line.h revision 19a11b8fc8f08b40b0612d70011a367c4e2b98ee
/**
* \file
* \brief Infinite Straight Line
*
* Copyright 2008 Marco Cecchetti <mrcekets at gmail.com>
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#ifndef _2GEOM_LINE_H_
#define _2GEOM_LINE_H_
#include <cmath>
#include <2geom/bezier-curve.h> // for LineSegment
#include <2geom/crossing.h>
#include <2geom/exception.h>
#include <2geom/ray.h>
namespace Geom
{
class Line
{
public:
Line()
: m_origin(0,0), m_versor(1,0)
{
}
Line(Point const& _origin, Coord angle )
: m_origin(_origin), m_versor(std::cos(angle), std::sin(angle))
{
}
Line(Point const& A, Point const& B)
{
setBy2Points(A, B);
}
explicit
Line(LineSegment const& _segment)
{
setBy2Points(_segment.initialPoint(), _segment.finalPoint());
}
explicit
Line(Ray const& _ray)
: m_origin(_ray.origin()), m_versor(_ray.versor())
{
}
static Line fromNormalDistance(Point n, double c) {
Point P = n*c/(dot(n,n));
return Line(P, P+rot90(n));
}
Line* duplicate() const
{
return new Line(*this);
}
Point origin() const
{
return m_origin;
}
Point versor() const
{
return m_versor;
}
void origin(Point const& _point)
{
m_origin = _point;
}
void versor(Point const& _versor)
{
m_versor = _versor;
}
// return the angle described by rotating the X-axis in cw direction
// until it overlaps the line
// the returned value is in the interval [0, PI[
Coord angle() const
{
double a = std::atan2(m_versor[Y], m_versor[X]);
if (a < 0) a += M_PI;
if (a == M_PI) a = 0;
return a;
}
void angle(Coord _angle)
{
m_versor[X] = std::cos(_angle);
m_versor[Y] = std::sin(_angle);
}
void setBy2Points(Point const& A, Point const& B)
{
m_origin = A;
m_versor = B - A;
if ( are_near(m_versor, Point(0,0)) )
m_versor = Point(0,0);
else
m_versor.normalize();
}
bool isDegenerate() const
{
return ( m_versor[X] == 0 && m_versor[Y] == 0 );
}
Point pointAt(Coord t) const
{
return m_origin + m_versor * t;
}
Coord valueAt(Coord t, Dim2 d) const
{
if (d < 0 || d > 1)
THROW_RANGEERROR("Ray::valueAt, dimension argument out of range");
return m_origin[d] + m_versor[d] * t;
}
std::vector<Coord> roots(Coord v, Dim2 d) const
{
if (d < 0 || d > 1)
THROW_RANGEERROR("Ray::roots, dimension argument out of range");
std::vector<Coord> result;
if ( m_versor[d] != 0 )
{
result.push_back( (v - m_origin[d]) / m_versor[d] );
}
// TODO: else ?
return result;
}
// require are_near(_point, *this)
// on the contrary the result value is meaningless
Coord timeAt(Point const& _point) const
{
Coord t;
if ( m_versor[X] != 0 )
{
t = (_point[X] - m_origin[X]) / m_versor[X];
}
else if ( m_versor[Y] != 0 )
{
t = (_point[Y] - m_origin[Y]) / m_versor[Y];
}
else // degenerate case
{
t = 0;
}
return t;
}
Coord timeAtProjection(Point const& _point) const
{
if ( isDegenerate() ) return 0;
return dot( _point - m_origin, m_versor );
}
Coord nearestPoint(Point const& _point) const
{
return timeAtProjection(_point);
}
Line reverse() const
{
Line result;
result.origin(m_origin);
result.versor(-m_versor);
return result;
}
Curve* portion(Coord f, Coord t) const
{
LineSegment* seg = new LineSegment(pointAt(f), pointAt(t));
return seg;
}
LineSegment segment(Coord f, Coord t) const
{
return LineSegment(pointAt(f), pointAt(t));
}
Ray ray(Coord t)
{
Ray result;
result.origin(pointAt(t));
result.versor(m_versor);
return result;
}
Line derivative() const
{
Line result;
result.origin(m_versor);
result.versor(Point(0,0));
return result;
}
Line transformed(Matrix const& m) const
{
return Line(m_origin * m, (m_origin + m_versor) * m);
}
static Line from_normal_and_dist(Point const &n, double d) {
return Line(n*d, n*d + rot90(n));
}
private:
Point m_origin;
Point m_versor;
}; // end class Line
inline
double distance(Point const& _point, Line const& _line)
{
if ( _line.isDegenerate() )
{
return distance( _point, _line.origin() );
}
else
{
return fabs( dot(_point - _line.origin(), _line.versor().ccw()) );
}
}
inline
bool are_near(Point const& _point, Line const& _line, double eps = EPSILON)
{
return are_near(distance(_point, _line), 0, eps);
}
inline
bool are_parallel(Line const& l1, Line const& l2, double eps = EPSILON)
{
return ( are_near(l1.versor(), l2.versor(), eps)
|| are_near(l1.versor(), -l2.versor(), eps) );
}
inline
bool are_same(Line const& l1, Line const& l2, double eps = EPSILON)
{
return are_parallel(l1, l2, eps) && are_near(l1.origin(), l2, eps);
}
inline
bool are_orthogonal(Line const& l1, Line const& l2, double eps = EPSILON)
{
return ( are_near(l1.versor(), l2.versor().cw(), eps)
|| are_near(l1.versor(), l2.versor().ccw(), eps) );
}
inline
bool are_collinear(Point const& p1, Point const& p2, Point const& p3,
double eps = EPSILON)
{
return are_near( cross(p3, p2) - cross(p3, p1) + cross(p2, p1), 0, eps);
}
// evaluate the angle between l1 and l2 rotating l1 in cw direction
// until it overlaps l2
// the returned value is an angle in the interval [0, PI[
inline
double angle_between(Line const& l1, Line const& l2)
{
double angle = angle_between(l1.versor(), l2.versor());
if (angle < 0) angle += M_PI;
if (angle == M_PI) angle = 0;
return angle;
}
inline
double distance(Point const& _point, LineSegment const& _segment)
{
double t = _segment.nearestPoint(_point);
return L2(_point - _segment.pointAt(t));
}
inline
bool are_near(Point const& _point, LineSegment const& _segment,
double eps = EPSILON)
{
return are_near(distance(_point, _segment), 0, eps);
}
// build a line passing by _point and orthogonal to _line
inline
Line make_orthogonal_line(Point const& _point, Line const& _line)
{
Line l;
l.origin(_point);
l.versor(_line.versor().cw());
return l;
}
// build a line passing by _point and parallel to _line
inline
Line make_parallel_line(Point const& _point, Line const& _line)
{
Line l(_line);
l.origin(_point);
return l;
}
// build a line passing by the middle point of _segment and orthogonal to it.
inline
Line make_bisector_line(LineSegment const& _segment)
{
return make_orthogonal_line( middle_point(_segment), Line(_segment) );
}
// build the bisector line of the angle between ray(O,A) and ray(O,B)
inline
Line make_angle_bisector_line(Point const& A, Point const& O, Point const& B)
{
Point M = middle_point(A,B);
return Line(O,M);
}
// prj(P) = rot(v, Point( rot(-v, P-O)[X], 0 )) + O
inline
Point projection(Point const& _point, Line const& _line)
{
return _line.pointAt( _line.nearestPoint(_point) );
}
inline
LineSegment projection(LineSegment const& _segment, Line const& _line)
{
return _line.segment( _line.nearestPoint(_segment.initialPoint()),
_line.nearestPoint(_segment.finalPoint()) );
}
namespace detail
{
OptCrossing intersection_impl(Ray const& r1, Line const& l2, unsigned int i);
OptCrossing intersection_impl( LineSegment const& ls1,
Line const& l2,
unsigned int i );
OptCrossing intersection_impl( LineSegment const& ls1,
Ray const& r2,
unsigned int i );
}
inline
OptCrossing intersection(Ray const& r1, Line const& l2)
{
return detail::intersection_impl(r1, l2, 0);
}
inline
OptCrossing intersection(Line const& l1, Ray const& r2)
{
return detail::intersection_impl(r2, l1, 1);
}
inline
OptCrossing intersection(LineSegment const& ls1, Line const& l2)
{
return detail::intersection_impl(ls1, l2, 0);
}
inline
OptCrossing intersection(Line const& l1, LineSegment const& ls2)
{
return detail::intersection_impl(ls2, l1, 1);
}
inline
OptCrossing intersection(LineSegment const& ls1, Ray const& r2)
{
return detail::intersection_impl(ls1, r2, 0);
}
inline
OptCrossing intersection(Ray const& r1, LineSegment const& ls2)
{
return detail::intersection_impl(ls2, r1, 1);
}
OptCrossing intersection(Line const& l1, Line const& l2);
OptCrossing intersection(Ray const& r1, Ray const& r2);
OptCrossing intersection(LineSegment const& ls1, LineSegment const& ls2);
} // end namespace Geom
#endif // _2GEOM_LINE_H_
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(substatement-open . 0))
indent-tabs-mode:nil
c-brace-offset:0
fill-column:99
End:
vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4 :
*/