mach_cpu_states.c revision 843e19887f64dde75055cf8842fc4db2171eff45
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2007 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/archsystm.h>
#include <sys/t_lock.h>
#include <sys/uadmin.h>
#include <sys/panic.h>
#include <sys/reboot.h>
#include <sys/autoconf.h>
#include <sys/machsystm.h>
#include <sys/promif.h>
#include <sys/membar.h>
#include <vm/hat_sfmmu.h>
#include <sys/cpu_module.h>
#include <sys/cpu_sgnblk_defs.h>
#include <sys/intreg.h>
#include <sys/consdev.h>
#include <sys/kdi_impl.h>
#include <sys/traptrace.h>
#include <sys/hypervisor_api.h>
#include <sys/vmsystm.h>
#include <sys/dtrace.h>
#include <sys/xc_impl.h>
#include <sys/callb.h>
#include <sys/mdesc.h>
#include <sys/mach_descrip.h>
#include <sys/wdt.h>
#include <sys/soft_state.h>
#include <sys/promimpl.h>
#include <sys/hsvc.h>
#include <sys/ldoms.h>
/*
* hvdump_buf_va is a pointer to the currently-configured hvdump_buf.
* A value of NULL indicates that this area is not configured.
* hvdump_buf_sz is tunable but will be clamped to HVDUMP_SIZE_MAX.
*/
caddr_t hvdump_buf_va;
uint64_t hvdump_buf_sz = HVDUMP_SIZE_DEFAULT;
static uint64_t hvdump_buf_pa;
u_longlong_t panic_tick;
extern u_longlong_t gettick();
static void reboot_machine(char *);
static void update_hvdump_buffer(void);
/*
* For xt_sync synchronization.
*/
extern uint64_t xc_tick_limit;
extern uint64_t xc_tick_jump_limit;
/*
* We keep our own copies, used for cache flushing, because we can be called
* before cpu_fiximpl().
*/
static int kdi_dcache_size;
static int kdi_dcache_linesize;
static int kdi_icache_size;
static int kdi_icache_linesize;
/*
* Assembly support for generic modules in sun4v/ml/mach_xc.s
*/
extern void init_mondo_nocheck(xcfunc_t *func, uint64_t arg1, uint64_t arg2);
extern void kdi_flush_idcache(int, int, int, int);
extern uint64_t get_cpuaddr(uint64_t, uint64_t);
#define BOOT_CMD_MAX_LEN 256
#define BOOT_CMD_BASE "boot "
/*
* In an LDoms system we do not save the user's boot args in NVRAM
* as is done on legacy systems. Instead, we format and send a
* 'reboot-command' variable to the variable service. The contents
* of the variable are retrieved by OBP and used verbatim for
* the next boot.
*/
static void
store_boot_cmd(char *args)
{
static char cmd_buf[BOOT_CMD_MAX_LEN];
size_t len;
pnode_t node;
size_t base_len;
size_t args_len;
size_t args_max;
(void) strcpy(cmd_buf, BOOT_CMD_BASE);
base_len = strlen(BOOT_CMD_BASE);
len = base_len + 1;
if (args != NULL) {
args_len = strlen(args);
args_max = BOOT_CMD_MAX_LEN - len;
if (args_len > args_max) {
cmn_err(CE_WARN, "Reboot command too long (%ld), "
"truncating command arguments", len + args_len);
args_len = args_max;
}
len += args_len;
(void) strncpy(&cmd_buf[base_len], args, args_len);
}
node = prom_optionsnode();
if ((node == OBP_NONODE) || (node == OBP_BADNODE) ||
prom_setprop(node, "reboot-command", cmd_buf, len) == -1)
cmn_err(CE_WARN, "Unable to store boot command for "
"use on reboot");
}
/*
* Machine dependent code to reboot.
*
* "bootstr", when non-null, points to a string to be used as the
* argument string when rebooting.
*
* "invoke_cb" is a boolean. It is set to true when mdboot() can safely
* invoke CB_CL_MDBOOT callbacks before shutting the system down, i.e. when
* we are in a normal shutdown sequence (interrupts are not blocked, the
* system is not panic'ing or being suspended).
*/
/*ARGSUSED*/
void
mdboot(int cmd, int fcn, char *bootstr, boolean_t invoke_cb)
{
extern void pm_cfb_check_and_powerup(void);
/*
* XXX - rconsvp is set to NULL to ensure that output messages
* are sent to the underlying "hardware" device using the
* monitor's printf routine since we are in the process of
* either rebooting or halting the machine.
*/
rconsvp = NULL;
switch (fcn) {
case AD_HALT:
case AD_POWEROFF:
break;
default:
if (bootstr == NULL) {
switch (fcn) {
case AD_BOOT:
bootstr = "";
break;
case AD_IBOOT:
bootstr = "-a";
break;
case AD_SBOOT:
bootstr = "-s";
break;
case AD_SIBOOT:
bootstr = "-sa";
break;
default:
cmn_err(CE_WARN,
"mdboot: invalid function %d", fcn);
bootstr = "";
break;
}
}
}
/*
* If LDoms is running, we must save the boot string before we
* enter restricted mode. This is possible only if we are not
* being called from panic.
*/
if (domaining_enabled() && invoke_cb)
store_boot_cmd(bootstr);
/*
* At a high interrupt level we can't:
* 1) bring up the console
* or
* 2) wait for pending interrupts prior to redistribution
* to the current CPU
*
* so we do them now.
*/
pm_cfb_check_and_powerup();
/* make sure there are no more changes to the device tree */
devtree_freeze();
if (invoke_cb)
(void) callb_execute_class(CB_CL_MDBOOT, NULL);
/*
* Clear any unresolved UEs from memory.
*/
page_retire_mdboot();
/*
* stop other cpus which also raise our priority. since there is only
* one active cpu after this, and our priority will be too high
* for us to be preempted, we're essentially single threaded
* from here on out.
*/
stop_other_cpus();
/*
* try and reset leaf devices. reset_leaves() should only
* be called when there are no other threads that could be
* accessing devices
*/
reset_leaves();
watchdog_clear();
if (fcn == AD_HALT) {
mach_set_soft_state(SIS_TRANSITION,
&SOLARIS_SOFT_STATE_HALT_MSG);
halt((char *)NULL);
} else if (fcn == AD_POWEROFF) {
mach_set_soft_state(SIS_TRANSITION,
&SOLARIS_SOFT_STATE_POWER_MSG);
power_down(NULL);
} else {
mach_set_soft_state(SIS_TRANSITION,
&SOLARIS_SOFT_STATE_REBOOT_MSG);
reboot_machine(bootstr);
}
/* MAYBE REACHED */
}
/* mdpreboot - may be called prior to mdboot while root fs still mounted */
/*ARGSUSED*/
void
mdpreboot(int cmd, int fcn, char *bootstr)
{
}
/*
* Halt the machine and then reboot with the device
* and arguments specified in bootstr.
*/
static void
reboot_machine(char *bootstr)
{
flush_windows();
stop_other_cpus(); /* send stop signal to other CPUs */
prom_printf("rebooting...\n");
/*
* For platforms that use CPU signatures, we
* need to set the signature block to OS and
* the state to exiting for all the processors.
*/
CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_REBOOT, -1);
prom_reboot(bootstr);
/*NOTREACHED*/
}
/*
* We use the x-trap mechanism and idle_stop_xcall() to stop the other CPUs.
* Once in panic_idle() they raise spl, record their location, and spin.
*/
static void
panic_idle(void)
{
(void) spl7();
debug_flush_windows();
(void) setjmp(&curthread->t_pcb);
CPU->cpu_m.in_prom = 1;
membar_stld();
for (;;)
continue;
}
/*
* Force the other CPUs to trap into panic_idle(), and then remove them
* from the cpu_ready_set so they will no longer receive cross-calls.
*/
/*ARGSUSED*/
void
panic_stopcpus(cpu_t *cp, kthread_t *t, int spl)
{
cpuset_t cps;
int i;
(void) splzs();
CPUSET_ALL_BUT(cps, cp->cpu_id);
xt_some(cps, (xcfunc_t *)idle_stop_xcall, (uint64_t)&panic_idle, NULL);
for (i = 0; i < NCPU; i++) {
if (i != cp->cpu_id && CPU_XCALL_READY(i)) {
int ntries = 0x10000;
while (!cpu[i]->cpu_m.in_prom && ntries) {
DELAY(50);
ntries--;
}
if (!cpu[i]->cpu_m.in_prom)
printf("panic: failed to stop cpu%d\n", i);
cpu[i]->cpu_flags &= ~CPU_READY;
cpu[i]->cpu_flags |= CPU_QUIESCED;
CPUSET_DEL(cpu_ready_set, cpu[i]->cpu_id);
}
}
}
/*
* Platform callback following each entry to panicsys(). If we've panicked at
* level 14, we examine t_panic_trap to see if a fatal trap occurred. If so,
* we disable further %tick_cmpr interrupts. If not, an explicit call to panic
* was made and so we re-enqueue an interrupt request structure to allow
* further level 14 interrupts to be processed once we lower PIL. This allows
* us to handle panics from the deadman() CY_HIGH_LEVEL cyclic.
*/
void
panic_enter_hw(int spl)
{
if (!panic_tick) {
panic_tick = gettick();
if (mach_htraptrace_enable) {
uint64_t prev_freeze;
/* there are no possible error codes for this hcall */
(void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL,
&prev_freeze);
}
#ifdef TRAPTRACE
TRAPTRACE_FREEZE;
#endif
}
mach_set_soft_state(SIS_TRANSITION, &SOLARIS_SOFT_STATE_PANIC_MSG);
if (spl == ipltospl(PIL_14)) {
uint_t opstate = disable_vec_intr();
if (curthread->t_panic_trap != NULL) {
tickcmpr_disable();
intr_dequeue_req(PIL_14, cbe_level14_inum);
} else {
if (!tickcmpr_disabled())
intr_enqueue_req(PIL_14, cbe_level14_inum);
/*
* Clear SOFTINT<14>, SOFTINT<0> (TICK_INT)
* and SOFTINT<16> (STICK_INT) to indicate
* that the current level 14 has been serviced.
*/
wr_clr_softint((1 << PIL_14) |
TICK_INT_MASK | STICK_INT_MASK);
}
enable_vec_intr(opstate);
}
}
/*
* Miscellaneous hardware-specific code to execute after panicstr is set
* by the panic code: we also print and record PTL1 panic information here.
*/
/*ARGSUSED*/
void
panic_quiesce_hw(panic_data_t *pdp)
{
extern uint_t getpstate(void);
extern void setpstate(uint_t);
/*
* Turn off TRAPTRACE and save the current %tick value in panic_tick.
*/
if (!panic_tick) {
panic_tick = gettick();
if (mach_htraptrace_enable) {
uint64_t prev_freeze;
/* there are no possible error codes for this hcall */
(void) hv_ttrace_freeze((uint64_t)TRAP_TFREEZE_ALL,
&prev_freeze);
}
#ifdef TRAPTRACE
TRAPTRACE_FREEZE;
#endif
}
/*
* For Platforms that use CPU signatures, we
* need to set the signature block to OS, the state to
* exiting, and the substate to panic for all the processors.
*/
CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_PANIC, -1);
update_hvdump_buffer();
/*
* Disable further ECC errors from the bus nexus.
*/
(void) bus_func_invoke(BF_TYPE_ERRDIS);
/*
* Redirect all interrupts to the current CPU.
*/
intr_redist_all_cpus_shutdown();
/*
* This call exists solely to support dumps to network
* devices after sync from OBP.
*
* If we came here via the sync callback, then on some
* platforms, interrupts may have arrived while we were
* stopped in OBP. OBP will arrange for those interrupts to
* be redelivered if you say "go", but not if you invoke a
* client callback like 'sync'. For some dump devices
* (network swap devices), we need interrupts to be
* delivered in order to dump, so we have to call the bus
* nexus driver to reset the interrupt state machines.
*/
(void) bus_func_invoke(BF_TYPE_RESINTR);
setpstate(getpstate() | PSTATE_IE);
}
/*
* Platforms that use CPU signatures need to set the signature block to OS and
* the state to exiting for all CPUs. PANIC_CONT indicates that we're about to
* write the crash dump, which tells the SSP/SMS to begin a timeout routine to
* reboot the machine if the dump never completes.
*/
/*ARGSUSED*/
void
panic_dump_hw(int spl)
{
CPU_SIGNATURE(OS_SIG, SIGST_EXIT, SIGSUBST_DUMP, -1);
}
/*
* for ptl1_panic
*/
void
ptl1_init_cpu(struct cpu *cpu)
{
ptl1_state_t *pstate = &cpu->cpu_m.ptl1_state;
/*CONSTCOND*/
if (sizeof (struct cpu) + PTL1_SSIZE > CPU_ALLOC_SIZE) {
panic("ptl1_init_cpu: not enough space left for ptl1_panic "
"stack, sizeof (struct cpu) = %lu",
(unsigned long)sizeof (struct cpu));
}
pstate->ptl1_stktop = (uintptr_t)cpu + CPU_ALLOC_SIZE;
cpu_pa[cpu->cpu_id] = va_to_pa(cpu);
}
void
ptl1_panic_handler(ptl1_state_t *pstate)
{
static const char *ptl1_reasons[] = {
#ifdef PTL1_PANIC_DEBUG
"trap for debug purpose", /* PTL1_BAD_DEBUG */
#else
"unknown trap", /* PTL1_BAD_DEBUG */
#endif
"register window trap", /* PTL1_BAD_WTRAP */
"kernel MMU miss", /* PTL1_BAD_KMISS */
"kernel protection fault", /* PTL1_BAD_KPROT_FAULT */
"ISM MMU miss", /* PTL1_BAD_ISM */
"kernel MMU trap", /* PTL1_BAD_MMUTRAP */
"kernel trap handler state", /* PTL1_BAD_TRAP */
"floating point trap", /* PTL1_BAD_FPTRAP */
#ifdef DEBUG
"pointer to intr_vec", /* PTL1_BAD_INTR_VEC */
#else
"unknown trap", /* PTL1_BAD_INTR_VEC */
#endif
#ifdef TRAPTRACE
"TRACE_PTR state", /* PTL1_BAD_TRACE_PTR */
#else
"unknown trap", /* PTL1_BAD_TRACE_PTR */
#endif
"stack overflow", /* PTL1_BAD_STACK */
"DTrace flags", /* PTL1_BAD_DTRACE_FLAGS */
"attempt to steal locked ctx", /* PTL1_BAD_CTX_STEAL */
"CPU ECC error loop", /* PTL1_BAD_ECC */
"unexpected error from hypervisor call", /* PTL1_BAD_HCALL */
"unexpected global level(%gl)", /* PTL1_BAD_GL */
"Watchdog Reset", /* PTL1_BAD_WATCHDOG */
"unexpected RED mode trap", /* PTL1_BAD_RED */
"return value EINVAL from hcall: "\
"UNMAP_PERM_ADDR", /* PTL1_BAD_HCALL_UNMAP_PERM_EINVAL */
"return value ENOMAP from hcall: "\
"UNMAP_PERM_ADDR", /* PTL1_BAD_HCALL_UNMAP_PERM_ENOMAP */
};
uint_t reason = pstate->ptl1_regs.ptl1_gregs[0].ptl1_g1;
uint_t tl = pstate->ptl1_regs.ptl1_trap_regs[0].ptl1_tl;
struct panic_trap_info ti = { 0 };
/*
* Use trap_info for a place holder to call panic_savetrap() and
* panic_showtrap() to save and print out ptl1_panic information.
*/
if (curthread->t_panic_trap == NULL)
curthread->t_panic_trap = &ti;
if (reason < sizeof (ptl1_reasons) / sizeof (ptl1_reasons[0]))
panic("bad %s at TL %u", ptl1_reasons[reason], tl);
else
panic("ptl1_panic reason 0x%x at TL %u", reason, tl);
}
void
clear_watchdog_on_exit(void)
{
if (watchdog_enabled && watchdog_activated) {
prom_printf("Debugging requested; hardware watchdog "
"suspended.\n");
(void) watchdog_suspend();
}
}
/*
* Restore the watchdog timer when returning from a debugger
* after a panic or L1-A and resume watchdog pat.
*/
void
restore_watchdog_on_entry()
{
watchdog_resume();
}
int
kdi_watchdog_disable(void)
{
watchdog_suspend();
return (0);
}
void
kdi_watchdog_restore(void)
{
watchdog_resume();
}
void
mach_dump_buffer_init(void)
{
uint64_t ret, minsize = 0;
if (hvdump_buf_sz > HVDUMP_SIZE_MAX)
hvdump_buf_sz = HVDUMP_SIZE_MAX;
hvdump_buf_va = contig_mem_alloc_align(hvdump_buf_sz, PAGESIZE);
if (hvdump_buf_va == NULL)
return;
hvdump_buf_pa = va_to_pa(hvdump_buf_va);
ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz,
&minsize);
if (ret != H_EOK) {
contig_mem_free(hvdump_buf_va, hvdump_buf_sz);
hvdump_buf_va = NULL;
cmn_err(CE_NOTE, "!Error in setting up hvstate"
"dump buffer. Error = 0x%lx, size = 0x%lx,"
"buf_pa = 0x%lx", ret, hvdump_buf_sz,
hvdump_buf_pa);
if (ret == H_EINVAL) {
cmn_err(CE_NOTE, "!Buffer size too small."
"Available buffer size = 0x%lx,"
"Minimum buffer size required = 0x%lx",
hvdump_buf_sz, minsize);
}
}
}
static void
update_hvdump_buffer(void)
{
uint64_t ret, dummy_val;
if (hvdump_buf_va == NULL)
return;
ret = hv_dump_buf_update(hvdump_buf_pa, hvdump_buf_sz,
&dummy_val);
if (ret != H_EOK) {
cmn_err(CE_NOTE, "!Cannot update hvstate dump"
"buffer. Error = 0x%lx", ret);
}
}
static int
getintprop(pnode_t node, char *name, int deflt)
{
int value;
switch (prom_getproplen(node, name)) {
case 0:
value = 1; /* boolean properties */
break;
case sizeof (int):
(void) prom_getprop(node, name, (caddr_t)&value);
break;
default:
value = deflt;
break;
}
return (value);
}
/*
* Called by setcpudelay
*/
void
cpu_init_tick_freq(void)
{
md_t *mdp;
mde_cookie_t rootnode;
int listsz;
mde_cookie_t *listp = NULL;
int num_nodes;
uint64_t stick_prop;
if (broken_md_flag) {
sys_tick_freq = cpunodes[CPU->cpu_id].clock_freq;
return;
}
if ((mdp = md_get_handle()) == NULL)
panic("stick_frequency property not found in MD");
rootnode = md_root_node(mdp);
ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE);
num_nodes = md_node_count(mdp);
ASSERT(num_nodes > 0);
listsz = num_nodes * sizeof (mde_cookie_t);
listp = (mde_cookie_t *)prom_alloc((caddr_t)0, listsz, 0);
if (listp == NULL)
panic("cannot allocate list for MD properties");
num_nodes = md_scan_dag(mdp, rootnode, md_find_name(mdp, "platform"),
md_find_name(mdp, "fwd"), listp);
ASSERT(num_nodes == 1);
if (md_get_prop_val(mdp, *listp, "stick-frequency", &stick_prop) != 0)
panic("stick_frequency property not found in MD");
sys_tick_freq = stick_prop;
prom_free((caddr_t)listp, listsz);
(void) md_fini_handle(mdp);
}
int shipit(int n, uint64_t cpu_list_ra);
extern uint64_t xc_tick_limit;
extern uint64_t xc_tick_jump_limit;
#ifdef DEBUG
#define SEND_MONDO_STATS 1
#endif
#ifdef SEND_MONDO_STATS
uint32_t x_one_stimes[64];
uint32_t x_one_ltimes[16];
uint32_t x_set_stimes[64];
uint32_t x_set_ltimes[16];
uint32_t x_set_cpus[NCPU];
#endif
void
send_one_mondo(int cpuid)
{
int retries, stat;
uint64_t starttick, endtick, tick, lasttick;
struct machcpu *mcpup = &(CPU->cpu_m);
CPU_STATS_ADDQ(CPU, sys, xcalls, 1);
starttick = lasttick = gettick();
mcpup->cpu_list[0] = (uint16_t)cpuid;
stat = shipit(1, mcpup->cpu_list_ra);
endtick = starttick + xc_tick_limit;
retries = 0;
while (stat != H_EOK) {
if (stat != H_EWOULDBLOCK) {
if (panic_quiesce)
return;
if (stat == H_ECPUERROR)
cmn_err(CE_PANIC, "send_one_mondo: "
"cpuid: 0x%x has been marked in "
"error", cpuid);
else
cmn_err(CE_PANIC, "send_one_mondo: "
"unexpected hypervisor error 0x%x "
"while sending a mondo to cpuid: "
"0x%x", stat, cpuid);
}
tick = gettick();
/*
* If there is a big jump between the current tick
* count and lasttick, we have probably hit a break
* point. Adjust endtick accordingly to avoid panic.
*/
if (tick > (lasttick + xc_tick_jump_limit))
endtick += (tick - lasttick);
lasttick = tick;
if (tick > endtick) {
if (panic_quiesce)
return;
cmn_err(CE_PANIC, "send mondo timeout "
"(target 0x%x) [retries: 0x%x hvstat: 0x%x]",
cpuid, retries, stat);
}
drv_usecwait(1);
stat = shipit(1, mcpup->cpu_list_ra);
retries++;
}
#ifdef SEND_MONDO_STATS
{
uint64_t n = gettick() - starttick;
if (n < 8192)
x_one_stimes[n >> 7]++;
else if (n < 15*8192)
x_one_ltimes[n >> 13]++;
else
x_one_ltimes[0xf]++;
}
#endif
}
void
send_mondo_set(cpuset_t set)
{
uint64_t starttick, endtick, tick, lasttick;
uint_t largestid, smallestid;
int i, j;
int ncpuids = 0;
int shipped = 0;
int retries = 0;
struct machcpu *mcpup = &(CPU->cpu_m);
ASSERT(!CPUSET_ISNULL(set));
CPUSET_BOUNDS(set, smallestid, largestid);
if (smallestid == CPUSET_NOTINSET) {
return;
}
starttick = lasttick = gettick();
endtick = starttick + xc_tick_limit;
/*
* Assemble CPU list for HV argument. We already know
* smallestid and largestid are members of set.
*/
mcpup->cpu_list[ncpuids++] = (uint16_t)smallestid;
if (largestid != smallestid) {
for (i = smallestid+1; i <= largestid-1; i++) {
if (CPU_IN_SET(set, i)) {
mcpup->cpu_list[ncpuids++] = (uint16_t)i;
}
}
mcpup->cpu_list[ncpuids++] = (uint16_t)largestid;
}
do {
int stat;
stat = shipit(ncpuids, mcpup->cpu_list_ra);
if (stat == H_EOK) {
shipped += ncpuids;
break;
}
/*
* Either not all CPU mondos were sent, or an
* error occurred. CPUs that were sent mondos
* have their CPU IDs overwritten in cpu_list.
* Reset cpu_list so that it only holds those
* CPU IDs that still need to be sent.
*/
for (i = 0, j = 0; i < ncpuids; i++) {
if (mcpup->cpu_list[i] == HV_SEND_MONDO_ENTRYDONE) {
shipped++;
} else {
mcpup->cpu_list[j++] = mcpup->cpu_list[i];
}
}
ncpuids = j;
/*
* Now handle possible errors returned
* from hypervisor.
*/
if (stat == H_ECPUERROR) {
int errorcpus;
if (!panic_quiesce)
cmn_err(CE_CONT, "send_mondo_set: cpuid(s) ");
/*
* Remove any CPUs in the error state from
* cpu_list. At this point cpu_list only
* contains the CPU IDs for mondos not
* succesfully sent.
*/
for (i = 0, errorcpus = 0; i < ncpuids; i++) {
uint64_t state = CPU_STATE_INVALID;
uint16_t id = mcpup->cpu_list[i];
(void) hv_cpu_state(id, &state);
if (state == CPU_STATE_ERROR) {
if (!panic_quiesce)
cmn_err(CE_CONT, "0x%x ", id);
errorcpus++;
} else if (errorcpus > 0) {
mcpup->cpu_list[i - errorcpus] =
mcpup->cpu_list[i];
}
}
ncpuids -= errorcpus;
if (!panic_quiesce) {
if (errorcpus == 0) {
cmn_err(CE_CONT, "<none> have been "
"marked in error\n");
cmn_err(CE_PANIC, "send_mondo_set: "
"hypervisor returned "
"H_ECPUERROR but no CPU in "
"cpu_list in error state");
} else {
cmn_err(CE_CONT, "have been marked in "
"error\n");
cmn_err(CE_PANIC, "send_mondo_set: "
"CPU(s) in error state");
}
}
} else if (stat != H_EWOULDBLOCK) {
if (panic_quiesce)
return;
/*
* For all other errors, panic.
*/
cmn_err(CE_CONT, "send_mondo_set: unexpected "
"hypervisor error 0x%x while sending a "
"mondo to cpuid(s):", stat);
for (i = 0; i < ncpuids; i++) {
cmn_err(CE_CONT, " 0x%x", mcpup->cpu_list[i]);
}
cmn_err(CE_CONT, "\n");
cmn_err(CE_PANIC, "send_mondo_set: unexpected "
"hypervisor error");
}
tick = gettick();
/*
* If there is a big jump between the current tick
* count and lasttick, we have probably hit a break
* point. Adjust endtick accordingly to avoid panic.
*/
if (tick > (lasttick + xc_tick_jump_limit))
endtick += (tick - lasttick);
lasttick = tick;
if (tick > endtick) {
if (panic_quiesce)
return;
cmn_err(CE_CONT, "send mondo timeout "
"[retries: 0x%x] cpuids: ", retries);
for (i = 0; i < ncpuids; i++)
cmn_err(CE_CONT, " 0x%x", mcpup->cpu_list[i]);
cmn_err(CE_CONT, "\n");
cmn_err(CE_PANIC, "send_mondo_set: timeout");
}
while (gettick() < (tick + sys_clock_mhz))
;
retries++;
} while (ncpuids > 0);
CPU_STATS_ADDQ(CPU, sys, xcalls, shipped);
#ifdef SEND_MONDO_STATS
{
uint64_t n = gettick() - starttick;
if (n < 8192)
x_set_stimes[n >> 7]++;
else if (n < 15*8192)
x_set_ltimes[n >> 13]++;
else
x_set_ltimes[0xf]++;
}
x_set_cpus[shipped]++;
#endif
}
void
syncfpu(void)
{
}
void
sticksync_slave(void)
{}
void
sticksync_master(void)
{}
void
cpu_init_cache_scrub(void)
{
mach_set_soft_state(SIS_NORMAL, &SOLARIS_SOFT_STATE_RUN_MSG);
}
int
dtrace_blksuword32_err(uintptr_t addr, uint32_t *data)
{
int ret, watched;
watched = watch_disable_addr((void *)addr, 4, S_WRITE);
ret = dtrace_blksuword32(addr, data, 0);
if (watched)
watch_enable_addr((void *)addr, 4, S_WRITE);
return (ret);
}
int
dtrace_blksuword32(uintptr_t addr, uint32_t *data, int tryagain)
{
if (suword32((void *)addr, *data) == -1)
return (tryagain ? dtrace_blksuword32_err(addr, data) : -1);
dtrace_flush_sec(addr);
return (0);
}
/*ARGSUSED*/
void
cpu_faulted_enter(struct cpu *cp)
{
}
/*ARGSUSED*/
void
cpu_faulted_exit(struct cpu *cp)
{
}
static int
kdi_cpu_ready_iter(int (*cb)(int, void *), void *arg)
{
int rc, i;
for (rc = 0, i = 0; i < NCPU; i++) {
if (CPU_IN_SET(cpu_ready_set, i))
rc += cb(i, arg);
}
return (rc);
}
/*
* Sends a cross-call to a specified processor. The caller assumes
* responsibility for repetition of cross-calls, as appropriate (MARSA for
* debugging).
*/
static int
kdi_xc_one(int cpuid, void (*func)(uintptr_t, uintptr_t), uintptr_t arg1,
uintptr_t arg2)
{
int stat;
struct machcpu *mcpup;
uint64_t cpuaddr_reg = 0, cpuaddr_scr = 0;
mcpup = &(((cpu_t *)get_cpuaddr(cpuaddr_reg, cpuaddr_scr))->cpu_m);
/*
* if (idsr_busy())
* return (KDI_XC_RES_ERR);
*/
init_mondo_nocheck((xcfunc_t *)func, arg1, arg2);
mcpup->cpu_list[0] = (uint16_t)cpuid;
stat = shipit(1, mcpup->cpu_list_ra);
if (stat == 0)
return (KDI_XC_RES_OK);
else
return (KDI_XC_RES_NACK);
}
static void
kdi_tickwait(clock_t nticks)
{
clock_t endtick = gettick() + nticks;
while (gettick() < endtick)
continue;
}
static void
kdi_cpu_init(int dcache_size, int dcache_linesize, int icache_size,
int icache_linesize)
{
kdi_dcache_size = dcache_size;
kdi_dcache_linesize = dcache_linesize;
kdi_icache_size = icache_size;
kdi_icache_linesize = icache_linesize;
}
/* used directly by kdi_read/write_phys */
void
kdi_flush_caches(void)
{
/* Not required on sun4v architecture. */
}
/*ARGSUSED*/
int
kdi_get_stick(uint64_t *stickp)
{
return (-1);
}
void
cpu_kdi_init(kdi_t *kdi)
{
kdi->kdi_flush_caches = kdi_flush_caches;
kdi->mkdi_cpu_init = kdi_cpu_init;
kdi->mkdi_cpu_ready_iter = kdi_cpu_ready_iter;
kdi->mkdi_xc_one = kdi_xc_one;
kdi->mkdi_tickwait = kdi_tickwait;
kdi->mkdi_get_stick = kdi_get_stick;
}
uint64_t soft_state_message_ra[SOLARIS_SOFT_STATE_MSG_CNT];
static uint64_t soft_state_saved_state = (uint64_t)-1;
static int soft_state_initialized = 0;
static uint64_t soft_state_sup_minor; /* Supported minor number */
static hsvc_info_t soft_state_hsvc = {
HSVC_REV_1, NULL, HSVC_GROUP_SOFT_STATE, 1, 0, NULL };
static void
sun4v_system_claim(void)
{
watchdog_suspend();
/*
* For "mdb -K", set soft state to debugging
*/
if (soft_state_saved_state == -1) {
mach_get_soft_state(&soft_state_saved_state,
&SOLARIS_SOFT_STATE_SAVED_MSG);
}
/*
* check again as the read above may or may not have worked and if
* it didn't then soft state will still be -1
*/
if (soft_state_saved_state != -1) {
mach_set_soft_state(SIS_TRANSITION,
&SOLARIS_SOFT_STATE_DEBUG_MSG);
}
}
static void
sun4v_system_release(void)
{
watchdog_resume();
/*
* For "mdb -K", set soft_state state back to original state on exit
*/
if (soft_state_saved_state != -1) {
mach_set_soft_state(soft_state_saved_state,
&SOLARIS_SOFT_STATE_SAVED_MSG);
soft_state_saved_state = -1;
}
}
void
plat_kdi_init(kdi_t *kdi)
{
kdi->pkdi_system_claim = sun4v_system_claim;
kdi->pkdi_system_release = sun4v_system_release;
}
/*
* Routine to return memory information associated
* with a physical address and syndrome.
*/
/* ARGSUSED */
int
cpu_get_mem_info(uint64_t synd, uint64_t afar,
uint64_t *mem_sizep, uint64_t *seg_sizep, uint64_t *bank_sizep,
int *segsp, int *banksp, int *mcidp)
{
return (ENOTSUP);
}
/*
* This routine returns the size of the kernel's FRU name buffer.
*/
size_t
cpu_get_name_bufsize()
{
return (UNUM_NAMLEN);
}
/*
* This routine is a more generic interface to cpu_get_mem_unum(),
* that may be used by other modules (e.g. mm).
*/
/* ARGSUSED */
int
cpu_get_mem_name(uint64_t synd, uint64_t *afsr, uint64_t afar,
char *buf, int buflen, int *lenp)
{
return (ENOTSUP);
}
/* ARGSUSED */
int
cpu_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
{
return (ENOTSUP);
}
/* ARGSUSED */
int
cpu_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp)
{
return (ENOTSUP);
}
/*
* xt_sync - wait for previous x-traps to finish
*/
void
xt_sync(cpuset_t cpuset)
{
union {
uint8_t volatile byte[NCPU];
uint64_t volatile xword[NCPU / 8];
} cpu_sync;
uint64_t starttick, endtick, tick, lasttick;
uint_t largestid, smallestid;
int i, j;
kpreempt_disable();
CPUSET_DEL(cpuset, CPU->cpu_id);
CPUSET_AND(cpuset, cpu_ready_set);
CPUSET_BOUNDS(cpuset, smallestid, largestid);
if (smallestid == CPUSET_NOTINSET)
goto out;
/*
* Sun4v uses a queue for receiving mondos. Successful
* transmission of a mondo only indicates that the mondo
* has been written into the queue.
*
* We use an array of bytes to let each cpu to signal back
* to the cross trap sender that the cross trap has been
* executed. Set the byte to 1 before sending the cross trap
* and wait until other cpus reset it to 0.
*/
bzero((void *)&cpu_sync, NCPU);
cpu_sync.byte[smallestid] = 1;
if (largestid != smallestid) {
for (i = (smallestid + 1); i <= (largestid - 1); i++)
if (CPU_IN_SET(cpuset, i))
cpu_sync.byte[i] = 1;
cpu_sync.byte[largestid] = 1;
}
xt_some(cpuset, (xcfunc_t *)xt_sync_tl1,
(uint64_t)cpu_sync.byte, 0);
starttick = lasttick = gettick();
endtick = starttick + xc_tick_limit;
for (i = (smallestid / 8); i <= (largestid / 8); i++) {
while (cpu_sync.xword[i] != 0) {
tick = gettick();
/*
* If there is a big jump between the current tick
* count and lasttick, we have probably hit a break
* point. Adjust endtick accordingly to avoid panic.
*/
if (tick > (lasttick + xc_tick_jump_limit)) {
endtick += (tick - lasttick);
}
lasttick = tick;
if (tick > endtick) {
if (panic_quiesce)
goto out;
cmn_err(CE_CONT, "Cross trap sync timeout: "
"cpuids:");
for (j = (i * 8); j <= largestid; j++) {
if (cpu_sync.byte[j] != 0)
cmn_err(CE_CONT, " 0x%x", j);
}
cmn_err(CE_CONT, "\n");
cmn_err(CE_PANIC, "xt_sync: timeout");
}
}
}
out:
kpreempt_enable();
}
/*
* Recalculate the values of the cross-call timeout variables based
* on the value of the 'inter-cpu-latency' property of the platform node.
* The property sets the number of nanosec to wait for a cross-call
* to be acknowledged. Other timeout variables are derived from it.
*
* N.B. This implementation is aware of the internals of xc_init()
* and updates many of the same variables.
*/
void
recalc_xc_timeouts(void)
{
typedef union {
uint64_t whole;
struct {
uint_t high;
uint_t low;
} half;
} u_number;
/* See x_call.c for descriptions of these extern variables. */
extern uint64_t xc_tick_limit_scale;
extern uint64_t xc_mondo_time_limit;
extern uint64_t xc_func_time_limit;
extern uint64_t xc_scale;
extern uint64_t xc_mondo_multiplier;
extern uint_t nsec_shift;
/* Temp versions of the target variables */
uint64_t tick_limit;
uint64_t tick_jump_limit;
uint64_t mondo_time_limit;
uint64_t func_time_limit;
uint64_t scale;
uint64_t latency; /* nanoseconds */
uint64_t maxfreq;
uint64_t tick_limit_save = xc_tick_limit;
uint_t tick_scale;
uint64_t top;
uint64_t bottom;
u_number tk;
md_t *mdp;
int nrnode;
mde_cookie_t *platlist;
/*
* Look up the 'inter-cpu-latency' (optional) property in the
* platform node of the MD. The units are nanoseconds.
*/
if ((mdp = md_get_handle()) == NULL) {
cmn_err(CE_WARN, "recalc_xc_timeouts: "
"Unable to initialize machine description");
return;
}
nrnode = md_alloc_scan_dag(mdp,
md_root_node(mdp), "platform", "fwd", &platlist);
ASSERT(nrnode == 1);
if (nrnode < 1) {
cmn_err(CE_WARN, "recalc_xc_timeouts: platform node missing");
goto done;
}
if (md_get_prop_val(mdp, platlist[0],
"inter-cpu-latency", &latency) == -1)
goto done;
/*
* clock.h defines an assembly-language macro
* (NATIVE_TIME_TO_NSEC_SCALE) to convert from %stick
* units to nanoseconds. Since the inter-cpu-latency
* units are nanoseconds and the xc_* variables require
* %stick units, we need the inverse of that function.
* The trick is to perform the calculation without
* floating point, but also without integer truncation
* or overflow. To understand the calculation below,
* please read the discussion of the macro in clock.h.
* Since this new code will be invoked infrequently,
* we can afford to implement it in C.
*
* tick_scale is the reciprocal of nsec_scale which is
* calculated at startup in setcpudelay(). The calc
* of tick_limit parallels that of NATIVE_TIME_TO_NSEC_SCALE
* except we use tick_scale instead of nsec_scale and
* C instead of assembler.
*/
tick_scale = (uint_t)(((u_longlong_t)sys_tick_freq
<< (32 - nsec_shift)) / NANOSEC);
tk.whole = latency;
top = ((uint64_t)tk.half.high << 4) * tick_scale;
bottom = (((uint64_t)tk.half.low << 4) * (uint64_t)tick_scale) >> 32;
tick_limit = top + bottom;
/*
* xc_init() calculated 'maxfreq' by looking at all the cpus,
* and used it to derive some of the timeout variables that we
* recalculate below. We can back into the original value by
* using the inverse of one of those calculations.
*/
maxfreq = xc_mondo_time_limit / xc_scale;
/*
* Don't allow the new timeout (xc_tick_limit) to fall below
* the system tick frequency (stick). Allowing the timeout
* to be set more tightly than this empirically determined
* value may cause panics.
*/
tick_limit = tick_limit < sys_tick_freq ? sys_tick_freq : tick_limit;
tick_jump_limit = tick_limit / 32;
tick_limit *= xc_tick_limit_scale;
/*
* Recalculate xc_scale since it is used in a callback function
* (xc_func_timeout_adj) to adjust two of the timeouts dynamically.
* Make the change in xc_scale proportional to the change in
* xc_tick_limit.
*/
scale = (xc_scale * tick_limit + sys_tick_freq / 2) / tick_limit_save;
if (scale == 0)
scale = 1;
mondo_time_limit = maxfreq * scale;
func_time_limit = mondo_time_limit * xc_mondo_multiplier;
/*
* Don't modify the timeouts if nothing has changed. Else,
* stuff the variables with the freshly calculated (temp)
* variables. This minimizes the window where the set of
* values could be inconsistent.
*/
if (tick_limit != xc_tick_limit) {
xc_tick_limit = tick_limit;
xc_tick_jump_limit = tick_jump_limit;
xc_scale = scale;
xc_mondo_time_limit = mondo_time_limit;
xc_func_time_limit = func_time_limit;
/*
* Force the new values to be used for future cross
* calls. This is necessary only when we increase
* the timeouts.
*/
if (tick_limit > tick_limit_save) {
cpuset_t cpuset = cpu_ready_set;
xt_sync(cpuset);
}
}
done:
if (nrnode > 0)
md_free_scan_dag(mdp, &platlist);
(void) md_fini_handle(mdp);
}
void
mach_soft_state_init(void)
{
int i;
uint64_t ra;
/*
* Try to register soft_state api. If it fails, soft_state api has not
* been implemented in the firmware, so do not bother to setup
* soft_state in the kernel.
*/
if ((i = hsvc_register(&soft_state_hsvc, &soft_state_sup_minor)) != 0) {
return;
}
for (i = 0; i < SOLARIS_SOFT_STATE_MSG_CNT; i++) {
ASSERT(strlen((const char *)(void *)
soft_state_message_strings + i) < SSM_SIZE);
if ((ra = va_to_pa(
(void *)(soft_state_message_strings + i))) == -1ll) {
return;
}
soft_state_message_ra[i] = ra;
}
/*
* Tell OBP that we are supporting Guest State
*/
prom_sun4v_soft_state_supported();
soft_state_initialized = 1;
}
void
mach_set_soft_state(uint64_t state, uint64_t *string_ra)
{
uint64_t rc;
if (soft_state_initialized && *string_ra) {
rc = hv_soft_state_set(state, *string_ra);
if (rc != H_EOK) {
cmn_err(CE_WARN, "hv_soft_state_set returned %ld\n",
rc);
}
}
}
void
mach_get_soft_state(uint64_t *state, uint64_t *string_ra)
{
uint64_t rc;
if (soft_state_initialized && *string_ra) {
rc = hv_soft_state_get(*string_ra, state);
if (rc != H_EOK) {
cmn_err(CE_WARN, "hv_soft_state_get returned %ld\n",
rc);
*state = -1;
}
}
}