mach_vm_dep.c revision 7c478bd95313f5f23a4c958a745db2134aa03244
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License, Version 1.0 only
* (the "License"). You may not use this file except in compliance
* with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
/* All Rights Reserved */
/*
* Portions of this source code were derived from Berkeley 4.3 BSD
* under license from the Regents of the University of California.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* UNIX machine dependent virtual memory support.
*/
#include <sys/vm.h>
#include <sys/exec.h>
#include <sys/cmn_err.h>
#include <sys/cpu_module.h>
#include <sys/cpu.h>
#include <sys/elf_SPARC.h>
#include <sys/archsystm.h>
#include <vm/hat_sfmmu.h>
#include <sys/memnode.h>
#include <sys/mem_cage.h>
#include <vm/vm_dep.h>
#include <sys/error.h>
#include <sys/machsystm.h>
#include <vm/seg_kmem.h>
uint_t page_colors = 0;
uint_t page_colors_mask = 0;
uint_t page_coloring_shift = 0;
int consistent_coloring;
uint_t mmu_page_sizes = MMU_PAGE_SIZES;
uint_t max_mmu_page_sizes = MMU_PAGE_SIZES;
uint_t mmu_hashcnt = MAX_HASHCNT;
uint_t max_mmu_hashcnt = MAX_HASHCNT;
size_t mmu_ism_pagesize = DEFAULT_ISM_PAGESIZE;
/*
* A bitmask of the page sizes supported by hardware based upon szc.
* The base pagesize (p_szc == 0) must always be supported by the hardware.
*/
int mmu_exported_pagesize_mask;
uint_t mmu_exported_page_sizes;
uint_t szc_2_userszc[MMU_PAGE_SIZES];
uint_t userszc_2_szc[MMU_PAGE_SIZES];
extern uint_t vac_colors_mask;
extern int vac_shift;
hw_pagesize_t hw_page_array[] = {
{MMU_PAGESIZE, MMU_PAGESHIFT, MMU_PAGESIZE >> MMU_PAGESHIFT},
{MMU_PAGESIZE64K, MMU_PAGESHIFT64K, MMU_PAGESIZE64K >> MMU_PAGESHIFT},
{MMU_PAGESIZE512K, MMU_PAGESHIFT512K,
MMU_PAGESIZE512K >> MMU_PAGESHIFT},
{MMU_PAGESIZE4M, MMU_PAGESHIFT4M, MMU_PAGESIZE4M >> MMU_PAGESHIFT},
{MMU_PAGESIZE32M, MMU_PAGESHIFT32M, MMU_PAGESIZE32M >> MMU_PAGESHIFT},
{MMU_PAGESIZE256M, MMU_PAGESHIFT256M,
MMU_PAGESIZE256M >> MMU_PAGESHIFT},
{0, 0, 0}
};
/*
* Enable usage of 64k/4M pages for text and 64k pages for initdata for
* all sun4v platforms. These variables can be overwritten by the platmod
* or the CPU module. User can also change the setting via /etc/system.
*/
int use_text_pgsz64k = 1;
int use_text_pgsz4m = 1;
int use_initdata_pgsz64k = 1;
/*
* disable_text_largepages and disable_initdata_largepages bitmaks reflect
* both unconfigured and undesirable page sizes. Current implementation
* supports 64K and 4M page sizes for text and only 64K for data. Rest of
* the page sizes are not currently supported, hence disabled below. In
* future, when support is added for any other page size, it should be
* reflected below.
*
* Note that these bitmask can be set in platform or CPU specific code to
* disable page sizes that should not be used. These variables normally
* shouldn't be changed via /etc/system.
*
* These bitmasks are also updated within hat_init to reflect unsupported
* page sizes on a sun4v processor per mmu_exported_pagesize_mask global
* variable.
*/
int disable_text_largepages =
(1 << TTE512K) | (1 << TTE32M) | (1 << TTE256M) | (1 << TTE2G) |
(1 << TTE16G);
int disable_initdata_largepages =
(1 << TTE512K) | (1 << TTE4M) | (1 << TTE32M) | (1 << TTE256M) |
(1 << TTE2G) | (1 << TTE16G);
/*
* Minimum segment size tunables before 64K or 4M large pages
* should be used to map it.
*/
size_t text_pgsz64k_minsize = MMU_PAGESIZE64K;
size_t text_pgsz4m_minsize = MMU_PAGESIZE4M;
size_t initdata_pgsz64k_minsize = MMU_PAGESIZE64K;
/*
* map_addr_proc() is the routine called when the system is to
* choose an address for the user. We will pick an address
* range which is just below the current stack limit. The
* algorithm used for cache consistency on machines with virtual
* address caches is such that offset 0 in the vnode is always
* on a shm_alignment'ed aligned address. Unfortunately, this
* means that vnodes which are demand paged will not be mapped
* cache consistently with the executable images. When the
* cache alignment for a given object is inconsistent, the
* lower level code must manage the translations so that this
* is not seen here (at the cost of efficiency, of course).
*
* addrp is a value/result parameter.
* On input it is a hint from the user to be used in a completely
* machine dependent fashion. For MAP_ALIGN, addrp contains the
* minimal alignment.
*
* On output it is NULL if no address can be found in the current
* processes address space or else an address that is currently
* not mapped for len bytes with a page of red zone on either side.
* If vacalign is true, then the selected address will obey the alignment
* constraints of a vac machine based on the given off value.
*/
/*ARGSUSED3*/
void
map_addr_proc(caddr_t *addrp, size_t len, offset_t off, int vacalign,
caddr_t userlimit, struct proc *p, uint_t flags)
{
struct as *as = p->p_as;
caddr_t addr;
caddr_t base;
size_t slen;
uintptr_t align_amount;
int allow_largepage_alignment = 1;
base = p->p_brkbase;
if (userlimit < as->a_userlimit) {
/*
* This happens when a program wants to map something in
* a range that's accessible to a program in a smaller
* address space. For example, a 64-bit program might
* be calling mmap32(2) to guarantee that the returned
* address is below 4Gbytes.
*/
ASSERT(userlimit > base);
slen = userlimit - base;
} else {
slen = p->p_usrstack - base - (((size_t)rctl_enforced_value(
rctlproc_legacy[RLIMIT_STACK], p->p_rctls, p) + PAGEOFFSET)
& PAGEMASK);
}
len = (len + PAGEOFFSET) & PAGEMASK;
/*
* Redzone for each side of the request. This is done to leave
* one page unmapped between segments. This is not required, but
* it's useful for the user because if their program strays across
* a segment boundary, it will catch a fault immediately making
* debugging a little easier.
*/
len += (2 * PAGESIZE);
/*
* If the request is larger than the size of a particular
* mmu level, then we use that level to map the request.
* But this requires that both the virtual and the physical
* addresses be aligned with respect to that level, so we
* do the virtual bit of nastiness here.
*
* For 32-bit processes, only those which have specified
* MAP_ALIGN or an addr will be aligned on a page size > 4MB. Otherwise
* we can potentially waste up to 256MB of the 4G process address
* space just for alignment.
*
* XXXQ Should iterate trough hw_page_array here to catch
* all supported pagesizes
*/
if (p->p_model == DATAMODEL_ILP32 && ((flags & MAP_ALIGN) == 0 ||
((uintptr_t)*addrp) != 0)) {
allow_largepage_alignment = 0;
}
if ((mmu_page_sizes == max_mmu_page_sizes) &&
allow_largepage_alignment &&
(len >= MMU_PAGESIZE256M)) { /* 256MB mappings */
align_amount = MMU_PAGESIZE256M;
} else if ((mmu_page_sizes == max_mmu_page_sizes) &&
allow_largepage_alignment &&
(len >= MMU_PAGESIZE32M)) { /* 32MB mappings */
align_amount = MMU_PAGESIZE32M;
} else if (len >= MMU_PAGESIZE4M) { /* 4MB mappings */
align_amount = MMU_PAGESIZE4M;
} else if (len >= MMU_PAGESIZE512K) { /* 512KB mappings */
align_amount = MMU_PAGESIZE512K;
} else if (len >= MMU_PAGESIZE64K) { /* 64KB mappings */
align_amount = MMU_PAGESIZE64K;
} else {
/*
* Align virtual addresses on a 64K boundary to ensure
* that ELF shared libraries are mapped with the appropriate
* alignment constraints by the run-time linker.
*/
align_amount = ELF_SPARC_MAXPGSZ;
if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp != 0) &&
((uintptr_t)*addrp < align_amount))
align_amount = (uintptr_t)*addrp;
}
/*
* 64-bit processes require 1024K alignment of ELF shared libraries.
*/
if (p->p_model == DATAMODEL_LP64)
align_amount = MAX(align_amount, ELF_SPARCV9_MAXPGSZ);
#ifdef VAC
if (vac && vacalign && (align_amount < shm_alignment))
align_amount = shm_alignment;
#endif
if ((flags & MAP_ALIGN) && ((uintptr_t)*addrp > align_amount)) {
align_amount = (uintptr_t)*addrp;
}
len += align_amount;
/*
* Look for a large enough hole starting below the stack limit.
* After finding it, use the upper part. Addition of PAGESIZE is
* for the redzone as described above.
*/
as_purge(as);
if (as_gap(as, len, &base, &slen, AH_HI, NULL) == 0) {
caddr_t as_addr;
addr = base + slen - len + PAGESIZE;
as_addr = addr;
/*
* Round address DOWN to the alignment amount,
* add the offset, and if this address is less
* than the original address, add alignment amount.
*/
addr = (caddr_t)((uintptr_t)addr & (~(align_amount - 1l)));
addr += (long)(off & (align_amount - 1l));
if (addr < as_addr) {
addr += align_amount;
}
ASSERT(addr <= (as_addr + align_amount));
ASSERT(((uintptr_t)addr & (align_amount - 1l)) ==
((uintptr_t)(off & (align_amount - 1l))));
*addrp = addr;
} else {
*addrp = NULL; /* no more virtual space */
}
}
/* Auto large page tunables. */
int auto_lpg_tlb_threshold = 32;
int auto_lpg_minszc = TTE64K;
int auto_lpg_maxszc = TTE256M;
size_t auto_lpg_heap_default = MMU_PAGESIZE64K;
size_t auto_lpg_stack_default = MMU_PAGESIZE64K;
size_t auto_lpg_va_default = MMU_PAGESIZE64K;
size_t auto_lpg_remap_threshold = 0; /* always remap */
size_t
map_pgsz(int maptype, struct proc *p, caddr_t addr, size_t len, int *remap)
{
uint_t n;
size_t pgsz = 0;
if (remap)
*remap = (len > auto_lpg_remap_threshold);
switch (maptype) {
case MAPPGSZ_ISM:
n = hat_preferred_pgsz(p->p_as->a_hat, addr, len, maptype);
pgsz = hw_page_array[n].hp_size;
break;
case MAPPGSZ_VA:
n = hat_preferred_pgsz(p->p_as->a_hat, addr, len, maptype);
pgsz = hw_page_array[n].hp_size;
if ((pgsz <= MMU_PAGESIZE) ||
!IS_P2ALIGNED(addr, pgsz) || !IS_P2ALIGNED(len, pgsz))
pgsz = map_pgszva(p, addr, len);
break;
case MAPPGSZ_STK:
pgsz = map_pgszstk(p, addr, len);
break;
case MAPPGSZ_HEAP:
pgsz = map_pgszheap(p, addr, len);
break;
}
return (pgsz);
}
/*
* Platform-dependent page scrub call.
* We call hypervisor to scrub the page.
*/
void
pagescrub(page_t *pp, uint_t off, uint_t len)
{
uint64_t pa, length;
pa = (uint64_t)(pp->p_pagenum << MMU_PAGESHIFT + off);
length = (uint64_t)len;
(void) mem_scrub(pa, length);
}
void
sync_data_memory(caddr_t va, size_t len)
{
/* Call memory sync function */
mem_sync(va, len);
}
size_t
mmu_get_kernel_lpsize(size_t lpsize)
{
extern int mmu_exported_pagesize_mask;
uint_t tte;
if (lpsize == 0) {
/* no setting for segkmem_lpsize in /etc/system: use default */
if (mmu_exported_pagesize_mask & (1 << TTE256M)) {
lpsize = MMU_PAGESIZE256M;
} else if (mmu_exported_pagesize_mask & (1 << TTE4M)) {
lpsize = MMU_PAGESIZE4M;
} else if (mmu_exported_pagesize_mask & (1 << TTE64K)) {
lpsize = MMU_PAGESIZE64K;
} else {
lpsize = MMU_PAGESIZE;
}
return (lpsize);
}
for (tte = TTE8K; tte <= TTE256M; tte++) {
if ((mmu_exported_pagesize_mask & (1 << tte)) == 0)
continue;
if (lpsize == TTEBYTES(tte))
return (lpsize);
}
lpsize = TTEBYTES(TTE8K);
return (lpsize);
}
void
mmu_init_kcontext()
{
}
/*ARGSUSED*/
void
mmu_init_kernel_pgsz(struct hat *hat)
{
}
#define QUANTUM_SIZE 64
static vmem_t *contig_mem_slab_arena;
static vmem_t *contig_mem_arena;
uint_t contig_mem_slab_size = MMU_PAGESIZE4M;
static void *
contig_mem_span_alloc(vmem_t *vmp, size_t size, int vmflag)
{
page_t *ppl;
page_t *rootpp;
caddr_t addr = NULL;
pgcnt_t npages = btopr(size);
page_t **ppa;
int pgflags;
int i = 0;
if ((addr = vmem_xalloc(vmp, size, size, 0, 0,
NULL, NULL, vmflag)) == NULL) {
return (NULL);
}
/* If we ever don't want slab-sized pages, this will panic */
ASSERT(((uintptr_t)addr & (contig_mem_slab_size - 1)) == 0);
if (page_resv(npages, vmflag & VM_KMFLAGS) == 0) {
vmem_xfree(vmp, addr, size);
return (NULL);
}
pgflags = PG_EXCL;
if ((vmflag & VM_NOSLEEP) == 0)
pgflags |= PG_WAIT;
if (vmflag & VM_PANIC)
pgflags |= PG_PANIC;
if (vmflag & VM_PUSHPAGE)
pgflags |= PG_PUSHPAGE;
ppl = page_create_va_large(&kvp, (u_offset_t)(uintptr_t)addr, size,
pgflags, &kvseg, addr, NULL);
if (ppl == NULL) {
vmem_xfree(vmp, addr, size);
page_unresv(npages);
return (NULL);
}
rootpp = ppl;
ppa = kmem_zalloc(npages * sizeof (page_t *), KM_SLEEP);
while (ppl != NULL) {
page_t *pp = ppl;
ppa[i++] = pp;
page_sub(&ppl, pp);
ASSERT(page_iolock_assert(pp));
page_io_unlock(pp);
}
/*
* Load the locked entry. It's OK to preload the entry into
* the TSB since we now support large mappings in the kernel TSB.
*/
hat_memload_array(kas.a_hat, (caddr_t)rootpp->p_offset, size,
ppa, (PROT_ALL & ~PROT_USER) | HAT_NOSYNC, HAT_LOAD_LOCK);
for (--i; i >= 0; --i) {
(void) page_pp_lock(ppa[i], 0, 1);
page_unlock(ppa[i]);
}
kmem_free(ppa, npages * sizeof (page_t *));
return (addr);
}
void
contig_mem_span_free(vmem_t *vmp, void *inaddr, size_t size)
{
page_t *pp;
caddr_t addr = inaddr;
caddr_t eaddr;
pgcnt_t npages = btopr(size);
pgcnt_t pgs_left = npages;
page_t *rootpp = NULL;
ASSERT(((uintptr_t)addr & (contig_mem_slab_size - 1)) == 0);
hat_unload(kas.a_hat, addr, size, HAT_UNLOAD_UNLOCK);
for (eaddr = addr + size; addr < eaddr; addr += PAGESIZE) {
pp = page_lookup(&kvp, (u_offset_t)(uintptr_t)addr, SE_EXCL);
if (pp == NULL)
panic("contig_mem_span_free: page not found");
ASSERT(PAGE_EXCL(pp));
page_pp_unlock(pp, 0, 1);
if (rootpp == NULL)
rootpp = pp;
if (--pgs_left == 0) {
/*
* similar logic to segspt_free_pages, but we know we
* have one large page.
*/
page_destroy_pages(rootpp);
}
}
page_unresv(npages);
if (vmp != NULL)
vmem_xfree(vmp, inaddr, size);
}
static void *
contig_vmem_xalloc_aligned_wrapper(vmem_t *vmp, size_t size, int vmflag)
{
return (vmem_xalloc(vmp, size, size, 0, 0, NULL, NULL, vmflag));
}
void *
contig_mem_alloc(size_t size)
{
return (vmem_xalloc(contig_mem_arena, size, size, 0, 0,
NULL, NULL, VM_NOSLEEP));
}
void
contig_mem_free(void *vaddr, size_t size)
{
vmem_xfree(contig_mem_arena, vaddr, size);
}
/*
* We create a set of stacked vmem arenas to enable us to
* allocate large >PAGESIZE chucks of contiguous Real Address space
* This is what the Dynamics TSB support does for TSBs.
* The contig_mem_arena import functions are exactly the same as the
* TSB kmem_default arena import functions.
*/
void
contig_mem_init(void)
{
contig_mem_slab_arena = vmem_create("contig_mem_slab_arena", NULL, 0,
contig_mem_slab_size, contig_vmem_xalloc_aligned_wrapper,
vmem_xfree, heap_arena, 0, VM_SLEEP);
contig_mem_arena = vmem_create("contig_mem_arena", NULL, 0,
QUANTUM_SIZE, contig_mem_span_alloc, contig_mem_span_free,
contig_mem_slab_arena, 0, VM_SLEEP | VM_BESTFIT);
}