bezier-curve.h revision 01d27eab5fca2dcb8e883011f8be77ae6b78a11c
/**
* \file
* \brief Bezier-Curve
*
* Authors:
* MenTaLguY <mental@rydia.net>
* Marco Cecchetti <mrcekets at gmail.com>
*
* Copyright 2007-2008 authors
*
* This library is free software; you can redistribute it and/or
* modify it either under the terms of the GNU Lesser General Public
* License version 2.1 as published by the Free Software Foundation
* (the "LGPL") or, at your option, under the terms of the Mozilla
* Public License Version 1.1 (the "MPL"). If you do not alter this
* notice, a recipient may use your version of this file under either
* the MPL or the LGPL.
*
* You should have received a copy of the LGPL along with this library
* in the file COPYING-LGPL-2.1; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
* You should have received a copy of the MPL along with this library
* in the file COPYING-MPL-1.1
*
* The contents of this file are subject to the Mozilla Public License
* Version 1.1 (the "License"); you may not use this file except in
* compliance with the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY
* OF ANY KIND, either express or implied. See the LGPL or the MPL for
* the specific language governing rights and limitations.
*/
#ifndef _2GEOM_BEZIER_CURVE_H_
#define _2GEOM_BEZIER_CURVE_H_
#include <2geom/curve.h>
#include <2geom/sbasis-curve.h> // for non-native winding method
#include <2geom/bezier.h>
#include <algorithm>
namespace Geom
{
template <unsigned order>
class BezierCurve : public Curve {
private:
D2<Bezier > inner;
public:
template <unsigned required_degree>
static void assert_degree(BezierCurve<required_degree> const *) {}
BezierCurve() : inner(Bezier::Order(order), Bezier::Order(order)) {
}
explicit BezierCurve(D2<Bezier > const &x) : inner(x) {}
BezierCurve(Bezier x, Bezier y) : inner(x, y) {}
// default copy
// default assign
BezierCurve(Point c0, Point c1) {
assert_degree<1>(this);
for(unsigned d = 0; d < 2; d++)
inner[d] = Bezier(c0[d], c1[d]);
}
BezierCurve(Point c0, Point c1, Point c2) {
assert_degree<2>(this);
for(unsigned d = 0; d < 2; d++)
inner[d] = Bezier(c0[d], c1[d], c2[d]);
}
BezierCurve(Point c0, Point c1, Point c2, Point c3) {
assert_degree<3>(this);
for(unsigned d = 0; d < 2; d++)
inner[d] = Bezier(c0[d], c1[d], c2[d], c3[d]);
}
unsigned degree() const { return order; }
Curve *duplicate() const { return new BezierCurve(*this); }
Point initialPoint() const { return inner.at0(); }
Point finalPoint() const { return inner.at1(); }
bool isDegenerate() const { return inner.isConstant(); }
void setInitial(Point v) { setPoint(0, v); }
void setFinal(Point v) { setPoint(order, v); }
void setPoint(unsigned ix, Point v) { inner[X].setPoint(ix, v[X]); inner[Y].setPoint(ix, v[Y]); }
Point const operator[](unsigned ix) const { return Point(inner[X][ix], inner[Y][ix]); }
Rect boundsFast() const { return bounds_fast(inner); }
Rect boundsExact() const { return bounds_exact(inner); }
Rect boundsLocal(Interval i, unsigned deg) const {
if(i.min() == 0 && i.max() == 1) return boundsFast();
if(deg == 0) return bounds_local(inner, i);
// TODO: UUUUUUGGGLLY
if(deg == 1 && order > 1) return Rect(bounds_local(Geom::derivative(inner[X]), i),
bounds_local(Geom::derivative(inner[Y]), i));
return Rect(Interval(0,0), Interval(0,0));
}
//TODO: local
//TODO: implement next 3 natively
int winding(Point p) const {
return SBasisCurve(toSBasis()).winding(p);
}
std::vector<double>
roots(double v, Dim2 d) const {
return (inner[d] - v).roots();
}
double nearestPoint( Point const& p, double from = 0, double to = 1 ) const
{
return Curve::nearestPoint(p, from, to);
}
void setPoints(std::vector<Point> ps) {
for(unsigned i = 0; i <= order; i++) {
setPoint(i, ps[i]);
}
}
std::vector<Point> points() const { return bezier_points(inner); }
std::pair<BezierCurve<order>, BezierCurve<order> > subdivide(Coord t) const {
std::pair<Bezier, Bezier > sx = inner[X].subdivide(t), sy = inner[Y].subdivide(t);
return std::pair<BezierCurve<order>, BezierCurve<order> >(
BezierCurve<order>(sx.first, sy.first),
BezierCurve<order>(sx.second, sy.second));
}
Curve *portion(double f, double t) const {
return new BezierCurve(Geom::portion(inner, f, t));
}
Curve *reverse() const {
return new BezierCurve(Geom::reverse(inner));
}
Curve *transformed(Matrix const &m) const {
BezierCurve *ret = new BezierCurve();
std::vector<Point> ps = points();
for(unsigned i = 0; i <= order; i++) ps[i] = ps[i] * m;
ret->setPoints(ps);
return ret;
}
Curve *derivative() const {
if(order > 1)
return new BezierCurve<order-1>(Geom::derivative(inner[X]), Geom::derivative(inner[Y]));
else if (order == 1) {
double dx = inner[X][1] - inner[X][0], dy = inner[Y][1] - inner[Y][0];
return new BezierCurve<1>(Point(dx,dy),Point(dx,dy));
}
}
Point pointAt(double t) const { return inner.valueAt(t); }
std::vector<Point> pointAndDerivatives(Coord t, unsigned n) const { return inner.valueAndDerivatives(t, n); }
double valueAt(double t, Dim2 d) const { return inner[d].valueAt(t); }
D2<SBasis> toSBasis() const {return inner.toSBasis(); }
protected:
BezierCurve(Point c[]) {
Coord x[order+1], y[order+1];
for(unsigned i = 0; i <= order; i++) {
x[i] = c[i][X]; y[i] = c[i][Y];
}
inner = Bezier(x, y);
}
};
// BezierCurve<0> is meaningless; specialize it out
template<> class BezierCurve<0> : public BezierCurve<1> { public: BezierCurve(); BezierCurve(Bezier x, Bezier y); };
typedef BezierCurve<1> LineSegment;
typedef BezierCurve<2> QuadraticBezier;
typedef BezierCurve<3> CubicBezier;
template<>
inline
double LineSegment::nearestPoint(Point const& p, double from, double to) const
{
if ( from > to ) std::swap(from, to);
Point ip = pointAt(from);
Point fp = pointAt(to);
Point v = fp - ip;
double l2v = L2sq(v);
if(l2v == 0) return 0;
double t = dot( p - ip, v ) / l2v;
if ( t <= 0 ) return from;
else if ( t >= 1 ) return to;
else return from + t*(to-from);
}
inline
Point middle_point(LineSegment const& _segment)
{
return ( _segment.initialPoint() + _segment.finalPoint() ) / 2;
}
inline
double length(LineSegment const& _segment)
{
return distance(_segment.initialPoint(), _segment.finalPoint());
}
} // end namespace Geom
#endif // _2GEOM_BEZIER_CURVE_H_
/*
Local Variables:
mode:c++
c-file-style:"stroustrup"
c-file-offsets:((innamespace . 0)(inline-open . 0)(case-label . +))
indent-tabs-mode:nil
fill-column:99
End:
*/
// vim: filetype=cpp:expandtab:shiftwidth=4:tabstop=8:softtabstop=4:encoding=utf-8:textwidth=99 :