line.h revision 40742313779ee5e43be93a9191f1c86412cf183b
/**
* \file
* \brief Infinite straight line
*//*
* Authors:
* Marco Cecchetti <mrcekets at gmail.com>
* Krzysztof KosiƄski <tweenk.pl@gmail.com>
* Copyright 2008-2011 Authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#ifndef LIB2GEOM_SEEN_LINE_H
#define LIB2GEOM_SEEN_LINE_H
#include <cmath>
#include <boost/optional.hpp>
#include <2geom/bezier-curve.h> // for LineSegment
#include <2geom/rect.h>
#include <2geom/crossing.h>
#include <2geom/exception.h>
#include <2geom/ray.h>
namespace Geom
{
class Line {
private:
Point m_origin;
Point m_versor;
public:
/// @name Creating lines.
/// @{
/** @brief Create a default horizontal line. */
Line()
: m_origin(0,0), m_versor(1,0)
{}
/** @brief Create a line with the specified inclination.
* @param _origin One of the points on the line
* @param angle Angle of the line in mathematical convention */
Line(Point const& _origin, Coord angle )
: m_origin(_origin)
{
sincos(angle, m_versor[Y], m_versor[X]);
}
/** @brief Create a line going through two points.
* @param A First point
* @param B Second point */
Line(Point const& A, Point const& B) {
setPoints(A, B);
}
/** @brief Create a line based on the coefficients of its equation.
@see Line::setCoefficients() */
Line(double a, double b, double c) {
setCoefficients(a, b, c);
}
/** @brief Create a line by extending a line segment. */
explicit Line(LineSegment const& _segment) {
setPoints(_segment.initialPoint(), _segment.finalPoint());
}
/** @brief Create a line by extending a ray. */
explicit Line(Ray const& _ray)
: m_origin(_ray.origin()), m_versor(_ray.versor())
{}
// huh?
static Line from_normal_distance(Point n, double c) {
Point P = n * c / dot(n,n);
Line l(P, P+rot90(n));
return l;
}
/** @brief Create a line from origin and unit vector.
* Note that each line direction has two possible unit vectors.
* @param o Point through which the line will pass
* @param v Unit vector of the line's direction */
static Line from_origin_and_versor(Point o, Point v) {
Line l;
l.m_origin = o;
l.m_versor = v;
return l;
}
Line* duplicate() const {
return new Line(*this);
}
/// @}
/// @name Retrieve and set the line's parameters.
/// @{
/** @brief Get the line's origin point. */
Point origin() const { return m_origin; }
/** @brief Get the line's direction unit vector. */
Point versor() const { return m_versor; }
// return the angle described by rotating the X-axis in cw direction
// until it overlaps the line
// the returned value is in the interval [0, PI[
Coord angle() const {
double a = std::atan2(m_versor[Y], m_versor[X]);
if (a < 0) a += M_PI;
if (a == M_PI) a = 0;
return a;
}
void setOrigin(Point const& _point) {
m_origin = _point;
}
void setVersor(Point const& _versor) {
m_versor = _versor;
}
void setAngle(Coord _angle) {
sincos(_angle, m_versor[Y], m_versor[X]);
}
/** @brief Set a line based on two points it should pass through. */
void setPoints(Point const& A, Point const& B) {
m_origin = A;
if ( are_near(A, B) )
m_versor = Point(0,0);
else
m_versor = B - A;
m_versor.normalize();
}
void setCoefficients (double a, double b, double c);
std::vector<double> coefficients() const;
/** @brief Check if the line has any points.
* A degenerate line can be created if the line is created from a line equation
* that has no solutions.
* @return True if the line has no points */
bool isDegenerate() const {
return ( m_versor[X] == 0 && m_versor[Y] == 0 );
}
/// @}
/// @name Evaluate the line as a function.
///@{
Point pointAt(Coord t) const {
return m_origin + m_versor * t;
}
Coord valueAt(Coord t, Dim2 d) const {
if (d < 0 || d > 1)
THROW_RANGEERROR("Line::valueAt, dimension argument out of range");
return m_origin[d] + m_versor[d] * t;
}
Coord timeAt(Point const &p) const;
/** @brief Get a time value corresponding to a projection of a point on the line.
* @param p Arbitrary point.
* @return Time value corresponding to a point closest to @c p. */
Coord timeAtProjection(Point const& p) const {
if ( isDegenerate() ) return 0;
return dot( p - m_origin, m_versor );
}
/** @brief Find a point on the line closest to the query point.
* This is an alias for timeAtProjection(). */
Coord nearestPoint(Point const& _point) const {
return timeAtProjection(_point);
}
std::vector<Coord> roots(Coord v, Dim2 d) const;
/// @}
/// @name Create other objects based on this line.
/// @{
/** @brief Create a line containing the same points, but with negated time values.
* @return Line \f$g\f$ such that \f$g(t) = f(-t)\f$ */
Line reverse() const
{
Line result;
result.setOrigin(m_origin);
result.setVersor(-m_versor);
return result;
}
/** @brief Same as segment(), but allocate the line segment dynamically. */
// TODO remove this?
Curve* portion(Coord f, Coord t) const {
LineSegment* seg = new LineSegment(pointAt(f), pointAt(t));
return seg;
}
/** @brief Create a segment of this line.
* @param f Time value for the initial point of the segment
* @param t Time value for the final point of the segment
* @return Created line segment */
LineSegment segment(Coord f, Coord t) const {
return LineSegment(pointAt(f), pointAt(t));
}
/** @brief Create a ray starting at the specified time value.
* The created ray will go in the direction of the line's versor (in the direction
* of increasing time values).
* @param t Time value where the ray should start
* @return Ray starting at t and going in the direction of the versor */
Ray ray(Coord t) {
Ray result;
result.setOrigin(pointAt(t));
result.setVersor(m_versor);
return result;
}
/** @brief Create a derivative of the line.
* The new line will always be degenerate. Its origin will be equal to this
* line's versor. */
Line derivative() const {
Line result;
result.setOrigin(m_versor);
result.setVersor(Point(0,0));
return result;
}
/** @brief Create a line transformed by an affine transformation. */
Line transformed(Affine const& m) const {
return Line(m_origin * m, (m_origin + m_versor) * m);
}
/** @brief Get a vector normal to the line.
* If Y grows upwards, then this is the left normal. If Y grows downwards,
* then this is the right normal. */
Point normal() const {
return rot90(m_versor);
}
// what does this do?
Point normalAndDist(double & dist) const {
Point n = normal();
dist = -dot(n, m_origin);
return n;
}
/// @}
}; // end class Line
inline
double distance(Point const& _point, Line const& _line)
{
if ( _line.isDegenerate() )
{
return ::Geom::distance( _point, _line.origin() );
}
else
{
return fabs( dot(_point - _line.origin(), _line.versor().ccw()) );
}
}
inline
bool are_near(Point const& _point, Line const& _line, double eps = EPSILON)
{
return are_near(distance(_point, _line), 0, eps);
}
inline
bool are_parallel(Line const& l1, Line const& l2, double eps = EPSILON)
{
return ( are_near(l1.versor(), l2.versor(), eps)
|| are_near(l1.versor(), -l2.versor(), eps) );
}
inline
bool are_same(Line const& l1, Line const& l2, double eps = EPSILON)
{
return are_parallel(l1, l2, eps) && are_near(l1.origin(), l2, eps);
}
inline
bool are_orthogonal(Line const& l1, Line const& l2, double eps = EPSILON)
{
return ( are_near(l1.versor(), l2.versor().cw(), eps)
|| are_near(l1.versor(), l2.versor().ccw(), eps) );
}
inline
bool are_collinear(Point const& p1, Point const& p2, Point const& p3,
double eps = EPSILON)
{
return are_near( cross(p3, p2) - cross(p3, p1) + cross(p2, p1), 0, eps);
}
// evaluate the angle between l1 and l2 rotating l1 in cw direction
// until it overlaps l2
// the returned value is an angle in the interval [0, PI[
inline
double angle_between(Line const& l1, Line const& l2)
{
double angle = angle_between(l1.versor(), l2.versor());
if (angle < 0) angle += M_PI;
if (angle == M_PI) angle = 0;
return angle;
}
inline
double distance(Point const& _point, LineSegment const& _segment)
{
double t = _segment.nearestPoint(_point);
return L2(_point - _segment.pointAt(t));
}
inline
bool are_near(Point const& _point, LineSegment const& _segment,
double eps = EPSILON)
{
return are_near(distance(_point, _segment), 0, eps);
}
// build a line passing by _point and orthogonal to _line
inline
Line make_orthogonal_line(Point const& _point, Line const& _line)
{
Line l;
l.setOrigin(_point);
l.setVersor(_line.versor().cw());
return l;
}
// build a line passing by _point and parallel to _line
inline
Line make_parallel_line(Point const& _point, Line const& _line)
{
Line l(_line);
l.setOrigin(_point);
return l;
}
// build a line passing by the middle point of _segment and orthogonal to it.
inline
Line make_bisector_line(LineSegment const& _segment)
{
return make_orthogonal_line( middle_point(_segment), Line(_segment) );
}
// build the bisector line of the angle between ray(O,A) and ray(O,B)
inline
Line make_angle_bisector_line(Point const& A, Point const& O, Point const& B)
{
Point M = middle_point(A,B);
return Line(O,M);
}
// prj(P) = rot(v, Point( rot(-v, P-O)[X], 0 )) + O
inline
Point projection(Point const& _point, Line const& _line)
{
return _line.pointAt( _line.nearestPoint(_point) );
}
inline
LineSegment projection(LineSegment const& _segment, Line const& _line)
{
return _line.segment( _line.nearestPoint(_segment.initialPoint()),
_line.nearestPoint(_segment.finalPoint()) );
}
boost::optional<LineSegment> clip (Line const& l, Rect const& r);
namespace detail
{
OptCrossing intersection_impl(Ray const& r1, Line const& l2, unsigned int i);
OptCrossing intersection_impl( LineSegment const& ls1,
Line const& l2,
unsigned int i );
OptCrossing intersection_impl( LineSegment const& ls1,
Ray const& r2,
unsigned int i );
}
inline
OptCrossing intersection(Ray const& r1, Line const& l2)
{
return detail::intersection_impl(r1, l2, 0);
}
inline
OptCrossing intersection(Line const& l1, Ray const& r2)
{
return detail::intersection_impl(r2, l1, 1);
}
inline
OptCrossing intersection(LineSegment const& ls1, Line const& l2)
{
return detail::intersection_impl(ls1, l2, 0);
}
inline
OptCrossing intersection(Line const& l1, LineSegment const& ls2)
{
return detail::intersection_impl(ls2, l1, 1);
}
inline
OptCrossing intersection(LineSegment const& ls1, Ray const& r2)
{
return detail::intersection_impl(ls1, r2, 0);
}
inline
OptCrossing intersection(Ray const& r1, LineSegment const& ls2)
{
return detail::intersection_impl(ls2, r1, 1);
}
OptCrossing intersection(Line const& l1, Line const& l2);
OptCrossing intersection(Ray const& r1, Ray const& r2);
OptCrossing intersection(LineSegment const& ls1, LineSegment const& ls2);
} // end namespace Geom
#endif // LIB2GEOM_SEEN_LINE_H
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :