fitting-model.h revision 8001ba81cb851b38d86650a2fef5817facffb763
/*
* Fitting Models for Geom Types
*
* Authors:
* Marco Cecchetti <mrcekets at gmail.com>
*
* Copyright 2008 authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#ifndef _NL_FITTING_MODEL_H_
#define _NL_FITTING_MODEL_H_
#include <2geom/d2.h>
#include <2geom/sbasis.h>
#include <2geom/bezier.h>
#include <2geom/bezier-curve.h>
#include <2geom/poly.h>
#include <2geom/ellipse.h>
#include <2geom/utils.h>
namespace Geom { namespace NL {
/*
* completely unknown models must inherit from this template class;
* example: the model a*x^2 + b*x + c = 0 to be solved wrt a, b, c;
* example: the model A(t) = known_sample_value_at(t) to be solved wrt
* the coefficients of the curve A(t) expressed in S-Basis form;
* parameter type: the type of x and t variable in the examples above;
* value type: the type of the known sample values (in the first example
* is constant )
* instance type: the type of the objects produced by using
* the fitting raw data solution
*/
template< typename ParameterType, typename ValueType, typename InstanceType >
class LinearFittingModel
{
public:
typedef ParameterType parameter_type;
typedef ValueType value_type;
typedef InstanceType instance_type;
static const bool WITH_FIXED_TERMS = false;
/*
* a LinearFittingModel must implement the following methods:
*
* void feed( VectorView & vector,
* parameter_type const& sample_parameter ) const;
*
* size_t size() const;
*
* void instance(instance_type &, raw_type const& raw_data) const;
*
*/
};
/*
* partially known models must inherit from this template class
* example: the model a*x^2 + 2*x + c = 0 to be solved wrt a and c
*/
template< typename ParameterType, typename ValueType, typename InstanceType >
class LinearFittingModelWithFixedTerms
{
public:
typedef ParameterType parameter_type;
typedef ValueType value_type;
typedef InstanceType instance_type;
static const bool WITH_FIXED_TERMS = true;
/*
* a LinearFittingModelWithFixedTerms must implement the following methods:
*
* void feed( VectorView & vector,
* value_type & fixed_term,
* parameter_type const& sample_parameter ) const;
*
* size_t size() const;
*
* void instance(instance_type &, raw_type const& raw_data) const;
*
*/
};
// incomplete model, it can be inherited to make up different kinds of
// instance type; the raw data is a vector of coefficients of a polynomial
// rapresented in standard power basis
template< typename InstanceType >
class LFMPowerBasis
: public LinearFittingModel<double, double, InstanceType>
{
public:
LFMPowerBasis(size_t degree)
: m_size(degree + 1)
{
}
void feed( VectorView & coeff, double sample_parameter ) const
{
coeff[0] = 1;
double x_i = 1;
for (size_t i = 1; i < coeff.size(); ++i)
{
x_i *= sample_parameter;
coeff[i] = x_i;
}
}
size_t size() const
{
return m_size;
}
private:
size_t m_size;
};
// this model generates Geom::Poly objects
class LFMPoly
: public LFMPowerBasis<Poly>
{
public:
LFMPoly(size_t degree)
: LFMPowerBasis<Poly>(degree)
{
}
void instance(Poly & poly, ConstVectorView const& raw_data) const
{
poly.clear();
poly.resize(size());
for (size_t i = 0; i < raw_data.size(); ++i)
{
poly[i] = raw_data[i];
}
}
};
// incomplete model, it can be inherited to make up different kinds of
// instance type; the raw data is a vector of coefficients of a polynomial
// rapresented in standard power basis with leading term coefficient equal to 1
template< typename InstanceType >
class LFMNormalizedPowerBasis
: public LinearFittingModelWithFixedTerms<double, double, InstanceType>
{
public:
LFMNormalizedPowerBasis(size_t _degree)
: m_model( _degree - 1)
{
assert(_degree > 0);
}
void feed( VectorView & coeff,
double & known_term,
double sample_parameter ) const
{
m_model.feed(coeff, sample_parameter);
known_term = coeff[m_model.size()-1] * sample_parameter;
}
size_t size() const
{
return m_model.size();
}
private:
LFMPowerBasis<InstanceType> m_model;
};
// incomplete model, it can be inherited to make up different kinds of
// instance type; the raw data is a vector of coefficients of the equation
// of an ellipse curve
template< typename InstanceType >
class LFMEllipseEquation
: public LinearFittingModelWithFixedTerms<Point, double, InstanceType>
{
public:
void feed( VectorView & coeff, double & fixed_term, Point const& p ) const
{
coeff[0] = p[X] * p[Y];
coeff[1] = p[Y] * p[Y];
coeff[2] = p[X];
coeff[3] = p[Y];
coeff[4] = 1;
fixed_term = p[X] * p[X];
}
size_t size() const
{
return 5;
}
};
// this model generates Ellipse curves
class LFMEllipse
: public LFMEllipseEquation<Ellipse>
{
public:
void instance(Ellipse & e, ConstVectorView const& coeff) const
{
e.set(1, coeff[0], coeff[1], coeff[2], coeff[3], coeff[4]);
}
};
// this model generates SBasis objects
class LFMSBasis
: public LinearFittingModel<double, double, SBasis>
{
public:
LFMSBasis( size_t _order )
: m_size( 2*(_order+1) ),
m_order(_order)
{
}
void feed( VectorView & coeff, double t ) const
{
double u0 = 1-t;
double u1 = t;
double s = u0 * u1;
coeff[0] = u0;
coeff[1] = u1;
for (size_t i = 2; i < size(); i+=2)
{
u0 *= s;
u1 *= s;
coeff[i] = u0;
coeff[i+1] = u1;
}
}
size_t size() const
{
return m_size;
}
void instance(SBasis & sb, ConstVectorView const& raw_data) const
{
sb.clear();
sb.resize(m_order+1);
for (unsigned int i = 0, k = 0; i < raw_data.size(); i+=2, ++k)
{
sb[k][0] = raw_data[i];
sb[k][1] = raw_data[i+1];
}
}
private:
size_t m_size;
size_t m_order;
};
// this model generates D2<SBasis> objects
class LFMD2SBasis
: public LinearFittingModel< double, Point, D2<SBasis> >
{
public:
LFMD2SBasis( size_t _order )
: mosb(_order)
{
}
void feed( VectorView & coeff, double t ) const
{
mosb.feed(coeff, t);
}
size_t size() const
{
return mosb.size();
}
void instance(D2<SBasis> & d2sb, ConstMatrixView const& raw_data) const
{
mosb.instance(d2sb[X], raw_data.column_const_view(X));
mosb.instance(d2sb[Y], raw_data.column_const_view(Y));
}
private:
LFMSBasis mosb;
};
// this model generates Bezier objects
class LFMBezier
: public LinearFittingModel<double, double, Bezier>
{
public:
LFMBezier( size_t _order )
: m_size(_order + 1),
m_order(_order)
{
binomial_coefficients(m_bc, m_order);
}
void feed( VectorView & coeff, double t ) const
{
double s = 1;
for (size_t i = 0; i < size(); ++i)
{
coeff[i] = s * m_bc[i];
s *= t;
}
double u = 1-t;
s = 1;
for (size_t i = size()-1; i > 0; --i)
{
coeff[i] *= s;
s *= u;
}
coeff[0] *= s;
}
size_t size() const
{
return m_size;
}
void instance(Bezier & b, ConstVectorView const& raw_data) const
{
assert(b.size() == raw_data.size());
for (unsigned int i = 0; i < raw_data.size(); ++i)
{
b[i] = raw_data[i];
}
}
private:
size_t m_size;
size_t m_order;
std::vector<size_t> m_bc;
};
// this model generates Bezier curves
template< unsigned int N >
class LFMBezierCurve
: public LinearFittingModel< double, Point, BezierCurve<N> >
{
public:
LFMBezierCurve( size_t _order )
: mob(_order)
{
}
void feed( VectorView & coeff, double t ) const
{
mob.feed(coeff, t);
}
size_t size() const
{
return mob.size();
}
void instance(BezierCurve<N> & bc, ConstMatrixView const& raw_data) const
{
Bezier bx(size()-1);
Bezier by(size()-1);
mob.instance(bx, raw_data.column_const_view(X));
mob.instance(by, raw_data.column_const_view(Y));
bc = BezierCurve<N>(bx, by);
}
private:
LFMBezier mob;
};
} // end namespace NL
} // end namespace Geom
#endif // _NL_FITTING_MODEL_H_
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=99 :