convex-cover.cpp revision 981b809bc6ed10a21e89444d9447e5475801874f
/*
* convex-cover.cpp
*
* Copyright 2006 Nathan Hurst <njh@mail.csse.monash.edu.au>
* Copyright 2006 Michael G. Sloan <mgsloan@gmail.com>
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*
*/
#include "convex-cover.h"
#include <algorithm>
#include <map>
/** Todo:
+ modify graham scan to work top to bottom, rather than around angles
+ intersection
+ minimum distance between convex hulls
+ maximum distance between convex hulls
+ hausdorf metric?
+ check all degenerate cases carefully
+ check all algorithms meet all invariants
+ generalise rotating caliper algorithm (iterator/circulator?)
*/
using std::vector;
using std::map;
using std::pair;
namespace Geom{
/*** SignedTriangleArea
* returns the area of the triangle defined by p0, p1, p2. A clockwise triangle has positive area.
*/
double
SignedTriangleArea(Point p0, Point p1, Point p2) {
return cross((p1 - p0), (p2 - p0));
}
class angle_cmp{
public:
Point o;
angle_cmp(Point o) : o(o) {}
bool
operator()(Point a, Point b) {
Point da = a - o;
Point db = b - o;
#if 1
double aa = da[0];
double ab = db[0];
if((da[1] == 0) && (db[1] == 0))
return da[0] < db[0];
if(da[1] == 0)
return true; // infinite tangent
if(db[1] == 0)
return false; // infinite tangent
aa = da[0] / da[1];
ab = db[0] / db[1];
if(aa > ab)
return true;
#else
//assert((ata > atb) == (aa < ab));
double aa = atan2(da);
double ab = atan2(db);
if(aa < ab)
return true;
#endif
if(aa == ab)
return L2sq(da) < L2sq(db);
return false;
}
};
void
ConvexHull::find_pivot() {
// Find pivot P;
unsigned pivot = 0;
for(unsigned i = 1; i < boundary.size(); i++)
if(boundary[i] <= boundary[pivot])
pivot = i;
std::swap(boundary[0], boundary[pivot]);
}
void
ConvexHull::angle_sort() {
// sort points by angle (resolve ties in favor of point farther from P);
// we leave the first one in place as our pivot
std::sort(boundary.begin()+1, boundary.end(), angle_cmp(boundary[0]));
}
void
ConvexHull::graham_scan() {
unsigned stac = 2;
for(int i = 2; i < boundary.size(); i++) {
double o = SignedTriangleArea(boundary[stac-2],
boundary[stac-1],
boundary[i]);
if(o == 0) { // colinear - dangerous...
stac--;
} else if(o < 0) { // anticlockwise
} else { // remove concavity
while(o >= 0 && stac > 2) {
stac--;
o = SignedTriangleArea(boundary[stac-2],
boundary[stac-1],
boundary[i]);
}
}
boundary[stac++] = boundary[i];
}
boundary.resize(stac);
}
void
ConvexHull::graham() {
find_pivot();
angle_sort();
graham_scan();
}
//Mathematically incorrect mod, but more useful.
int mod(int i, int l) {
return i >= 0 ?
i % l : (i % l) + l;
}
//OPT: usages can often be replaced by conditions
/*** ConvexHull::left
* Tests if a point is left (outside) of a particular segment, n. */
bool
ConvexHull::is_left(Point p, int n) {
return SignedTriangleArea((*this)[n], (*this)[n+1], p) > 0;
}
/*** ConvexHull::find_positive
* May return any number n where the segment n -> n + 1 (possibly looped around) in the hull such
* that the point is on the wrong side to be within the hull. Returns -1 if it is within the hull.*/
int
ConvexHull::find_left(Point p) {
int l = boundary.size(); //Who knows if C++ is smart enough to optimize this?
for(int i = 0; i < l; i++) {
if(is_left(p, i)) return i;
}
return -1;
}
//OPT: do a spread iteration - quasi-random with no repeats and full coverage.
/*** ConvexHull::contains_point
* In order to test whether a point is inside a convex hull we can travel once around the outside making
* sure that each triangle made from an edge and the point has positive area. */
bool
ConvexHull::contains_point(Point p) {
return find_left(p) == -1;
}
/*** ConvexHull::add_point
* to add a point we need to find whether the new point extends the boundary, and if so, what it
* obscures. Tarjan? Jarvis?*/
void
ConvexHull::merge(Point p) {
std::vector<Point> out;
int l = boundary.size();
if(l < 2) {
boundary.push_back(p);
return;
}
bool pushed = false;
bool pre = is_left(p, -1);
for(int i = 0; i < l; i++) {
bool cur = is_left(p, i);
if(pre) {
if(cur) {
if(!pushed) {
out.push_back(p);
pushed = true;
}
continue;
}
else if(!pushed) {
out.push_back(p);
pushed = true;
}
}
out.push_back(boundary[i]);
pre = cur;
}
boundary = out;
}
//OPT: quickly find an obscured point and find the bounds by extending from there. then push all points not within the bounds in order.
//OPT: use binary searches to find the actual starts/ends, use known rights as boundaries. may require cooperation of find_left algo.
/*** ConvexHull::is_clockwise
* We require that successive pairs of edges always turn right.
* proposed algorithm: walk successive edges and require triangle area is positive.
*/
bool
ConvexHull::is_clockwise() const {
if(is_degenerate())
return true;
Point first = boundary[0];
Point second = boundary[1];
for(std::vector<Point>::const_iterator it(boundary.begin()+2), e(boundary.end());
it != e;) {
if(SignedTriangleArea(first, second, *it) > 0)
return false;
first = second;
second = *it;
++it;
}
return true;
}
/*** ConvexHull::top_point_first
* We require that the first point in the convex hull has the least y coord, and that off all such points on the hull, it has the least x coord.
* proposed algorithm: track lexicographic minimum while walking the list.
*/
bool
ConvexHull::top_point_first() const {
std::vector<Point>::const_iterator pivot = boundary.begin();
for(std::vector<Point>::const_iterator it(boundary.begin()+1),
e(boundary.end());
it != e; it++) {
if((*it)[1] < (*pivot)[1])
pivot = it;
else if(((*it)[1] == (*pivot)[1]) &&
((*it)[0] < (*pivot)[0]))
pivot = it;
}
return pivot == boundary.begin();
}
//OPT: since the Y values are orderly there should be something like a binary search to do this.
/*** ConvexHull::no_colinear_points
* We require that no three vertices are colinear.
proposed algorithm: We must be very careful about rounding here.
*/
bool
ConvexHull::no_colinear_points() const {
}
bool
ConvexHull::meets_invariants() const {
return is_clockwise() && top_point_first() && no_colinear_points();
}
/*** ConvexHull::is_degenerate
* We allow three degenerate cases: empty, 1 point and 2 points. In many cases these should be handled explicitly.
*/
bool
ConvexHull::is_degenerate() const {
return boundary.size() < 3;
}
/* Here we really need a rotating calipers implementation. This implementation is slow and incorrect.
This incorrectness is a problem because it throws off the algorithms. Perhaps I will come up with
something better tomorrow. The incorrectness is in the order of the bridges - they must be in the
order of traversal around. Since the a->b and b->a bridges are seperated, they don't need to be merge
order, just the order of the traversal of the host hull. Currently some situations make a n->0 bridge
first.*/
pair< map<int, int>, map<int, int> >
bridges(ConvexHull a, ConvexHull b) {
map<int, int> abridges;
map<int, int> bbridges;
for(int ia = 0; ia < a.boundary.size(); ia++) {
for(int ib = 0; ib < b.boundary.size(); ib++) {
Point d = b[ib] - a[ia];
Geom::Coord e = cross(d, a[ia - 1] - a[ia]), f = cross(d, a[ia + 1] - a[ia]);
Geom::Coord g = cross(d, b[ib - 1] - a[ia]), h = cross(d, b[ib + 1] - a[ia]);
if (e > 0 && f > 0 && g > 0 && h > 0) abridges[ia] = ib;
else if(e < 0 && f < 0 && g < 0 && h < 0) bbridges[ib] = ia;
}
}
return make_pair(abridges, bbridges);
}
std::vector<Point> bridge_points(ConvexHull a, ConvexHull b) {
vector<Point> ret;
pair< map<int, int>, map<int, int> > indices = bridges(a, b);
for(map<int, int>::iterator it = indices.first.begin(); it != indices.first.end(); it++) {
ret.push_back(a[it->first]);
ret.push_back(b[it->second]);
}
for(map<int, int>::iterator it = indices.second.begin(); it != indices.second.end(); it++) {
ret.push_back(b[it->first]);
ret.push_back(a[it->second]);
}
return ret;
}
unsigned find_bottom_right(ConvexHull const &a) {
unsigned it = 1;
while(it < a.boundary.size() &&
a.boundary[it][Y] > a.boundary[it-1][Y])
it++;
return it-1;
}
/*** ConvexHull sweepline_intersection(ConvexHull a, ConvexHull b);
* find the intersection between two convex hulls. The intersection is also a convex hull.
* (Proof: take any two points both in a and in b. Any point between them is in a by convexity,
* and in b by convexity, thus in both. Need to prove still finite bounds.)
* This algorithm works by sweeping a line down both convex hulls in parallel, working out the left and right edges of the new hull.
*/
ConvexHull sweepline_intersection(ConvexHull const &a, ConvexHull const &b) {
ConvexHull ret;
int al = 0;
int bl = 0;
while(al+1 < a.boundary.size() &&
(a.boundary[al+1][Y] > b.boundary[bl][Y])) {
al++;
}
while(bl+1 < b.boundary.size() &&
(b.boundary[bl+1][Y] > a.boundary[al][Y])) {
bl++;
}
// al and bl now point to the top of the first pair of edges that overlap in y value
double sweep_y = std::min(a.boundary[al][Y],
b.boundary[bl][Y]);
}
/*** ConvexHull intersection(ConvexHull a, ConvexHull b);
* find the intersection between two convex hulls. The intersection is also a convex hull.
* (Proof: take any two points both in a and in b. Any point between them is in a by convexity,
* and in b by convexity, thus in both. Need to prove still finite bounds.)
*/
ConvexHull intersection(ConvexHull a, ConvexHull b) {
ConvexHull ret;
int ai = 0, bi = 0;
int aj = a.boundary.size() - 1;
int bj = b.boundary.size() - 1;
/*while (true) {
if(a[ai]
}*/
return ret;
}
/*** ConvexHull merge(ConvexHull a, ConvexHull b);
* find the smallest convex hull that surrounds a and b.
*/
ConvexHull merge(ConvexHull a, ConvexHull b) {
ConvexHull ret;
pair< map<int, int>, map<int, int> > bpair = bridges(a, b);
map<int, int> ab = bpair.first;
map<int, int> bb = bpair.second;
ab[-1] = 0;
bb[-1] = 0;
int i = -1;
if(a.boundary[0][1] > b.boundary[0][1]) goto start_b;
while(true) {
for(; ab.count(i) == 0; i++) {
ret.boundary.push_back(a[i]);
if(i >= a.boundary.size()) return ret;
}
if(ab[i] == 0 && i != -1) break;
i = ab[i];
start_b:
for(; bb.count(i) == 0; i++) {
ret.boundary.push_back(b[i]);
if(i >= b.boundary.size()) return ret;
}
if(bb[i] == 0 && i != -1) break;
i = bb[i];
}
return ret;
}
ConvexHull graham_merge(ConvexHull a, ConvexHull b) {
ConvexHull result;
// we can avoid the find pivot step because of top_point_first
if(b.boundary[0] <= a.boundary[0])
std::swap(a, b);
result.boundary = a.boundary;
result.boundary.insert(result.boundary.end(),
b.boundary.begin(), b.boundary.end());
/** if we modified graham scan to work top to bottom as proposed in lect754.pdf we could replace the
angle sort with a simple merge sort type algorithm. furthermore, we could do the graham scan
online, avoiding a bunch of memory copies. That would probably be linear. -- njh*/
result.angle_sort();
result.graham_scan();
return result;
}
//TODO: reinstate
/*ConvexCover::ConvexCover(Path const &sp) : path(&sp) {
cc.reserve(sp.size());
for(Geom::Path::const_iterator it(sp.begin()), end(sp.end()); it != end; ++it) {
cc.push_back(ConvexHull((*it).begin(), (*it).end()));
}
}*/
};
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(substatement-open . 0))
indent-tabs-mode:nil
c-brace-offset:0
fill-column:99
End:
vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4 :
*/