conic_section_clipper_impl.h revision 5738b9afc93525510fa01185f7609fd5cbb0ff1a
/**
* \file
* \brief Conic section clipping with respect to a rectangle
*
* Authors:
* Marco Cecchetti <mrcekets at gmail>
*
* Copyright 2009 authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#ifndef _2GEOM_CONIC_SECTION_CLIPPER_IMPL_H_
#define _2GEOM_CONIC_SECTION_CLIPPER_IMPL_H_
#include <2geom/conicsec.h>
#include <2geom/line.h>
#include <list>
#include <map>
#ifdef CLIP_WITH_CAIRO_SUPPORT
#include <2geom/toys/path-cairo.h>
#define CLIPPER_CLASS clipper_cr
#else
#define CLIPPER_CLASS clipper
#endif
//#define CLIPDBG
#ifdef CLIPDBG
#include <2geom/toys/path-cairo.h>
#define DBGINFO(msg) \
std::cerr << msg << std::endl;
#define DBGPRINT(msg, var) \
std::cerr << msg << var << std::endl;
#define DBGPRINTIF(cond, msg, var) \
if (cond) \
std::cerr << msg << var << std::endl;
#define DBGPRINT2(msg1, var1, msg2, var2) \
std::cerr << msg1 << var1 << msg2 << var2 << std::endl;
#define DBGPRINTCOLL(msg, coll) \
if (coll.size() != 0) \
std::cerr << msg << ":\n"; \
for (size_t i = 0; i < coll.size(); ++i) \
{ \
std::cerr << i << ": " << coll[i] << "\n"; \
}
#else
#define DBGINFO(msg)
#define DBGPRINT(msg, var)
#define DBGPRINTIF(cond, msg, var)
#define DBGPRINT2(msg1, var1, msg2, var2)
#define DBGPRINTCOLL(msg, coll)
#endif
namespace Geom
{
class CLIPPER_CLASS
{
public:
#ifdef CLIP_WITH_CAIRO_SUPPORT
clipper_cr (cairo_t* _cr, const xAx & _cs, const Rect & _R)
: cr(_cr), cs(_cs), R(_R)
{
DBGPRINT ("CLIP: right side: ", R.right())
DBGPRINT ("CLIP: top side: ", R.top())
DBGPRINT ("CLIP: left side: ", R.left())
DBGPRINT ("CLIP: bottom side: ", R.bottom())
}
#else
clipper (const xAx & _cs, const Rect & _R)
: cs(_cs), R(_R)
{
}
#endif
bool clip (std::vector<RatQuad> & arcs);
bool found_any_isolated_point() const
{
return (single_points.size() != 0);
}
const std::vector<Point> & isolated_points() const
{
return single_points;
}
private:
bool intersect (std::vector<Point> & crossing_points) const;
bool are_paired (Point & M, const Point & P1, const Point & P2) const;
void pairing (std::vector<Point> & paired_points,
std::vector<Point> & inner_points,
const std::vector<Point> & crossing_points);
Point find_inner_point_by_bisector_line (const Point & P,
const Point & Q) const;
Point find_inner_point (const Point & P, const Point & Q) const;
std::list<Point>::iterator split (std::list<Point> & points,
std::list<Point>::iterator sp,
std::list<Point>::iterator fp) const;
void rsplit (std::list<Point> & points,
std::list<Point>::iterator sp,
std::list<Point>::iterator fp,
size_t k) const;
void rsplit (std::list<Point> & points,
std::list<Point>::iterator sp,
std::list<Point>::iterator fp,
double length) const;
private:
#ifdef CLIP_WITH_CAIRO_SUPPORT
cairo_t* cr;
#endif
const xAx & cs;
const Rect & R;
std::vector<Point> single_points;
};
/*
* Given two point "P", "Q" on the conic section the method computes
* a third point inner to the arc with end-point "P", "Q".
* The new point is found by intersecting the conic with the bisector line
* of the PQ line segment.
*/
inline
Point CLIPPER_CLASS::find_inner_point_by_bisector_line (const Point & P,
const Point & Q) const
{
DBGPRINT ("CLIP: find_inner_point_by_bisector_line: P = ", P)
DBGPRINT ("CLIP: find_inner_point_by_bisector_line: Q = ", Q)
Line bl = make_bisector_line (LineSegment (P, Q));
std::vector<double> rts = cs.roots (bl);
//DBGPRINT ("CLIP: find_inner_point: rts.size = ", rts.size())
double t;
if (rts.size() == 0)
{
THROW_LOGICALERROR ("clipper::find_inner_point_by_bisector_line: "
"no conic-bisector line intersection point");
}
if (rts.size() == 2)
{
// we suppose that the searched point is the nearest
// to the line segment PQ
t = (std::fabs(rts[0]) < std::fabs(rts[1])) ? rts[0] : rts[1];
}
else
{
t = rts[0];
}
return bl.pointAt (t);
}
/*
* Given two point "P", "Q" on the conic section the method computes
* a third point inner to the arc with end-point "P", "Q".
* The new point is found by intersecting the conic with the line
* passing through the middle point of the PQ line segment and
* the intersection point of the tangent lines at points P and Q.
*/
inline
Point CLIPPER_CLASS::find_inner_point (const Point & P, const Point & Q) const
{
Line l1 = cs.tangent (P);
Line l2 = cs.tangent (Q);
Line l;
// in case we fail to find a crossing point we fall back to the bisector
// method
try
{
OptCrossing oc = intersection(l1, l2);
if (!oc)
{
return find_inner_point_by_bisector_line (P, Q);
}
l.setPoints (l1.pointAt (oc->ta), middle_point (P, Q));
}
catch (Geom::InfiniteSolutions e)
{
return find_inner_point_by_bisector_line (P, Q);
}
std::vector<double> rts = cs.roots (l);
double t;
if (rts.size() == 0)
{
return find_inner_point_by_bisector_line (P, Q);
}
// the line "l" origin is set to the tangent crossing point so in case
// we find two intersection points only the nearest belongs to the given arc
// pay attention: in case we are dealing with an hyperbola (remember that
// end points are on the same branch, because they are paired) the tangent
// crossing point belongs to the angle delimited by hyperbola asymptotes
// and containing the given hyperbola branch, so the previous statement is
// still true
if (rts.size() == 2)
{
t = (std::fabs(rts[0]) < std::fabs(rts[1])) ? rts[0] : rts[1];
}
else
{
t = rts[0];
}
return l.pointAt (t);
}
/*
* Given a list of points on the conic section, and given two consecutive
* points belonging to the list and passed by two list iterators, the method
* finds a new point that is inner to the conic arc which has the two passed
* points as initial and final point. This new point is inserted into the list
* between the two passed points and an iterator pointing to the new point
* is returned.
*/
inline
std::list<Point>::iterator CLIPPER_CLASS::split (std::list<Point> & points,
std::list<Point>::iterator sp,
std::list<Point>::iterator fp) const
{
Point new_point = find_inner_point (*sp, *fp);
std::list<Point>::iterator ip = points.insert (fp, new_point);
//std::cerr << "CLIP: split: [" << *sp << ", " << *ip << ", "
// << *fp << "]" << std::endl;
return ip;
}
/*
* Given a list of points on the conic section, and given two consecutive
* points belonging to the list and passed by two list iterators, the method
* recursively finds new points that are inner to the conic arc which has
* the two passed points as initial and final point. The recursion stop after
* "k" recursive calls. These new points are inserted into the list between
* the two passed points, and in the order we cross them going from
* the initial to the final arc point.
*/
inline
void CLIPPER_CLASS::rsplit (std::list<Point> & points,
std::list<Point>::iterator sp,
std::list<Point>::iterator fp,
size_t k) const
{
if (k == 0)
{
//DBGINFO("CLIP: split: no further split")
return;
}
std::list<Point>::iterator ip = split (points, sp, fp);
--k;
rsplit (points, sp, ip, k);
rsplit (points, ip, fp, k);
}
/*
* Given a list of points on the conic section, and given two consecutive
* points belonging to the list and passed by two list iterators, the method
* recursively finds new points that are inner to the conic arc which has
* the two passed points as initial and final point. The recursion stop when
* the max distance between the new computed inner point and the two passed
* arc end-points is less then the value specified by the "length" parameter.
* These new points are inserted into the list between the two passed points,
* and in the order we cross them going from the initial to the final arc point.
*/
inline
void CLIPPER_CLASS::rsplit (std::list<Point> & points,
std::list<Point>::iterator sp,
std::list<Point>::iterator fp,
double length) const
{
std::list<Point>::iterator ip = split (points, sp, fp);
double d1 = distance (*sp, *ip);
double d2 = distance (*ip, *fp);
double mdist = std::max (d1, d2);
if (mdist < length)
{
//DBGINFO("CLIP: split: no further split")
return;
}
// they have to be called both to keep the number of points in the list
// in the form 2k+1 where k are the sub-arcs the initial arc is splitted in.
rsplit (points, sp, ip, length);
rsplit (points, ip, fp, length);
}
} // end namespace Geom
#endif // _2GEOM_CONIC_SECTION_CLIPPER_IMPL_H_
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:fileencoding=utf-8:textwidth=99 :