
}
}
return ret;
}
Path operator*(Matrix const &m) const {
Path ret;
for(const_iterator it = begin(); it != end(); ++it) {
Curve *temp = it->transformed(m);
//Possible point of discontinuity?
ret.append(*temp);
delete temp;
}
return ret;
}
Point pointAt(double t) const {
if(empty()) return Point(0,0);
double i, f = modf(t, &i);
if(i == size() && f == 0) { i--; }
assert(i >= 0 && i <= size());
return (*this)[unsigned(i)].pointAt(f);
}
double valueAt(double t, Dim2 d) const {
if(empty()) return 0;
double i, f = modf(t, &i);
if(i == size() && f == 0) { i--; }
assert(i >= 0 && i <= size());
return (*this)[unsigned(i)].valueAt(f, d);
}
std::vector<double> roots(double v, Dim2 d) const {
std::vector<double> res;
for(unsigned i = 0; i <= size(); i++) {
std::vector<double> temp = (*this)[i].roots(v, d);
for(unsigned j = 0; j < temp.size(); j++)
res.push_back(temp[j] + i);
}
return res;
}
void appendPortionTo(Path &p, double f, double t) const;
Path portion(double f, double t) const {
Path ret;
ret.close(false);
appendPortionTo(ret, f, t);
return ret;
}
Path portion(Interval i) const { return portion(i.min(), i.max()); }
Path reverse() const {
Path ret;
ret.close(closed_);
for(int i = size() - (closed_ ? 0 : 1); i >= 0; i--) {
//TODO: do we really delete?
Curve *temp = (*this)[i].reverse();
ret.append(*temp);
delete temp;
}
return ret;
}
void insert(iterator pos, Curve const &curve) {
Sequence source(1, curve.duplicate());
try {
do_update(pos.impl_, pos.impl_, source.begin(), source.end());
} catch (...) {
delete_range(source.begin(), source.end());
throw;
}
}
template <typename Impl>
void insert(iterator pos, BaseIterator<Impl> first, BaseIterator<Impl> last)
{
Sequence source(DuplicatingIterator<Impl>(first.impl_),
DuplicatingIterator<Impl>(last.impl_));
try {
do_update(pos.impl_, pos.impl_, source.begin(), source.end());
} catch (...) {
delete_range(source.begin(), source.end());
throw;
}
}
void clear() {
do_update(curves_.begin(), curves_.end()-1,
curves_.begin(), curves_.begin());
}
void erase(iterator pos) {
do_update(pos.impl_, pos.impl_+1, curves_.begin(), curves_.begin());
}
void erase(iterator first, iterator last) {
do_update(first.impl_, last.impl_, curves_.begin(), curves_.begin());
}
void replace(iterator replaced, Curve const &curve) {
Sequence source(1, curve.duplicate());
try {
do_update(replaced.impl_, replaced.impl_+1, source.begin(), source.end());
} catch (...) {
delete_range(source.begin(), source.end());
throw;
}
}
void replace(iterator first_replaced, iterator last_replaced,
Curve const &curve)
{
Sequence source(1, curve.duplicate());
try {
do_update(first_replaced.impl_, last_replaced.impl_,
source.begin(), source.end());
} catch (...) {
delete_range(source.begin(), source.end());
throw;
}
}
template <typename Impl>
void replace(iterator replaced,
BaseIterator<Impl> first, BaseIterator<Impl> last)
{
Sequence source(DuplicatingIterator<Impl>(first.impl_),
DuplicatingIterator<Impl>(last.impl_));
try {
do_update(replaced.impl_, replaced.impl_+1, source.begin(), source.end());
} catch (...) {
delete_range(source.begin(), source.end());
throw;
}
}
template <typename Impl>
void replace(iterator first_replaced, iterator last_replaced,
BaseIterator<Impl> first, BaseIterator<Impl> last)
{
Sequence source(first.impl_, last.impl_);
try {
do_update(first_replaced.impl_, last_replaced.impl_,
source.begin(), source.end());
} catch (...) {
delete_range(source.begin(), source.end());
throw;
}
}
void start(Point p) {
clear();
final_->setPoint(0, p);
final_->setPoint(1, p);
}
Point initialPoint() const { return (*final_)[1]; }
Point finalPoint() const { return (*final_)[0]; }
void append(Curve const &curve);
void append(D2<SBasis> const &curve);
template <typename CurveType, typename A>
void appendNew(A a) {
do_append(new CurveType((*final_)[0], a));
}
template <typename CurveType, typename A, typename B>
void appendNew(A a, B b) {
do_append(new CurveType((*final_)[0], a, b));
}
template <typename CurveType, typename A, typename B, typename C>
void appendNew(A a, B b, C c) {
do_append(new CurveType((*final_)[0], a, b, c));
}
template <typename CurveType, typename A, typename B, typename C,
typename D>
void appendNew(A a, B b, C c, D d) {
do_append(new CurveType((*final_)[0], a, b, c, d));
}
template <typename CurveType, typename A, typename B, typename C,
typename D, typename E>
void appendNew(A a, B b, C c, D d, E e) {
do_append(new CurveType((*final_)[0], a, b, c, d, e));
}
template <typename CurveType, typename A, typename B, typename C,
typename D, typename E, typename F>
void appendNew(A a, B b, C c, D d, E e, F f) {
do_append(new CurveType((*final_)[0], a, b, c, d, e, f));
}
template <typename CurveType, typename A, typename B, typename C,
typename D, typename E, typename F,
typename G>
void appendNew(A a, B b, C c, D d, E e, F f, G g) {
do_append(new CurveType((*final_)[0], a, b, c, d, e, f, g));
}
template <typename CurveType, typename A, typename B, typename C,
typename D, typename E, typename F,
typename G, typename H>
void appendNew(A a, B b, C c, D d, E e, F f, G g, H h) {
do_append(new CurveType((*final_)[0], a, b, c, d, e, f, g, h));
}
template <typename CurveType, typename A, typename B, typename C,
typename D, typename E, typename F,
typename G, typename H, typename I>
void appendNew(A a, B b, C c, D d, E e, F f, G g, H h, I i) {
do_append(new CurveType((*final_)[0], a, b, c, d, e, f, g, h, i));
}
private:
void do_update(Sequence::iterator first_replaced,
Sequence::iterator last_replaced,
Sequence::iterator first,
Sequence::iterator last);
void do_append(Curve *curve);
void delete_range(Sequence::iterator first, Sequence::iterator last);
void check_continuity(Sequence::iterator first_replaced,
Sequence::iterator last_replaced,
Sequence::iterator first,
Sequence::iterator last);
Sequence curves_;
LineSegment *final_;
bool closed_;
};
inline static Piecewise<D2<SBasis> > paths_to_pw(std::vector<Path> paths) {
Piecewise<D2<SBasis> > ret = paths[0].toPwSb();
for(unsigned i = 1; i < paths.size(); i++) {
ret.concat(paths[i].toPwSb());
}
return ret;
}
/*
class PathPortion : public Curve {
Path *source;
double f, t;
boost::optional<Path> result;
public:
double from() const { return f; }
double to() const { return t; }
explicit PathPortion(Path *s, double fp, double tp) : source(s), f(fp), t(tp) {}
Curve *duplicate() const { return new PathPortion(*this); }
Point initialPoint() const { return source->pointAt(f); }
Point finalPoint() const { return source->pointAt(t); }
Path actualPath() {
if(!result) *result = source->portion(f, t);
return *result;
}
Rect boundsFast() const { return actualPath().boundsFast; }
Rect boundsExact() const { return actualPath().boundsFast; }
Rect boundsLocal(Interval i) const { throwNotImplemented(); }
std::vector<double> roots(double v, Dim2 d) const = 0;
virtual int winding(Point p) const { return root_winding(*this, p); }
virtual Curve *portion(double f, double t) const = 0;
virtual Curve *reverse() const { return portion(1, 0); }
virtual Crossings crossingsWith(Curve const & other) const;
virtual void setInitial(Point v) = 0;
virtual void setFinal(Point v) = 0;
virtual Curve *transformed(Matrix const &m) const = 0;
virtual Point pointAt(Coord t) const { return pointAndDerivatives(t, 1).front(); }
virtual Coord valueAt(Coord t, Dim2 d) const { return pointAt(t)[d]; }
virtual std::vector<Point> pointAndDerivatives(Coord t, unsigned n) const = 0;
virtual D2<SBasis> toSBasis() const = 0;
};
*/
}
namespace std {
template <>
inline void swap<Geom::Path>(Geom::Path &a, Geom::Path &b)
{
a.swap(b);
}
}
#endif // SEEN_GEOM_PATH_H
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(substatement-open . 0))
indent-tabs-mode:nil
c-brace-offset:0
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=2:tabstop=8:softtabstop=2 :