mpo.c revision e853d8c363bb48f997502f6e034877de20256ab0
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/sysmacros.h>
#include <sys/machsystm.h>
#include <sys/machparam.h>
#include <sys/cmn_err.h>
#include <sys/stat.h>
#include <sys/mach_descrip.h>
#include <sys/memnode.h>
#include <sys/mdesc.h>
#include <sys/mpo.h>
#include <vm/vm_dep.h>
#include <vm/hat_sfmmu.h>
/*
* MPO and the sun4v memory representation
* ---------------------------------------
*
* Latency groups are defined in the sun4v achitecture by memory-latency-group
* nodes in the Machine Description, as specified in FWARC/2007/260. These
* tie together cpu nodes and mblock nodes, and contain mask and match
* properties that identify the portion of an mblock that belongs to the
* lgroup. Mask and match are defined in the Physical Address (PA) space,
* but an mblock defines Real Addresses (RA). To translate, the mblock
* includes the property address-congruence-offset, hereafter referred to as
* ra_to_pa. A real address ra is a member of an lgroup if
*
* (ra + mblock.ra_to_pa) & lgroup.mask == lgroup.match
*
* The MD is traversed, and information on all mblocks is kept in the array
* mpo_mblock[]. Information on all CPUs, including which lgroup they map
* to, is kept in the array mpo_cpu[].
*
* This implementation makes (and verifies) the simplifying assumption that
* the mask bits are the same for all defined lgroups, and that all 1 bits in
* the mask are contiguous. Thus the number of lgroups is bounded by the
* number of possible mask values, and the lgrp_handle_t is defined as the
* mask value, shifted right to eliminate the 0 bit positions in mask. The
* masks and values are also referred to as "home bits" in the code.
*
* A mem_node is defined to be 1:1 with an lgrp_handle_t, thus each lgroup
* has exactly 1 mem_node, and plat_pfn_to_mem_node() must find the mblock
* containing a pfn, apply the mblock's ra_to_pa adjustment, and extract the
* home bits. This yields the mem_node.
*
* Interfaces
* ----------
*
* This file exports the following entry points:
*
* plat_lgrp_init()
* plat_build_mem_nodes()
* plat_lgrp_cpu_to_hand()
* plat_lgrp_latency()
* plat_pfn_to_mem_node()
* These implement the usual platform lgroup interfaces.
*
* plat_rapfn_to_papfn()
* Recover the PA page coloring bits from an RA.
*
* plat_mem_node_iterator_init()
* Initialize an iterator to efficiently step through pages in a mem_node.
*
* plat_mem_node_intersect_range()
* Find the intersection with a mem_node.
*/
int sun4v_mpo_enable = 1;
int sun4v_mpo_debug = 0;
char sun4v_mpo_status[256] = "";
/* Save CPU info from the MD and associate CPUs with lgroups */
static struct cpu_md mpo_cpu[NCPU];
/* Save lgroup info from the MD */
#define MAX_MD_LGROUPS 32
static struct lgrp_md mpo_lgroup[MAX_MD_LGROUPS];
static int n_lgrpnodes = 0;
static int n_locality_groups = 0;
static int max_locality_groups = 0;
/* Save mblocks from the MD */
static struct mblock_md mpo_mblock[MPO_MAX_MBLOCKS];
static int n_mblocks = 0;
/* Save mem_node stripes calculate from mblocks and lgroups. */
static mem_stripe_t mem_stripes[MAX_MEM_STRIPES];
static int n_mem_stripes = 0;
static pfn_t mnode_stride; /* distance between stripes, start to start */
static int stripe_shift; /* stride/stripes expressed as a shift */
static pfn_t mnode_pages; /* mem_node stripe width */
/* Save home mask and shift used to calculate lgrp_handle_t values */
static uint64_t home_mask = 0;
static pfn_t home_mask_pfn = 0;
static int home_mask_shift = 0;
static uint_t home_mask_pfn_shift = 0;
/* Save lowest and highest latencies found across all lgroups */
static int lower_latency = 0;
static int higher_latency = 0;
static pfn_t base_ra_to_pa_pfn = 0; /* ra_to_pa for single mblock memory */
static int valid_pages(md_t *md, mde_cookie_t cpu0);
static int unique_home_mem_lg_count(uint64_t mem_lg_homeset);
static int fix_interleave(void);
/* Debug support */
#if defined(DEBUG) && !defined(lint)
#define MPO_DEBUG(args...) if (sun4v_mpo_debug) printf(args)
#else
#define MPO_DEBUG(...)
#endif /* DEBUG */
/* Record status message, viewable from mdb */
#define MPO_STATUS(args...) { \
(void) snprintf(sun4v_mpo_status, sizeof (sun4v_mpo_status), args); \
MPO_DEBUG(sun4v_mpo_status); \
}
/*
* Routine to read a uint64_t from a given md
*/
static int64_t
get_int(md_t md, mde_cookie_t node, char *propname, uint64_t *val)
{
int err = md_get_prop_val(md, node, propname, val);
return (err);
}
static int
mblock_cmp(const void *a, const void *b)
{
struct mblock_md *m1 = (struct mblock_md *)a;
struct mblock_md *m2 = (struct mblock_md *)b;
if (m1->base < m2->base)
return (-1);
else if (m1->base == m2->base)
return (0);
else
return (1);
}
static void
mblock_sort(struct mblock_md *mblocks, int n)
{
extern void qsort(void *, size_t, size_t,
int (*)(const void *, const void *));
qsort(mblocks, n, sizeof (mblocks[0]), mblock_cmp);
}
/*
*
* Traverse the MD to determine:
*
* Number of CPU nodes, lgrp_nodes, and mblocks
* Then for each lgrp_node, obtain the appropriate data.
* For each CPU, determine its home locality and store it.
* For each mblock, retrieve its data and store it.
*/
static int
lgrp_traverse(md_t *md)
{
mde_cookie_t root, *cpunodes, *lgrpnodes, *nodes, *mblocknodes;
uint64_t i, j, k, o, n_nodes;
uint64_t n_lgroups = 0;
uint64_t mem_lg_homeset = 0;
int ret_val = 0;
int result = 0;
int n_cpunodes = 0;
int sub_page_fix;
n_nodes = md_node_count(md);
if (n_nodes <= 0) {
MPO_STATUS("lgrp_traverse: No nodes in node count\n");
ret_val = -1;
goto fail;
}
root = md_root_node(md);
if (root == MDE_INVAL_ELEM_COOKIE) {
MPO_STATUS("lgrp_traverse: Root node is missing\n");
ret_val = -1;
goto fail;
}
/*
* Build the Memory Nodes. Do this before any possibility of
* bailing from this routine so we obtain ra_to_pa (needed for page
* coloring) even when there are no lgroups defined.
*/
n_mblocks = md_alloc_scan_dag(md, root, PROP_LG_MBLOCK,
"fwd", &mblocknodes);
if (n_mblocks <= 0 || n_mblocks > MPO_MAX_MBLOCKS) {
MPO_STATUS("lgrp_traverse: No mblock "
"nodes detected in Machine Descriptor\n");
n_mblocks = 0;
ret_val = -1;
goto fail;
}
for (i = 0; i < n_mblocks; i++) {
mpo_mblock[i].node = mblocknodes[i];
/* Without a base or size value we will fail */
result = get_int(md, mblocknodes[i], PROP_LG_BASE,
&mpo_mblock[i].base);
if (result < 0) {
MPO_STATUS("lgrp_traverse: "
"PROP_LG_BASE is missing\n");
n_mblocks = 0;
ret_val = -1;
goto fail;
}
result = get_int(md, mblocknodes[i], PROP_LG_SIZE,
&mpo_mblock[i].size);
if (result < 0) {
MPO_STATUS("lgrp_traverse: "
"PROP_LG_SIZE is missing\n");
n_mblocks = 0;
ret_val = -1;
goto fail;
}
result = get_int(md, mblocknodes[i],
PROP_LG_RA_PA_OFFSET, &mpo_mblock[i].ra_to_pa);
/* If we don't have an ra_pa_offset, just set it to 0 */
if (result < 0)
mpo_mblock[i].ra_to_pa = 0;
MPO_DEBUG("mblock[%ld]: base = %lx, size = %lx, "
"ra_to_pa = %lx\n", i,
mpo_mblock[i].base,
mpo_mblock[i].size,
mpo_mblock[i].ra_to_pa);
}
/* Must sort mblocks by address for mem_node_iterator_init() */
mblock_sort(mpo_mblock, n_mblocks);
base_ra_to_pa_pfn = btop(mpo_mblock[0].ra_to_pa);
/* Page coloring hook is required so we can iterate through mnodes */
if (&page_next_pfn_for_color_cpu == NULL) {
MPO_STATUS("lgrp_traverse: No page coloring support\n");
ret_val = -1;
goto fail;
}
/* Global enable for mpo */
if (sun4v_mpo_enable == 0) {
MPO_STATUS("lgrp_traverse: MPO feature is not enabled\n");
ret_val = -1;
goto fail;
}
n_lgrpnodes = md_alloc_scan_dag(md, root, PROP_LG_MEM_LG,
"fwd", &lgrpnodes);
if (n_lgrpnodes <= 0 || n_lgrpnodes >= MAX_MD_LGROUPS) {
MPO_STATUS("lgrp_traverse: No Lgroups\n");
ret_val = -1;
goto fail;
}
n_cpunodes = md_alloc_scan_dag(md, root, PROP_LG_CPU, "fwd", &cpunodes);
if (n_cpunodes <= 0 || n_cpunodes > NCPU) {
MPO_STATUS("lgrp_traverse: No CPU nodes detected "
"in MD\n");
ret_val = -1;
goto fail;
}
MPO_DEBUG("lgrp_traverse: Node Count: %ld\n", n_nodes);
MPO_DEBUG("lgrp_traverse: md: %p\n", md);
MPO_DEBUG("lgrp_traverse: root: %lx\n", root);
MPO_DEBUG("lgrp_traverse: mem_lgs: %d\n", n_lgrpnodes);
MPO_DEBUG("lgrp_traverse: cpus: %d\n", n_cpunodes);
MPO_DEBUG("lgrp_traverse: mblocks: %d\n", n_mblocks);
for (i = 0; i < n_lgrpnodes; i++) {
mpo_lgroup[i].node = lgrpnodes[i];
mpo_lgroup[i].id = i;
mpo_lgroup[i].ncpu = 0;
result = get_int(md, lgrpnodes[i], PROP_LG_MASK,
&mpo_lgroup[i].addr_mask);
result |= get_int(md, lgrpnodes[i], PROP_LG_MATCH,
&mpo_lgroup[i].addr_match);
/*
* If either the mask or match properties are missing, set to 0
*/
if (result < 0) {
mpo_lgroup[i].addr_mask = 0;
mpo_lgroup[i].addr_match = 0;
}
/* Set latency to 0 if property not present */
result = get_int(md, lgrpnodes[i], PROP_LG_LATENCY,
&mpo_lgroup[i].latency);
if (result < 0)
mpo_lgroup[i].latency = 0;
}
/*
* Sub-page level interleave is not yet supported. Check for it,
* and remove sub-page interleaved lgroups from mpo_lgroup and
* n_lgrpnodes. If no lgroups are left, return.
*/
sub_page_fix = fix_interleave();
if (n_lgrpnodes == 0) {
ret_val = -1;
goto fail;
}
/* Ensure that all of the addr_mask values are the same */
for (i = 0; i < n_lgrpnodes; i++) {
if (mpo_lgroup[0].addr_mask != mpo_lgroup[i].addr_mask) {
MPO_STATUS("lgrp_traverse: "
"addr_mask values are not the same\n");
ret_val = -1;
goto fail;
}
}
/*
* Ensure that all lgrp nodes see all the mblocks. However, if
* sub-page interleave is being fixed, they do not, so skip
* the check.
*/
if (sub_page_fix == 0) {
for (i = 0; i < n_lgrpnodes; i++) {
j = md_alloc_scan_dag(md, mpo_lgroup[i].node,
PROP_LG_MBLOCK, "fwd", &nodes);
md_free_scan_dag(md, &nodes);
if (j != n_mblocks) {
MPO_STATUS("lgrp_traverse: "
"sub-page interleave is being fixed\n");
ret_val = -1;
goto fail;
}
}
}
/*
* Use the address mask from the first lgroup node
* to establish our home_mask.
*/
home_mask = mpo_lgroup[0].addr_mask;
home_mask_pfn = btop(home_mask);
home_mask_shift = lowbit(home_mask) - 1;
home_mask_pfn_shift = home_mask_shift - PAGESHIFT;
mnode_pages = btop(1ULL << home_mask_shift);
/*
* How many values are possible in home mask? Assume the mask
* bits are contiguous.
*/
max_locality_groups =
1 << highbit(home_mask_pfn >> home_mask_pfn_shift);
/* Now verify the home mask bits are contiguous */
if (max_locality_groups - 1 != home_mask_pfn >> home_mask_pfn_shift) {
MPO_STATUS("lgrp_traverse: "
"home mask bits are not contiguous\n");
ret_val = -1;
goto fail;
}
/* Record all of the home bits */
for (i = 0; i < n_lgrpnodes; i++) {
HOMESET_ADD(mem_lg_homeset,
mpo_lgroup[i].addr_match >> home_mask_shift);
}
/* Count the number different "home" mem_lg's we've discovered */
n_locality_groups = unique_home_mem_lg_count(mem_lg_homeset);
/* If we have only 1 locality group then we can exit */
if (n_locality_groups == 1) {
MPO_STATUS("lgrp_traverse: n_locality_groups == 1\n");
ret_val = -1;
goto fail;
}
/*
* Set the latencies. A CPU's lgroup is defined by the lowest
* latency found. All other memory is considered remote, and the
* remote latency is represented by the highest latency found.
* Thus hierarchical lgroups, if any, are approximated by a
* two level scheme.
*
* The Solaris MPO framework by convention wants to see latencies
* in units of nano-sec/10. In the MD, the units are defined to be
* pico-seconds.
*/
lower_latency = mpo_lgroup[0].latency;
higher_latency = mpo_lgroup[0].latency;
for (i = 1; i < n_lgrpnodes; i++) {
if (mpo_lgroup[i].latency < lower_latency) {
lower_latency = mpo_lgroup[i].latency;
}
if (mpo_lgroup[i].latency > higher_latency) {
higher_latency = mpo_lgroup[i].latency;
}
}
lower_latency /= 10000;
higher_latency /= 10000;
/* Clear our CPU data */
for (i = 0; i < NCPU; i++) {
mpo_cpu[i].home = 0;
mpo_cpu[i].latency = (uint_t)(-1);
}
/* Build the CPU nodes */
for (i = 0; i < n_cpunodes; i++) {
/* Read in the lgroup nodes */
result = get_int(md, cpunodes[i], PROP_LG_CPU_ID, &k);
if (result < 0) {
MPO_STATUS("lgrp_traverse: PROP_LG_CPU_ID missing\n");
ret_val = -1;
goto fail;
}
n_lgroups = md_alloc_scan_dag(md, cpunodes[i], PROP_LG_MEM_LG,
"fwd", &nodes);
if (n_lgroups <= 0) {
MPO_STATUS("lgrp_traverse: PROP_LG_MEM_LG missing");
ret_val = -1;
goto fail;
}
/*
* Find the lgroup this cpu belongs to with the lowest latency.
* Check all the lgrp nodes connected to this CPU to determine
* which has the smallest latency.
*/
for (j = 0; j < n_lgroups; j++) {
for (o = 0; o < n_lgrpnodes; o++) {
if (nodes[j] == mpo_lgroup[o].node) {
if (mpo_lgroup[o].latency <
mpo_cpu[k].latency) {
mpo_cpu[k].home =
mpo_lgroup[o].addr_match
>> home_mask_shift;
mpo_cpu[k].latency =
mpo_lgroup[o].latency;
mpo_lgroup[o].ncpu++;
}
}
}
}
md_free_scan_dag(md, &nodes);
}
/* Validate that no large pages cross mnode boundaries. */
if (valid_pages(md, cpunodes[0]) == 0) {
ret_val = -1;
goto fail;
}
fail:
/* MD cookies are no longer valid; ensure they are not used again. */
for (i = 0; i < n_mblocks; i++)
mpo_mblock[i].node = MDE_INVAL_ELEM_COOKIE;
for (i = 0; i < n_lgrpnodes; i++)
mpo_lgroup[i].node = MDE_INVAL_ELEM_COOKIE;
if (n_cpunodes > 0)
md_free_scan_dag(md, &cpunodes);
if (n_lgrpnodes > 0)
md_free_scan_dag(md, &lgrpnodes);
if (n_mblocks > 0)
md_free_scan_dag(md, &mblocknodes);
else
panic("lgrp_traverse: No memory blocks found");
if (ret_val == 0)
MPO_STATUS("MPO feature is enabled.\n");
return (ret_val);
}
/*
* Determine the number of unique mem_lg's present in our system
*/
static int
unique_home_mem_lg_count(uint64_t mem_lg_homeset)
{
int homeid;
int count = 0;
/*
* Scan the "home" bits of the mem_lgs, count
* the number that are unique.
*/
for (homeid = 0; homeid < NLGRPS_MAX; homeid++) {
if (MEM_LG_ISMEMBER(mem_lg_homeset, homeid)) {
count++;
}
}
MPO_DEBUG("unique_home_mem_lg_count: homeset %lx\n",
mem_lg_homeset);
MPO_DEBUG("unique_home_mem_lg_count: count: %d\n", count);
/* Default must be at least one */
if (count == 0)
count = 1;
return (count);
}
/*
* Platform specific lgroup initialization
*/
void
plat_lgrp_init(void)
{
md_t *md;
int i, rc, ncpu_min;
/* Get the Machine Descriptor handle */
md = md_get_handle();
/* If not, we cannot continue */
if (md == NULL) {
panic("cannot access machine descriptor\n");
} else {
rc = lgrp_traverse(md);
(void) md_fini_handle(md);
}
/*
* If we can't process the MD for lgroups then at least let the
* system try to boot. Assume we have one lgroup so that
* when plat_build_mem_nodes is called, it will attempt to init
* an mnode based on the supplied memory segment.
*/
if (rc == -1) {
home_mask_pfn = 0;
max_locality_groups = 1;
n_locality_groups = 1;
return;
}
mem_node_pfn_shift = 0;
mem_node_physalign = 0;
/* Use lgroup-aware TSB allocations */
tsb_lgrp_affinity = 1;
/*
* lgrp_expand_proc_thresh is the minimum load on the lgroups
* this process is currently running on before considering
* expanding threads to another lgroup.
*
* lgrp_expand_proc_diff determines how much less the remote lgroup
* must be loaded before expanding to it.
*
* On sun4v CMT processors, threads share a core pipeline, and
* at less than 100% utilization, best throughput is obtained by
* spreading threads across more cores, even if some are in a
* different lgroup. Spread threads to a new lgroup if the
* current group is more than 50% loaded. Because of virtualization,
* lgroups may have different numbers of CPUs, but the tunables
* apply to all lgroups, so find the smallest lgroup and compute
* 50% loading.
*/
ncpu_min = NCPU;
for (i = 0; i < n_lgrpnodes; i++) {
int ncpu = mpo_lgroup[i].ncpu;
if (ncpu != 0 && ncpu < ncpu_min)
ncpu_min = ncpu;
}
lgrp_expand_proc_thresh = ncpu_min * lgrp_loadavg_max_effect / 2;
/* new home may only be half as loaded as the existing home to use it */
lgrp_expand_proc_diff = lgrp_expand_proc_thresh / 2;
lgrp_loadavg_tolerance = lgrp_loadavg_max_effect;
/* Require that a home lgroup have some memory to be chosen */
lgrp_mem_free_thresh = 1;
/* Standard home-on-next-touch policy */
lgrp_mem_policy_root = LGRP_MEM_POLICY_NEXT;
/* Disable option to choose root lgroup if all leaf lgroups are busy */
lgrp_load_thresh = UINT32_MAX;
}
/*
* Helper routine for debugging calls to mem_node_add_slice()
*/
static void
mpo_mem_node_add_slice(pfn_t basepfn, pfn_t endpfn)
{
#if defined(DEBUG) && !defined(lint)
static int slice_count = 0;
slice_count++;
MPO_DEBUG("mem_add_slice(%d): basepfn: %lx endpfn: %lx\n",
slice_count, basepfn, endpfn);
#endif
mem_node_add_slice(basepfn, endpfn);
}
/*
* Helper routine for debugging calls to plat_assign_lgrphand_to_mem_node()
*/
static void
mpo_plat_assign_lgrphand_to_mem_node(lgrp_handle_t plathand, int mnode)
{
MPO_DEBUG("plat_assign_to_mem_nodes: lgroup home %ld,"
"mnode index: %d\n", plathand, mnode);
plat_assign_lgrphand_to_mem_node(plathand, mnode);
}
/*
* plat_build_mem_nodes()
*
* Define the mem_nodes based on the modified boot memory list,
* or based on info read from the MD in plat_lgrp_init().
*
* When the home mask lies in the middle of the address bits (as it does on
* Victoria Falls), then the memory in one mem_node is no longer contiguous;
* it is striped across an mblock in a repeating pattern of contiguous memory
* followed by a gap. The stripe width is the size of the contiguous piece.
* The stride is the distance from the start of one contiguous piece to the
* start of the next. The gap is thus stride - stripe_width.
*
* The stripe of an mnode that falls within an mblock is described by the type
* mem_stripe_t, and there is one mem_stripe_t per mnode per mblock. The
* mem_stripe_t's are kept in a global array mem_stripes[]. The index into
* this array is predetermined. The mem_stripe_t that describes mnode m
* within mpo_mblock[i] is stored at
* mem_stripes[ m + i * max_locality_groups ]
*
* max_locality_groups is the total number of possible locality groups,
* as defined by the size of the home mask, even if the memory assigned
* to the domain is small and does not cover all the lgroups. Thus some
* mem_stripe_t's may be empty.
*
* The members of mem_stripe_t are:
* physbase: First valid page in mem_node in the corresponding mblock
* physmax: Last valid page in mem_node in mblock
* offset: The full stripe width starts at physbase - offset.
* Thus if offset is non-zero, this mem_node starts in the middle
* of a stripe width, and the second full stripe starts at
* physbase - offset + stride. (even though physmax may fall in the
* middle of a stripe width, we do not save the ending fragment size
* in this data structure.)
* exists: Set to 1 if the mblock has memory in this mem_node stripe.
*
* The stripe width is kept in the global mnode_pages.
* The stride is kept in the global mnode_stride.
* All the above use pfn's as the unit.
*
* As an example, the memory layout for a domain with 2 mblocks and 4
* mem_nodes 0,1,2,3 could look like this:
*
* 123012301230 ... 012301230123 ...
* mblock 0 mblock 1
*/
void
plat_build_mem_nodes(u_longlong_t *list, size_t nelems)
{
lgrp_handle_t lgrphand, lgrp_start;
int i, mnode, elem;
uint64_t offset, stripe_end, base, len, end, ra_to_pa, stride;
uint64_t stripe, frag, remove;
mem_stripe_t *ms;
/* Pre-reserve space for plat_assign_lgrphand_to_mem_node */
max_mem_nodes = max_locality_groups;
/* Check for non-MPO sun4v platforms */
if (n_locality_groups <= 1) {
mpo_plat_assign_lgrphand_to_mem_node(LGRP_DEFAULT_HANDLE, 0);
for (elem = 0; elem < nelems; elem += 2) {
base = list[elem];
len = list[elem+1];
mpo_mem_node_add_slice(btop(base),
btop(base + len - 1));
}
mem_node_pfn_shift = 0;
mem_node_physalign = 0;
n_mem_stripes = 0;
if (n_mblocks == 1)
return;
}
bzero(mem_stripes, sizeof (mem_stripes));
stripe = ptob(mnode_pages);
stride = max_locality_groups * stripe;
/* Save commonly used values in globals */
mnode_stride = btop(stride);
n_mem_stripes = max_locality_groups * n_mblocks;
stripe_shift = highbit(max_locality_groups) - 1;
for (i = 0; i < n_mblocks; i++) {
base = mpo_mblock[i].base;
end = mpo_mblock[i].base + mpo_mblock[i].size;
ra_to_pa = mpo_mblock[i].ra_to_pa;
mpo_mblock[i].base_pfn = btop(base);
mpo_mblock[i].end_pfn = btop(end - 1);
/* Find the offset from the prev stripe boundary in PA space. */
offset = (base + ra_to_pa) & (stripe - 1);
/* Set the next stripe boundary. */
stripe_end = base - offset + stripe;
lgrp_start = (((base + ra_to_pa) & home_mask) >>
home_mask_shift);
lgrphand = lgrp_start;
/*
* Loop over all lgroups covered by the mblock, creating a
* stripe for each. Stop when lgrp_start is visited again.
*/
do {
/* mblock may not span all lgroups */
if (base >= end)
break;
mnode = lgrphand;
ASSERT(mnode < max_mem_nodes);
/*
* Calculate the size of the fragment that does not
* belong to the mnode in the last partial stride.
*/
frag = (end - (base - offset)) & (stride - 1);
if (frag == 0) {
/* remove the gap */
remove = stride - stripe;
} else if (frag < stripe) {
/* fragment fits in stripe; keep it all */
remove = 0;
} else {
/* fragment is large; trim after whole stripe */
remove = frag - stripe;
}
ms = &mem_stripes[i * max_locality_groups + mnode];
ms->physbase = btop(base);
ms->physmax = btop(end - 1 - remove);
ms->offset = btop(offset);
ms->exists = 1;
/*
* If we have only 1 lgroup and multiple mblocks,
* then we have already established our lgrp handle
* to mem_node and mem_node_config values above.
*/
if (n_locality_groups > 1) {
mpo_plat_assign_lgrphand_to_mem_node(lgrphand,
mnode);
mpo_mem_node_add_slice(ms->physbase,
ms->physmax);
}
base = stripe_end;
stripe_end += stripe;
offset = 0;
lgrphand = (((base + ra_to_pa) & home_mask) >>
home_mask_shift);
} while (lgrphand != lgrp_start);
}
/*
* Indicate to vm_pagelist that the hpm_counters array
* should be shared because the ranges overlap.
*/
if (max_mem_nodes > 1) {
interleaved_mnodes = 1;
}
}
/*
* Return the locality group value for the supplied processor
*/
lgrp_handle_t
plat_lgrp_cpu_to_hand(processorid_t id)
{
if (n_locality_groups > 1) {
return ((lgrp_handle_t)mpo_cpu[(int)id].home);
} else {
return ((lgrp_handle_t)LGRP_DEFAULT_HANDLE); /* Default */
}
}
int
plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
{
/*
* Return min remote latency when there are more than two lgroups
* (root and child) and getting latency between two different lgroups
* or root is involved.
*/
if (lgrp_optimizations() && (from != to ||
from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE)) {
return ((int)higher_latency);
} else {
return ((int)lower_latency);
}
}
int
plat_pfn_to_mem_node(pfn_t pfn)
{
int i, mnode;
pfn_t ra_to_pa_pfn;
struct mblock_md *mb;
if (n_locality_groups <= 1)
return (0);
/*
* The mnode is defined to be 1:1 with the lgroup handle, which
* is taken from from the home bits. Find the mblock in which
* the pfn falls to get the ra_to_pa adjustment, and extract
* the home bits.
*/
mb = &mpo_mblock[0];
for (i = 0; i < n_mblocks; i++) {
if (pfn >= mb->base_pfn && pfn <= mb->end_pfn) {
ra_to_pa_pfn = btop(mb->ra_to_pa);
mnode = (((pfn + ra_to_pa_pfn) & home_mask_pfn) >>
home_mask_pfn_shift);
ASSERT(mnode < max_mem_nodes);
return (mnode);
}
mb++;
}
panic("plat_pfn_to_mem_node() failed to find mblock: pfn=%lx\n", pfn);
return (pfn);
}
/*
* plat_rapfn_to_papfn
*
* Convert a pfn in RA space to a pfn in PA space, in which the page coloring
* and home mask bits are correct. The upper bits do not necessarily
* match the actual PA, however.
*/
pfn_t
plat_rapfn_to_papfn(pfn_t pfn)
{
int i;
pfn_t ra_to_pa_pfn;
struct mblock_md *mb;
ASSERT(n_mblocks > 0);
if (n_mblocks == 1)
return (pfn + base_ra_to_pa_pfn);
/*
* Find the mblock in which the pfn falls
* in order to get the ra_to_pa adjustment.
*/
for (mb = &mpo_mblock[0], i = 0; i < n_mblocks; i++, mb++) {
if (pfn <= mb->end_pfn && pfn >= mb->base_pfn) {
ra_to_pa_pfn = btop(mb->ra_to_pa);
return (pfn + ra_to_pa_pfn);
}
}
panic("plat_rapfn_to_papfn() failed to find mblock: pfn=%lx\n", pfn);
return (pfn);
}
/*
* plat_mem_node_iterator_init()
* Initialize cookie to iterate over pfn's in an mnode. There is
* no additional iterator function. The caller uses the info from
* the iterator structure directly.
*
* pfn: starting pfn.
* mnode: desired mnode.
* init: set to 1 for full init, 0 for continuation
*
* Returns the appropriate starting pfn for the iteration
* the same as the input pfn if it falls in an mblock.
* Returns the (pfn_t)-1 value if the input pfn lies past
* the last valid mnode pfn.
*/
pfn_t
plat_mem_node_iterator_init(pfn_t pfn, int mnode,
mem_node_iterator_t *it, int init)
{
int i;
struct mblock_md *mblock;
pfn_t base, end;
ASSERT(it != NULL);
ASSERT(mnode >= 0 && mnode < max_mem_nodes);
ASSERT(n_mblocks > 0);
if (init) {
it->mi_last_mblock = 0;
it->mi_init = 1;
}
/* Check if mpo is not enabled and we only have one mblock */
if (n_locality_groups == 1 && n_mblocks == 1) {
it->mi_mnode = mnode;
it->mi_ra_to_pa = base_ra_to_pa_pfn;
it->mi_mnode_pfn_mask = 0;
it->mi_mnode_pfn_shift = 0;
it->mi_mnode_mask = 0;
it->mi_mblock_base = mem_node_config[mnode].physbase;
it->mi_mblock_end = mem_node_config[mnode].physmax;
if (pfn < it->mi_mblock_base)
pfn = it->mi_mblock_base;
else if (pfn > it->mi_mblock_end)
pfn = (pfn_t)-1;
return (pfn);
}
/*
* Find mblock that contains pfn, or first mblock after pfn,
* else pfn is out of bounds, so use the last mblock.
* mblocks are sorted in ascending address order.
*/
ASSERT(it->mi_last_mblock < n_mblocks);
ASSERT(init == 1 || pfn > mpo_mblock[it->mi_last_mblock].end_pfn);
i = init ? 0 : it->mi_last_mblock + 1;
if (i == n_mblocks)
return ((pfn_t)-1);
for (; i < n_mblocks; i++) {
if (pfn <= mpo_mblock[i].end_pfn)
break;
}
if (i == n_mblocks) {
it->mi_last_mblock = i - 1;
return ((pfn_t)-1);
}
it->mi_last_mblock = i;
/*
* Memory stripes are defined if there is more than one locality
* group, so use the stripe bounds. Otherwise use mblock bounds.
*/
mblock = &mpo_mblock[i];
if (n_mem_stripes > 0) {
mem_stripe_t *ms =
&mem_stripes[i * max_locality_groups + mnode];
base = ms->physbase;
end = ms->physmax;
} else {
ASSERT(mnode == 0);
base = mblock->base_pfn;
end = mblock->end_pfn;
}
it->mi_mnode = mnode;
it->mi_ra_to_pa = btop(mblock->ra_to_pa);
it->mi_mblock_base = base;
it->mi_mblock_end = end;
it->mi_mnode_pfn_mask = home_mask_pfn; /* is 0 for non-MPO case */
it->mi_mnode_pfn_shift = home_mask_pfn_shift;
it->mi_mnode_mask = max_locality_groups - 1;
if (pfn < base)
pfn = base;
else if (pfn > end)
pfn = (pfn_t)-1;
return (pfn);
}
/*
* plat_mem_node_intersect_range()
*
* Find the intersection between a memnode and a range of pfn's.
*/
void
plat_mem_node_intersect_range(pfn_t test_base, pgcnt_t test_len,
int mnode, pgcnt_t *npages_out)
{
pfn_t offset, len, hole, base, end, test_end, frag;
pfn_t nearest;
mem_stripe_t *ms;
int i, npages;
*npages_out = 0;
if (!mem_node_config[mnode].exists || test_len == 0)
return;
base = mem_node_config[mnode].physbase;
end = mem_node_config[mnode].physmax;
test_end = test_base + test_len - 1;
if (end < test_base || base > test_end)
return;
if (n_locality_groups == 1) {
*npages_out = MIN(test_end, end) - MAX(test_base, base) + 1;
return;
}
hole = mnode_stride - mnode_pages;
npages = 0;
/*
* Iterate over all the stripes for this mnode (one per mblock),
* find the intersection with each, and accumulate the intersections.
*
* Determing the intersection with a stripe is tricky. If base or end
* fall outside the mem_node bounds, round them to physbase/physmax of
* mem_node. If base or end fall in a gap, round them to start of
* nearest stripe. If they fall within a stripe, keep base or end,
* but calculate the fragment size that should be excluded from the
* stripe. Calculate how many strides fall in the adjusted range,
* multiply by stripe width, and add the start and end fragments.
*/
for (i = mnode; i < n_mem_stripes; i += max_locality_groups) {
ms = &mem_stripes[i];
if (ms->exists &&
test_base <= (end = ms->physmax) &&
test_end >= (base = ms->physbase)) {
offset = ms->offset;
if (test_base > base) {
/* Round test_base to next multiple of stride */
len = P2ROUNDUP(test_base - (base - offset),
mnode_stride);
nearest = base - offset + len;
/*
* Compute distance from test_base to the
* stride boundary to see if test_base falls
* in the stripe or in the hole.
*/
if (nearest - test_base > hole) {
/*
* test_base lies in stripe,
* and offset should be excluded.
*/
offset = test_base -
(nearest - mnode_stride);
base = test_base;
} else {
/* round up to next stripe start */
offset = 0;
base = nearest;
if (base > end)
continue;
}
}
if (test_end < end)
end = test_end;
end++; /* adjust to an exclusive bound */
/* Round end to next multiple of stride */
len = P2ROUNDUP(end - (base - offset), mnode_stride);
nearest = (base - offset) + len;
if (nearest - end <= hole) {
/* end falls in hole, use entire last stripe */
frag = 0;
} else {
/* end falls in stripe, compute fragment */
frag = nearest - hole - end;
}
len = (len >> stripe_shift) - offset - frag;
npages += len;
}
}
*npages_out = npages;
}
/*
* valid_pages()
*
* Return 1 if pages are valid and do not cross mnode boundaries
* (which would break page free list assumptions), and 0 otherwise.
*/
#define MNODE(pa) \
((btop(pa) & home_mask_pfn) >> home_mask_pfn_shift)
static int
valid_pages(md_t *md, mde_cookie_t cpu0)
{
int i, max_szc;
uint64_t last_page_base, szc_mask;
uint64_t max_page_len, max_coalesce_len;
struct mblock_md *mb = mpo_mblock;
/*
* Find the smaller of the largest page possible and supported.
* mmu_exported_pagesize_mask is not yet initialized, so read
* it from the MD. Apply minimal fixups in case of broken MDs
* to get a sane mask.
*/
if (md_get_prop_val(md, cpu0, "mmu-page-size-list", &szc_mask))
szc_mask = 0;
szc_mask |= (1 << TTE4M); /* largest in sun4v default support */
max_szc = highbit(szc_mask) - 1;
if (max_szc > TTE256M)
max_szc = TTE256M;
max_page_len = TTEBYTES(max_szc);
/*
* Page coalescing code coalesces all sizes up to 256M on sun4v, even
* if mmu-page-size-list does not contain it, so 256M pages must fall
* within one mnode to use MPO.
*/
max_coalesce_len = TTEBYTES(TTE256M);
ASSERT(max_coalesce_len >= max_page_len);
if (ptob(mnode_pages) < max_coalesce_len) {
MPO_STATUS("Page too large; MPO disabled: page = %lx, "
"mnode slice = %lx\n", max_coalesce_len, ptob(mnode_pages));
return (0);
}
for (i = 0; i < n_mblocks; i++) {
uint64_t base = mb->base;
uint64_t end = mb->base + mb->size - 1;
uint64_t ra_to_pa = mb->ra_to_pa;
/*
* If mblock is smaller than the max page size, then
* RA = PA mod MAXPAGE is not guaranteed, but it must
* not span mnodes.
*/
if (mb->size < max_page_len) {
if (MNODE(base + ra_to_pa) != MNODE(end + ra_to_pa)) {
MPO_STATUS("Small mblock spans mnodes; "
"MPO disabled: base = %lx, end = %lx, "
"ra2pa = %lx\n", base, end, ra_to_pa);
return (0);
}
} else {
/* Verify RA = PA mod MAXPAGE, using coalesce size */
uint64_t pa_base = base + ra_to_pa;
if ((base & (max_coalesce_len - 1)) !=
(pa_base & (max_coalesce_len - 1))) {
MPO_STATUS("bad page alignment; MPO disabled: "
"ra = %lx, pa = %lx, pagelen = %lx\n",
base, pa_base, max_coalesce_len);
return (0);
}
}
/*
* Find start of last large page in mblock in RA space.
* If page extends into the next mblock, verify the
* mnode does not change.
*/
last_page_base = P2ALIGN(end, max_coalesce_len);
if (i + 1 < n_mblocks &&
last_page_base + max_coalesce_len > mb[1].base &&
MNODE(last_page_base + ra_to_pa) !=
MNODE(mb[1].base + mb[1].ra_to_pa)) {
MPO_STATUS("Large page spans mblocks; MPO disabled: "
"end = %lx, ra2pa = %lx, base = %lx, ra2pa = %lx, "
"pagelen = %lx\n", end, ra_to_pa, mb[1].base,
mb[1].ra_to_pa, max_coalesce_len);
return (0);
}
mb++;
}
return (1);
}
/*
* fix_interleave() - Find lgroups with sub-page sized memory interleave,
* if any, and remove them. This yields a config where the "coarse
* grained" lgroups cover all of memory, even though part of that memory
* is fine grain interleaved and does not deliver a purely local memory
* latency.
*
* This function reads and modifies the globals:
* mpo_lgroup[], n_lgrpnodes
*
* Returns 1 if lgroup nodes were removed, 0 otherwise.
*/
static int
fix_interleave(void)
{
int i, j;
uint64_t mask = 0;
j = 0;
for (i = 0; i < n_lgrpnodes; i++) {
if ((mpo_lgroup[i].addr_mask & PAGEOFFSET) != 0) {
/* remove this lgroup */
mask = mpo_lgroup[i].addr_mask;
} else {
mpo_lgroup[j++] = mpo_lgroup[i];
}
}
n_lgrpnodes = j;
if (mask != 0)
MPO_STATUS("sub-page interleave %lx found; "
"removing lgroup.\n", mask);
return (mask != 0);
}