vnet_gen.c revision 678453a8ed49104d8adad58f3ba591bdc39883e8
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/types.h>
#include <sys/errno.h>
#include <sys/param.h>
#include <sys/stream.h>
#include <sys/strsubr.h>
#include <sys/kmem.h>
#include <sys/conf.h>
#include <sys/devops.h>
#include <sys/ksynch.h>
#include <sys/stat.h>
#include <sys/modctl.h>
#include <sys/debug.h>
#include <sys/ethernet.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/strsun.h>
#include <sys/note.h>
#include <sys/mac.h>
#include <sys/mac_ether.h>
#include <sys/ldc.h>
#include <sys/mach_descrip.h>
#include <sys/mdeg.h>
#include <net/if.h>
#include <sys/vnet.h>
#include <sys/vio_mailbox.h>
#include <sys/vio_common.h>
#include <sys/vnet_common.h>
#include <sys/vnet_mailbox.h>
#include <sys/vio_util.h>
#include <sys/vnet_gen.h>
#include <sys/atomic.h>
#include <sys/callb.h>
#include <sys/sdt.h>
#include <sys/intr.h>
#include <sys/pattr.h>
#include <sys/vlan.h>
/*
* Implementation of the mac functionality for vnet using the
* generic(default) transport layer of sun4v Logical Domain Channels(LDC).
*/
/*
* Function prototypes.
*/
/* vgen proxy entry points */
int vgen_init(void *vnetp, uint64_t regprop, dev_info_t *vnetdip,
const uint8_t *macaddr, void **vgenhdl);
int vgen_uninit(void *arg);
int vgen_dds_tx(void *arg, void *dmsg);
static int vgen_start(void *arg);
static void vgen_stop(void *arg);
static mblk_t *vgen_tx(void *arg, mblk_t *mp);
static int vgen_multicst(void *arg, boolean_t add,
const uint8_t *mca);
static int vgen_promisc(void *arg, boolean_t on);
static int vgen_unicst(void *arg, const uint8_t *mca);
static int vgen_stat(void *arg, uint_t stat, uint64_t *val);
static void vgen_ioctl(void *arg, queue_t *wq, mblk_t *mp);
/* vgen internal functions */
static int vgen_read_mdprops(vgen_t *vgenp);
static void vgen_update_md_prop(vgen_t *vgenp, md_t *mdp, mde_cookie_t mdex);
static void vgen_read_pri_eth_types(vgen_t *vgenp, md_t *mdp,
mde_cookie_t node);
static void vgen_detach_ports(vgen_t *vgenp);
static void vgen_port_detach(vgen_port_t *portp);
static void vgen_port_list_insert(vgen_port_t *portp);
static void vgen_port_list_remove(vgen_port_t *portp);
static vgen_port_t *vgen_port_lookup(vgen_portlist_t *plistp,
int port_num);
static int vgen_mdeg_reg(vgen_t *vgenp);
static void vgen_mdeg_unreg(vgen_t *vgenp);
static int vgen_mdeg_cb(void *cb_argp, mdeg_result_t *resp);
static int vgen_mdeg_port_cb(void *cb_argp, mdeg_result_t *resp);
static int vgen_add_port(vgen_t *vgenp, md_t *mdp, mde_cookie_t mdex);
static int vgen_port_read_props(vgen_port_t *portp, vgen_t *vgenp, md_t *mdp,
mde_cookie_t mdex);
static int vgen_remove_port(vgen_t *vgenp, md_t *mdp, mde_cookie_t mdex);
static int vgen_port_attach(vgen_port_t *portp);
static void vgen_port_detach_mdeg(vgen_port_t *portp);
static void vgen_port_detach_mdeg(vgen_port_t *portp);
static int vgen_update_port(vgen_t *vgenp, md_t *curr_mdp,
mde_cookie_t curr_mdex, md_t *prev_mdp, mde_cookie_t prev_mdex);
static uint64_t vgen_port_stat(vgen_port_t *portp, uint_t stat);
static int vgen_ldc_attach(vgen_port_t *portp, uint64_t ldc_id);
static void vgen_ldc_detach(vgen_ldc_t *ldcp);
static int vgen_alloc_tx_ring(vgen_ldc_t *ldcp);
static void vgen_free_tx_ring(vgen_ldc_t *ldcp);
static void vgen_init_ports(vgen_t *vgenp);
static void vgen_port_init(vgen_port_t *portp);
static void vgen_uninit_ports(vgen_t *vgenp);
static void vgen_port_uninit(vgen_port_t *portp);
static void vgen_init_ldcs(vgen_port_t *portp);
static void vgen_uninit_ldcs(vgen_port_t *portp);
static int vgen_ldc_init(vgen_ldc_t *ldcp);
static void vgen_ldc_uninit(vgen_ldc_t *ldcp);
static int vgen_init_tbufs(vgen_ldc_t *ldcp);
static void vgen_uninit_tbufs(vgen_ldc_t *ldcp);
static void vgen_clobber_tbufs(vgen_ldc_t *ldcp);
static void vgen_clobber_rxds(vgen_ldc_t *ldcp);
static uint64_t vgen_ldc_stat(vgen_ldc_t *ldcp, uint_t stat);
static uint_t vgen_ldc_cb(uint64_t event, caddr_t arg);
static int vgen_portsend(vgen_port_t *portp, mblk_t *mp);
static int vgen_ldcsend(void *arg, mblk_t *mp);
static void vgen_ldcsend_pkt(void *arg, mblk_t *mp);
static int vgen_ldcsend_dring(void *arg, mblk_t *mp);
static void vgen_reclaim(vgen_ldc_t *ldcp);
static void vgen_reclaim_dring(vgen_ldc_t *ldcp);
static int vgen_num_txpending(vgen_ldc_t *ldcp);
static int vgen_tx_dring_full(vgen_ldc_t *ldcp);
static int vgen_ldc_txtimeout(vgen_ldc_t *ldcp);
static void vgen_ldc_watchdog(void *arg);
/* vgen handshake functions */
static vgen_ldc_t *vh_nextphase(vgen_ldc_t *ldcp);
static int vgen_sendmsg(vgen_ldc_t *ldcp, caddr_t msg, size_t msglen,
boolean_t caller_holds_lock);
static int vgen_send_version_negotiate(vgen_ldc_t *ldcp);
static int vgen_send_attr_info(vgen_ldc_t *ldcp);
static int vgen_send_dring_reg(vgen_ldc_t *ldcp);
static int vgen_send_rdx_info(vgen_ldc_t *ldcp);
static int vgen_send_dring_data(vgen_ldc_t *ldcp, uint32_t start, int32_t end);
static int vgen_send_mcast_info(vgen_ldc_t *ldcp);
static int vgen_handshake_phase2(vgen_ldc_t *ldcp);
static void vgen_handshake_reset(vgen_ldc_t *ldcp);
static void vgen_reset_hphase(vgen_ldc_t *ldcp);
static void vgen_handshake(vgen_ldc_t *ldcp);
static int vgen_handshake_done(vgen_ldc_t *ldcp);
static void vgen_handshake_retry(vgen_ldc_t *ldcp);
static int vgen_handle_version_negotiate(vgen_ldc_t *ldcp,
vio_msg_tag_t *tagp);
static int vgen_handle_attr_info(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp);
static int vgen_handle_dring_reg(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp);
static int vgen_handle_rdx_info(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp);
static int vgen_handle_mcast_info(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp);
static int vgen_handle_ctrlmsg(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp);
static void vgen_handle_pkt_data_nop(void *arg1, void *arg2, uint32_t msglen);
static void vgen_handle_pkt_data(void *arg1, void *arg2, uint32_t msglen);
static int vgen_handle_dring_data(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp);
static int vgen_handle_dring_data_info(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp);
static int vgen_process_dring_data(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp);
static int vgen_handle_dring_data_ack(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp);
static int vgen_handle_dring_data_nack(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp);
static int vgen_send_dring_ack(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp,
uint32_t start, int32_t end, uint8_t pstate);
static int vgen_handle_datamsg(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp,
uint32_t msglen);
static void vgen_handle_errmsg(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp);
static void vgen_handle_evt_up(vgen_ldc_t *ldcp);
static void vgen_handle_evt_reset(vgen_ldc_t *ldcp);
static int vgen_check_sid(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp);
static int vgen_check_datamsg_seq(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp);
static caddr_t vgen_print_ethaddr(uint8_t *a, char *ebuf);
static void vgen_hwatchdog(void *arg);
static void vgen_print_attr_info(vgen_ldc_t *ldcp, int endpoint);
static void vgen_print_hparams(vgen_hparams_t *hp);
static void vgen_print_ldcinfo(vgen_ldc_t *ldcp);
static void vgen_stop_rcv_thread(vgen_ldc_t *ldcp);
static void vgen_ldc_rcv_worker(void *arg);
static void vgen_handle_evt_read(vgen_ldc_t *ldcp);
static void vgen_rx(vgen_ldc_t *ldcp, mblk_t *bp);
static void vgen_set_vnet_proto_ops(vgen_ldc_t *ldcp);
static void vgen_reset_vnet_proto_ops(vgen_ldc_t *ldcp);
/* VLAN routines */
static void vgen_vlan_read_ids(void *arg, int type, md_t *mdp,
mde_cookie_t node, uint16_t *pvidp, uint16_t **vidspp,
uint16_t *nvidsp, uint16_t *default_idp);
static void vgen_vlan_create_hash(vgen_port_t *portp);
static void vgen_vlan_destroy_hash(vgen_port_t *portp);
static void vgen_vlan_add_ids(vgen_port_t *portp);
static void vgen_vlan_remove_ids(vgen_port_t *portp);
static boolean_t vgen_vlan_lookup(mod_hash_t *vlan_hashp, uint16_t vid);
static boolean_t vgen_frame_lookup_vid(vnet_t *vnetp, struct ether_header *ehp,
uint16_t *vidp);
static mblk_t *vgen_vlan_frame_fixtag(vgen_port_t *portp, mblk_t *mp,
boolean_t is_tagged, uint16_t vid);
static void vgen_vlan_unaware_port_reset(vgen_port_t *portp);
static void vgen_reset_vlan_unaware_ports(vgen_t *vgenp);
static int vgen_dds_rx(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp);
/* externs */
extern void vnet_dds_rx(void *arg, void *dmsg);
/*
* The handshake process consists of 5 phases defined below, with VH_PHASE0
* being the pre-handshake phase and VH_DONE is the phase to indicate
* successful completion of all phases.
* Each phase may have one to several handshake states which are required
* to complete successfully to move to the next phase.
* Refer to the functions vgen_handshake() and vgen_handshake_done() for
* more details.
*/
/* handshake phases */
enum { VH_PHASE0, VH_PHASE1, VH_PHASE2, VH_PHASE3, VH_DONE = 0x80 };
/* handshake states */
enum {
VER_INFO_SENT = 0x1,
VER_ACK_RCVD = 0x2,
VER_INFO_RCVD = 0x4,
VER_ACK_SENT = 0x8,
VER_NEGOTIATED = (VER_ACK_RCVD | VER_ACK_SENT),
ATTR_INFO_SENT = 0x10,
ATTR_ACK_RCVD = 0x20,
ATTR_INFO_RCVD = 0x40,
ATTR_ACK_SENT = 0x80,
ATTR_INFO_EXCHANGED = (ATTR_ACK_RCVD | ATTR_ACK_SENT),
DRING_INFO_SENT = 0x100,
DRING_ACK_RCVD = 0x200,
DRING_INFO_RCVD = 0x400,
DRING_ACK_SENT = 0x800,
DRING_INFO_EXCHANGED = (DRING_ACK_RCVD | DRING_ACK_SENT),
RDX_INFO_SENT = 0x1000,
RDX_ACK_RCVD = 0x2000,
RDX_INFO_RCVD = 0x4000,
RDX_ACK_SENT = 0x8000,
RDX_EXCHANGED = (RDX_ACK_RCVD | RDX_ACK_SENT)
};
#define VGEN_PRI_ETH_DEFINED(vgenp) ((vgenp)->pri_num_types != 0)
#define LDC_LOCK(ldcp) \
mutex_enter(&((ldcp)->cblock));\
mutex_enter(&((ldcp)->rxlock));\
mutex_enter(&((ldcp)->wrlock));\
mutex_enter(&((ldcp)->txlock));\
mutex_enter(&((ldcp)->tclock));
#define LDC_UNLOCK(ldcp) \
mutex_exit(&((ldcp)->tclock));\
mutex_exit(&((ldcp)->txlock));\
mutex_exit(&((ldcp)->wrlock));\
mutex_exit(&((ldcp)->rxlock));\
mutex_exit(&((ldcp)->cblock));
#define VGEN_VER_EQ(ldcp, major, minor) \
((ldcp)->local_hparams.ver_major == (major) && \
(ldcp)->local_hparams.ver_minor == (minor))
#define VGEN_VER_LT(ldcp, major, minor) \
(((ldcp)->local_hparams.ver_major < (major)) || \
((ldcp)->local_hparams.ver_major == (major) && \
(ldcp)->local_hparams.ver_minor < (minor)))
#define VGEN_VER_GTEQ(ldcp, major, minor) \
(((ldcp)->local_hparams.ver_major > (major)) || \
((ldcp)->local_hparams.ver_major == (major) && \
(ldcp)->local_hparams.ver_minor >= (minor)))
static struct ether_addr etherbroadcastaddr = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
/*
* MIB II broadcast/multicast packets
*/
#define IS_BROADCAST(ehp) \
(ether_cmp(&ehp->ether_dhost, &etherbroadcastaddr) == 0)
#define IS_MULTICAST(ehp) \
((ehp->ether_dhost.ether_addr_octet[0] & 01) == 1)
/*
* Property names
*/
static char macaddr_propname[] = "mac-address";
static char rmacaddr_propname[] = "remote-mac-address";
static char channel_propname[] = "channel-endpoint";
static char reg_propname[] = "reg";
static char port_propname[] = "port";
static char swport_propname[] = "switch-port";
static char id_propname[] = "id";
static char vdev_propname[] = "virtual-device";
static char vnet_propname[] = "network";
static char pri_types_propname[] = "priority-ether-types";
static char vgen_pvid_propname[] = "port-vlan-id";
static char vgen_vid_propname[] = "vlan-id";
static char vgen_dvid_propname[] = "default-vlan-id";
static char port_pvid_propname[] = "remote-port-vlan-id";
static char port_vid_propname[] = "remote-vlan-id";
/* versions supported - in decreasing order */
static vgen_ver_t vgen_versions[VGEN_NUM_VER] = { {1, 3} };
/* Tunables */
uint32_t vgen_hwd_interval = 5; /* handshake watchdog freq in sec */
uint32_t vgen_max_hretries = VNET_NUM_HANDSHAKES; /* # of handshake retries */
uint32_t vgen_ldcwr_retries = 10; /* max # of ldc_write() retries */
uint32_t vgen_ldcup_retries = 5; /* max # of ldc_up() retries */
uint32_t vgen_recv_delay = 1; /* delay when rx descr not ready */
uint32_t vgen_recv_retries = 10; /* retry when rx descr not ready */
uint32_t vgen_tx_retries = 0x4; /* retry when tx descr not available */
uint32_t vgen_tx_delay = 0x30; /* delay when tx descr not available */
int vgen_rcv_thread_enabled = 1; /* Enable Recieve thread */
/*
* max # of packets accumulated prior to sending them up. It is best
* to keep this at 60% of the number of recieve buffers.
*/
uint32_t vgen_chain_len = (VGEN_NRBUFS * 0.6);
/*
* Tunables for each receive buffer size and number of buffers for
* each buffer size.
*/
uint32_t vgen_rbufsz1 = VGEN_DBLK_SZ_128;
uint32_t vgen_rbufsz2 = VGEN_DBLK_SZ_256;
uint32_t vgen_rbufsz3 = VGEN_DBLK_SZ_2048;
uint32_t vgen_nrbufs1 = VGEN_NRBUFS;
uint32_t vgen_nrbufs2 = VGEN_NRBUFS;
uint32_t vgen_nrbufs3 = VGEN_NRBUFS;
/*
* In the absence of "priority-ether-types" property in MD, the following
* internal tunable can be set to specify a single priority ethertype.
*/
uint64_t vgen_pri_eth_type = 0;
/*
* Number of transmit priority buffers that are preallocated per device.
* This number is chosen to be a small value to throttle transmission
* of priority packets. Note: Must be a power of 2 for vio_create_mblks().
*/
uint32_t vgen_pri_tx_nmblks = 64;
uint32_t vgen_vlan_nchains = 4; /* # of chains in vlan id hash table */
#ifdef DEBUG
/* flags to simulate error conditions for debugging */
int vgen_trigger_txtimeout = 0;
int vgen_trigger_rxlost = 0;
#endif
/*
* Matching criteria passed to the MDEG to register interest
* in changes to 'virtual-device' nodes (i.e. vnet nodes) identified
* by their 'name' and 'cfg-handle' properties.
*/
static md_prop_match_t vdev_prop_match[] = {
{ MDET_PROP_STR, "name" },
{ MDET_PROP_VAL, "cfg-handle" },
{ MDET_LIST_END, NULL }
};
static mdeg_node_match_t vdev_match = { "virtual-device",
vdev_prop_match };
/* MD update matching structure */
static md_prop_match_t vport_prop_match[] = {
{ MDET_PROP_VAL, "id" },
{ MDET_LIST_END, NULL }
};
static mdeg_node_match_t vport_match = { "virtual-device-port",
vport_prop_match };
/* template for matching a particular vnet instance */
static mdeg_prop_spec_t vgen_prop_template[] = {
{ MDET_PROP_STR, "name", "network" },
{ MDET_PROP_VAL, "cfg-handle", NULL },
{ MDET_LIST_END, NULL, NULL }
};
#define VGEN_SET_MDEG_PROP_INST(specp, val) (specp)[1].ps_val = (val)
static int vgen_mdeg_port_cb(void *cb_argp, mdeg_result_t *resp);
static mac_callbacks_t vgen_m_callbacks = {
0,
vgen_stat,
vgen_start,
vgen_stop,
vgen_promisc,
vgen_multicst,
vgen_unicst,
vgen_tx,
NULL,
NULL,
NULL
};
/* externs */
extern pri_t maxclsyspri;
extern proc_t p0;
extern uint32_t vnet_ntxds;
extern uint32_t vnet_ldcwd_interval;
extern uint32_t vnet_ldcwd_txtimeout;
extern uint32_t vnet_ldc_mtu;
extern uint32_t vnet_nrbufs;
extern uint32_t vnet_ethermtu;
extern uint16_t vnet_default_vlan_id;
#ifdef DEBUG
extern int vnet_dbglevel;
static void debug_printf(const char *fname, vgen_t *vgenp,
vgen_ldc_t *ldcp, const char *fmt, ...);
/* -1 for all LDCs info, or ldc_id for a specific LDC info */
int vgendbg_ldcid = -1;
/* simulate handshake error conditions for debug */
uint32_t vgen_hdbg;
#define HDBG_VERSION 0x1
#define HDBG_TIMEOUT 0x2
#define HDBG_BAD_SID 0x4
#define HDBG_OUT_STATE 0x8
#endif
/*
* vgen_init() is called by an instance of vnet driver to initialize the
* corresponding generic proxy transport layer. The arguments passed by vnet
* are - an opaque pointer to the vnet instance, pointers to dev_info_t and
* the mac address of the vnet device, and a pointer to vgen_t is passed
* back as a handle to vnet.
*/
int
vgen_init(void *vnetp, uint64_t regprop, dev_info_t *vnetdip,
const uint8_t *macaddr, void **vgenhdl)
{
vgen_t *vgenp;
int instance;
int rv;
if ((vnetp == NULL) || (vnetdip == NULL))
return (DDI_FAILURE);
instance = ddi_get_instance(vnetdip);
DBG1(NULL, NULL, "vnet(%d): enter\n", instance);
vgenp = kmem_zalloc(sizeof (vgen_t), KM_SLEEP);
vgenp->vnetp = vnetp;
vgenp->instance = instance;
vgenp->regprop = regprop;
vgenp->vnetdip = vnetdip;
bcopy(macaddr, &(vgenp->macaddr), ETHERADDRL);
/* allocate multicast table */
vgenp->mctab = kmem_zalloc(VGEN_INIT_MCTAB_SIZE *
sizeof (struct ether_addr), KM_SLEEP);
vgenp->mccount = 0;
vgenp->mcsize = VGEN_INIT_MCTAB_SIZE;
vgenp->max_frame_size = vnet_ethermtu + sizeof (struct ether_header)
+ VLAN_TAGSZ;
mutex_init(&vgenp->lock, NULL, MUTEX_DRIVER, NULL);
rw_init(&vgenp->vgenports.rwlock, NULL, RW_DRIVER, NULL);
rv = vgen_read_mdprops(vgenp);
if (rv != 0) {
goto vgen_init_fail;
}
/* register with MD event generator */
rv = vgen_mdeg_reg(vgenp);
if (rv != DDI_SUCCESS) {
goto vgen_init_fail;
}
*vgenhdl = (void *)vgenp;
DBG1(NULL, NULL, "vnet(%d): exit\n", instance);
return (DDI_SUCCESS);
vgen_init_fail:
rw_destroy(&vgenp->vgenports.rwlock);
mutex_destroy(&vgenp->lock);
kmem_free(vgenp->mctab, VGEN_INIT_MCTAB_SIZE *
sizeof (struct ether_addr));
if (VGEN_PRI_ETH_DEFINED(vgenp)) {
kmem_free(vgenp->pri_types,
sizeof (uint16_t) * vgenp->pri_num_types);
(void) vio_destroy_mblks(vgenp->pri_tx_vmp);
}
KMEM_FREE(vgenp);
return (DDI_FAILURE);
}
/*
* Called by vnet to undo the initializations done by vgen_init().
* The handle provided by generic transport during vgen_init() is the argument.
*/
int
vgen_uninit(void *arg)
{
vgen_t *vgenp = (vgen_t *)arg;
vio_mblk_pool_t *rp;
vio_mblk_pool_t *nrp;
if (vgenp == NULL) {
return (DDI_FAILURE);
}
DBG1(vgenp, NULL, "enter\n");
/* unregister with MD event generator */
vgen_mdeg_unreg(vgenp);
mutex_enter(&vgenp->lock);
/* detach all ports from the device */
vgen_detach_ports(vgenp);
/*
* free any pending rx mblk pools,
* that couldn't be freed previously during channel detach.
*/
rp = vgenp->rmp;
while (rp != NULL) {
nrp = vgenp->rmp = rp->nextp;
if (vio_destroy_mblks(rp)) {
vgenp->rmp = rp;
mutex_exit(&vgenp->lock);
return (DDI_FAILURE);
}
rp = nrp;
}
/* free multicast table */
kmem_free(vgenp->mctab, vgenp->mcsize * sizeof (struct ether_addr));
/* free pri_types table */
if (VGEN_PRI_ETH_DEFINED(vgenp)) {
kmem_free(vgenp->pri_types,
sizeof (uint16_t) * vgenp->pri_num_types);
(void) vio_destroy_mblks(vgenp->pri_tx_vmp);
}
mutex_exit(&vgenp->lock);
rw_destroy(&vgenp->vgenports.rwlock);
mutex_destroy(&vgenp->lock);
KMEM_FREE(vgenp);
DBG1(vgenp, NULL, "exit\n");
return (DDI_SUCCESS);
}
/* enable transmit/receive for the device */
int
vgen_start(void *arg)
{
vgen_port_t *portp = (vgen_port_t *)arg;
vgen_t *vgenp = portp->vgenp;
DBG1(vgenp, NULL, "enter\n");
mutex_enter(&portp->lock);
vgen_port_init(portp);
portp->flags |= VGEN_STARTED;
mutex_exit(&portp->lock);
DBG1(vgenp, NULL, "exit\n");
return (DDI_SUCCESS);
}
/* stop transmit/receive */
void
vgen_stop(void *arg)
{
vgen_port_t *portp = (vgen_port_t *)arg;
vgen_t *vgenp = portp->vgenp;
DBG1(vgenp, NULL, "enter\n");
mutex_enter(&portp->lock);
vgen_port_uninit(portp);
portp->flags &= ~(VGEN_STARTED);
mutex_exit(&portp->lock);
DBG1(vgenp, NULL, "exit\n");
}
/* vgen transmit function */
static mblk_t *
vgen_tx(void *arg, mblk_t *mp)
{
int i;
vgen_port_t *portp;
int status = VGEN_FAILURE;
portp = (vgen_port_t *)arg;
/*
* Retry so that we avoid reporting a failure
* to the upper layer. Returning a failure may cause the
* upper layer to go into single threaded mode there by
* causing performance degradation, especially for a large
* number of connections.
*/
for (i = 0; i < vgen_tx_retries; ) {
status = vgen_portsend(portp, mp);
if (status == VGEN_SUCCESS) {
break;
}
if (++i < vgen_tx_retries)
delay(drv_usectohz(vgen_tx_delay));
}
if (status != VGEN_SUCCESS) {
/* failure */
return (mp);
}
/* success */
return (NULL);
}
/*
* This function provides any necessary tagging/untagging of the frames
* that are being transmitted over the port. It first verifies the vlan
* membership of the destination(port) and drops the packet if the
* destination doesn't belong to the given vlan.
*
* Arguments:
* portp: port over which the frames should be transmitted
* mp: frame to be transmitted
* is_tagged:
* B_TRUE: indicates frame header contains the vlan tag already.
* B_FALSE: indicates frame is untagged.
* vid: vlan in which the frame should be transmitted.
*
* Returns:
* Sucess: frame(mblk_t *) after doing the necessary tag/untag.
* Failure: NULL
*/
static mblk_t *
vgen_vlan_frame_fixtag(vgen_port_t *portp, mblk_t *mp, boolean_t is_tagged,
uint16_t vid)
{
vgen_t *vgenp;
boolean_t dst_tagged;
int rv;
vgenp = portp->vgenp;
/*
* If the packet is going to a vnet:
* Check if the destination vnet is in the same vlan.
* Check the frame header if tag or untag is needed.
*
* We do not check the above conditions if the packet is going to vsw:
* vsw must be present implicitly in all the vlans that a vnet device
* is configured into; even if vsw itself is not assigned to those
* vlans as an interface. For instance, the packet might be destined
* to another vnet(indirectly through vsw) or to an external host
* which is in the same vlan as this vnet and vsw itself may not be
* present in that vlan. Similarly packets going to vsw must be
* always tagged(unless in the default-vlan) if not already tagged,
* as we do not know the final destination. This is needed because
* vsw must always invoke its switching function only after tagging
* the packet; otherwise after switching function determines the
* destination we cannot figure out if the destination belongs to the
* the same vlan that the frame originated from and if it needs tag/
* untag. Note that vsw will tag the packet itself when it receives
* it over the channel from a client if needed. However, that is
* needed only in the case of vlan unaware clients such as obp or
* earlier versions of vnet.
*
*/
if (portp != vgenp->vsw_portp) {
/*
* Packet going to a vnet. Check if the destination vnet is in
* the same vlan. Then check the frame header if tag/untag is
* needed.
*/
rv = vgen_vlan_lookup(portp->vlan_hashp, vid);
if (rv == B_FALSE) {
/* drop the packet */
freemsg(mp);
return (NULL);
}
/* is the destination tagged or untagged in this vlan? */
(vid == portp->pvid) ? (dst_tagged = B_FALSE) :
(dst_tagged = B_TRUE);
if (is_tagged == dst_tagged) {
/* no tagging/untagging needed */
return (mp);
}
if (is_tagged == B_TRUE) {
/* frame is tagged; destination needs untagged */
mp = vnet_vlan_remove_tag(mp);
return (mp);
}
/* (is_tagged == B_FALSE): fallthru to tag tx packet: */
}
/*
* Packet going to a vnet needs tagging.
* OR
* If the packet is going to vsw, then it must be tagged in all cases:
* unknown unicast, broadcast/multicast or to vsw interface.
*/
if (is_tagged == B_FALSE) {
mp = vnet_vlan_insert_tag(mp, vid);
}
return (mp);
}
/* transmit packets over the given port */
static int
vgen_portsend(vgen_port_t *portp, mblk_t *mp)
{
vgen_ldclist_t *ldclp;
vgen_ldc_t *ldcp;
int status;
int rv = VGEN_SUCCESS;
vgen_t *vgenp = portp->vgenp;
vnet_t *vnetp = vgenp->vnetp;
boolean_t is_tagged;
boolean_t dec_refcnt = B_FALSE;
uint16_t vlan_id;
struct ether_header *ehp;
if (portp->use_vsw_port) {
(void) atomic_inc_32(&vgenp->vsw_port_refcnt);
portp = portp->vgenp->vsw_portp;
dec_refcnt = B_TRUE;
}
if (portp == NULL) {
return (VGEN_FAILURE);
}
/*
* Determine the vlan id that the frame belongs to.
*/
ehp = (struct ether_header *)mp->b_rptr;
is_tagged = vgen_frame_lookup_vid(vnetp, ehp, &vlan_id);
if (vlan_id == vnetp->default_vlan_id) {
/* Frames in default vlan must be untagged */
ASSERT(is_tagged == B_FALSE);
/*
* If the destination is a vnet-port verify it belongs to the
* default vlan; otherwise drop the packet. We do not need
* this check for vsw-port, as it should implicitly belong to
* this vlan; see comments in vgen_vlan_frame_fixtag().
*/
if (portp != vgenp->vsw_portp &&
portp->pvid != vnetp->default_vlan_id) {
freemsg(mp);
goto portsend_ret;
}
} else { /* frame not in default-vlan */
mp = vgen_vlan_frame_fixtag(portp, mp, is_tagged, vlan_id);
if (mp == NULL) {
goto portsend_ret;
}
}
ldclp = &portp->ldclist;
READ_ENTER(&ldclp->rwlock);
/*
* NOTE: for now, we will assume we have a single channel.
*/
if (ldclp->headp == NULL) {
RW_EXIT(&ldclp->rwlock);
rv = VGEN_FAILURE;
goto portsend_ret;
}
ldcp = ldclp->headp;
status = ldcp->tx(ldcp, mp);
RW_EXIT(&ldclp->rwlock);
if (status != VGEN_TX_SUCCESS) {
rv = VGEN_FAILURE;
}
portsend_ret:
if (dec_refcnt == B_TRUE) {
(void) atomic_dec_32(&vgenp->vsw_port_refcnt);
}
return (rv);
}
/*
* Wrapper function to transmit normal and/or priority frames over the channel.
*/
static int
vgen_ldcsend(void *arg, mblk_t *mp)
{
vgen_ldc_t *ldcp = (vgen_ldc_t *)arg;
int status;
struct ether_header *ehp;
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
uint32_t num_types;
uint16_t *types;
int i;
ASSERT(VGEN_PRI_ETH_DEFINED(vgenp));
num_types = vgenp->pri_num_types;
types = vgenp->pri_types;
ehp = (struct ether_header *)mp->b_rptr;
for (i = 0; i < num_types; i++) {
if (ehp->ether_type == types[i]) {
/* priority frame, use pri tx function */
vgen_ldcsend_pkt(ldcp, mp);
return (VGEN_SUCCESS);
}
}
status = vgen_ldcsend_dring(ldcp, mp);
return (status);
}
/*
* This functions handles ldc channel reset while in the context
* of transmit routines: vgen_ldcsend_pkt() or vgen_ldcsend_dring().
*/
static void
vgen_ldcsend_process_reset(vgen_ldc_t *ldcp)
{
ldc_status_t istatus;
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
if (mutex_tryenter(&ldcp->cblock)) {
if (ldc_status(ldcp->ldc_handle, &istatus) != 0) {
DWARN(vgenp, ldcp, "ldc_status() error\n");
} else {
ldcp->ldc_status = istatus;
}
if (ldcp->ldc_status != LDC_UP) {
vgen_handle_evt_reset(ldcp);
}
mutex_exit(&ldcp->cblock);
}
}
/*
* This function transmits the frame in the payload of a raw data
* (VIO_PKT_DATA) message. Thus, it provides an Out-Of-Band path to
* send special frames with high priorities, without going through
* the normal data path which uses descriptor ring mechanism.
*/
static void
vgen_ldcsend_pkt(void *arg, mblk_t *mp)
{
vgen_ldc_t *ldcp = (vgen_ldc_t *)arg;
vio_raw_data_msg_t *pkt;
mblk_t *bp;
mblk_t *nmp = NULL;
caddr_t dst;
uint32_t mblksz;
uint32_t size;
uint32_t nbytes;
int rv;
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
vgen_stats_t *statsp = &ldcp->stats;
/* drop the packet if ldc is not up or handshake is not done */
if (ldcp->ldc_status != LDC_UP) {
(void) atomic_inc_32(&statsp->tx_pri_fail);
DWARN(vgenp, ldcp, "status(%d), dropping packet\n",
ldcp->ldc_status);
goto send_pkt_exit;
}
if (ldcp->hphase != VH_DONE) {
(void) atomic_inc_32(&statsp->tx_pri_fail);
DWARN(vgenp, ldcp, "hphase(%x), dropping packet\n",
ldcp->hphase);
goto send_pkt_exit;
}
size = msgsize(mp);
/* frame size bigger than available payload len of raw data msg ? */
if (size > (size_t)(ldcp->msglen - VIO_PKT_DATA_HDRSIZE)) {
(void) atomic_inc_32(&statsp->tx_pri_fail);
DWARN(vgenp, ldcp, "invalid size(%d)\n", size);
goto send_pkt_exit;
}
if (size < ETHERMIN)
size = ETHERMIN;
/* alloc space for a raw data message */
nmp = vio_allocb(vgenp->pri_tx_vmp);
if (nmp == NULL) {
(void) atomic_inc_32(&statsp->tx_pri_fail);
DWARN(vgenp, ldcp, "vio_allocb failed\n");
goto send_pkt_exit;
}
pkt = (vio_raw_data_msg_t *)nmp->b_rptr;
/* copy frame into the payload of raw data message */
dst = (caddr_t)pkt->data;
for (bp = mp; bp != NULL; bp = bp->b_cont) {
mblksz = MBLKL(bp);
bcopy(bp->b_rptr, dst, mblksz);
dst += mblksz;
}
/* setup the raw data msg */
pkt->tag.vio_msgtype = VIO_TYPE_DATA;
pkt->tag.vio_subtype = VIO_SUBTYPE_INFO;
pkt->tag.vio_subtype_env = VIO_PKT_DATA;
pkt->tag.vio_sid = ldcp->local_sid;
nbytes = VIO_PKT_DATA_HDRSIZE + size;
/* send the msg over ldc */
rv = vgen_sendmsg(ldcp, (caddr_t)pkt, nbytes, B_FALSE);
if (rv != VGEN_SUCCESS) {
(void) atomic_inc_32(&statsp->tx_pri_fail);
DWARN(vgenp, ldcp, "Error sending priority frame\n");
if (rv == ECONNRESET) {
vgen_ldcsend_process_reset(ldcp);
}
goto send_pkt_exit;
}
/* update stats */
(void) atomic_inc_64(&statsp->tx_pri_packets);
(void) atomic_add_64(&statsp->tx_pri_bytes, size);
send_pkt_exit:
if (nmp != NULL)
freemsg(nmp);
freemsg(mp);
}
/*
* This function transmits normal (non-priority) data frames over
* the channel. It queues the frame into the transmit descriptor ring
* and sends a VIO_DRING_DATA message if needed, to wake up the
* peer to (re)start processing.
*/
static int
vgen_ldcsend_dring(void *arg, mblk_t *mp)
{
vgen_ldc_t *ldcp = (vgen_ldc_t *)arg;
vgen_private_desc_t *tbufp;
vgen_private_desc_t *rtbufp;
vnet_public_desc_t *rtxdp;
vgen_private_desc_t *ntbufp;
vnet_public_desc_t *txdp;
vio_dring_entry_hdr_t *hdrp;
vgen_stats_t *statsp;
struct ether_header *ehp;
boolean_t is_bcast = B_FALSE;
boolean_t is_mcast = B_FALSE;
size_t mblksz;
caddr_t dst;
mblk_t *bp;
size_t size;
int rv = 0;
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
vgen_hparams_t *lp = &ldcp->local_hparams;
statsp = &ldcp->stats;
size = msgsize(mp);
DBG1(vgenp, ldcp, "enter\n");
if (ldcp->ldc_status != LDC_UP) {
DWARN(vgenp, ldcp, "status(%d), dropping packet\n",
ldcp->ldc_status);
/* retry ldc_up() if needed */
if (ldcp->flags & CHANNEL_STARTED)
(void) ldc_up(ldcp->ldc_handle);
goto send_dring_exit;
}
/* drop the packet if ldc is not up or handshake is not done */
if (ldcp->hphase != VH_DONE) {
DWARN(vgenp, ldcp, "hphase(%x), dropping packet\n",
ldcp->hphase);
goto send_dring_exit;
}
if (size > (size_t)lp->mtu) {
DWARN(vgenp, ldcp, "invalid size(%d)\n", size);
goto send_dring_exit;
}
if (size < ETHERMIN)
size = ETHERMIN;
ehp = (struct ether_header *)mp->b_rptr;
is_bcast = IS_BROADCAST(ehp);
is_mcast = IS_MULTICAST(ehp);
mutex_enter(&ldcp->txlock);
/*
* allocate a descriptor
*/
tbufp = ldcp->next_tbufp;
ntbufp = NEXTTBUF(ldcp, tbufp);
if (ntbufp == ldcp->cur_tbufp) { /* out of tbufs/txds */
mutex_enter(&ldcp->tclock);
/* Try reclaiming now */
vgen_reclaim_dring(ldcp);
ldcp->reclaim_lbolt = ddi_get_lbolt();
if (ntbufp == ldcp->cur_tbufp) {
/* Now we are really out of tbuf/txds */
ldcp->need_resched = B_TRUE;
mutex_exit(&ldcp->tclock);
statsp->tx_no_desc++;
mutex_exit(&ldcp->txlock);
return (VGEN_TX_NORESOURCES);
}
mutex_exit(&ldcp->tclock);
}
/* update next available tbuf in the ring and update tx index */
ldcp->next_tbufp = ntbufp;
INCR_TXI(ldcp->next_txi, ldcp);
/* Mark the buffer busy before releasing the lock */
tbufp->flags = VGEN_PRIV_DESC_BUSY;
mutex_exit(&ldcp->txlock);
/* copy data into pre-allocated transmit buffer */
dst = tbufp->datap + VNET_IPALIGN;
for (bp = mp; bp != NULL; bp = bp->b_cont) {
mblksz = MBLKL(bp);
bcopy(bp->b_rptr, dst, mblksz);
dst += mblksz;
}
tbufp->datalen = size;
/* initialize the corresponding public descriptor (txd) */
txdp = tbufp->descp;
hdrp = &txdp->hdr;
txdp->nbytes = size;
txdp->ncookies = tbufp->ncookies;
bcopy((tbufp->memcookie), (txdp->memcookie),
tbufp->ncookies * sizeof (ldc_mem_cookie_t));
mutex_enter(&ldcp->wrlock);
/*
* If the flags not set to BUSY, it implies that the clobber
* was done while we were copying the data. In such case,
* discard the packet and return.
*/
if (tbufp->flags != VGEN_PRIV_DESC_BUSY) {
statsp->oerrors++;
mutex_exit(&ldcp->wrlock);
goto send_dring_exit;
}
hdrp->dstate = VIO_DESC_READY;
/* update stats */
statsp->opackets++;
statsp->obytes += size;
if (is_bcast)
statsp->brdcstxmt++;
else if (is_mcast)
statsp->multixmt++;
/* send dring datamsg to the peer */
if (ldcp->resched_peer) {
rtbufp = &ldcp->tbufp[ldcp->resched_peer_txi];
rtxdp = rtbufp->descp;
if (rtxdp->hdr.dstate == VIO_DESC_READY) {
rv = vgen_send_dring_data(ldcp,
(uint32_t)ldcp->resched_peer_txi, -1);
if (rv != 0) {
/* error: drop the packet */
DWARN(vgenp, ldcp, "vgen_send_dring_data "
"failed: rv(%d) len(%d)\n",
ldcp->ldc_id, rv, size);
statsp->oerrors++;
} else {
ldcp->resched_peer = B_FALSE;
}
}
}
mutex_exit(&ldcp->wrlock);
send_dring_exit:
if (rv == ECONNRESET) {
vgen_ldcsend_process_reset(ldcp);
}
freemsg(mp);
DBG1(vgenp, ldcp, "exit\n");
return (VGEN_TX_SUCCESS);
}
/* enable/disable a multicast address */
int
vgen_multicst(void *arg, boolean_t add, const uint8_t *mca)
{
vgen_t *vgenp;
vnet_mcast_msg_t mcastmsg;
vio_msg_tag_t *tagp;
vgen_port_t *portp;
vgen_portlist_t *plistp;
vgen_ldc_t *ldcp;
vgen_ldclist_t *ldclp;
struct ether_addr *addrp;
int rv = DDI_FAILURE;
uint32_t i;
portp = (vgen_port_t *)arg;
vgenp = portp->vgenp;
if (portp != vgenp->vsw_portp) {
return (DDI_SUCCESS);
}
addrp = (struct ether_addr *)mca;
tagp = &mcastmsg.tag;
bzero(&mcastmsg, sizeof (mcastmsg));
mutex_enter(&vgenp->lock);
plistp = &(vgenp->vgenports);
READ_ENTER(&plistp->rwlock);
portp = vgenp->vsw_portp;
if (portp == NULL) {
RW_EXIT(&plistp->rwlock);
mutex_exit(&vgenp->lock);
return (rv);
}
ldclp = &portp->ldclist;
READ_ENTER(&ldclp->rwlock);
ldcp = ldclp->headp;
if (ldcp == NULL)
goto vgen_mcast_exit;
mutex_enter(&ldcp->cblock);
if (ldcp->hphase == VH_DONE) {
/*
* If handshake is done, send a msg to vsw to add/remove
* the multicast address. Otherwise, we just update this
* mcast address in our table and the table will be sync'd
* with vsw when handshake completes.
*/
tagp->vio_msgtype = VIO_TYPE_CTRL;
tagp->vio_subtype = VIO_SUBTYPE_INFO;
tagp->vio_subtype_env = VNET_MCAST_INFO;
tagp->vio_sid = ldcp->local_sid;
bcopy(mca, &(mcastmsg.mca), ETHERADDRL);
mcastmsg.set = add;
mcastmsg.count = 1;
if (vgen_sendmsg(ldcp, (caddr_t)tagp, sizeof (mcastmsg),
B_FALSE) != VGEN_SUCCESS) {
DWARN(vgenp, ldcp, "vgen_sendmsg failed\n");
mutex_exit(&ldcp->cblock);
goto vgen_mcast_exit;
}
}
mutex_exit(&ldcp->cblock);
if (add) {
/* expand multicast table if necessary */
if (vgenp->mccount >= vgenp->mcsize) {
struct ether_addr *newtab;
uint32_t newsize;
newsize = vgenp->mcsize * 2;
newtab = kmem_zalloc(newsize *
sizeof (struct ether_addr), KM_NOSLEEP);
if (newtab == NULL)
goto vgen_mcast_exit;
bcopy(vgenp->mctab, newtab, vgenp->mcsize *
sizeof (struct ether_addr));
kmem_free(vgenp->mctab,
vgenp->mcsize * sizeof (struct ether_addr));
vgenp->mctab = newtab;
vgenp->mcsize = newsize;
}
/* add address to the table */
vgenp->mctab[vgenp->mccount++] = *addrp;
} else {
/* delete address from the table */
for (i = 0; i < vgenp->mccount; i++) {
if (ether_cmp(addrp, &(vgenp->mctab[i])) == 0) {
/*
* If there's more than one address in this
* table, delete the unwanted one by moving
* the last one in the list over top of it;
* otherwise, just remove it.
*/
if (vgenp->mccount > 1) {
vgenp->mctab[i] =
vgenp->mctab[vgenp->mccount-1];
}
vgenp->mccount--;
break;
}
}
}
rv = DDI_SUCCESS;
vgen_mcast_exit:
RW_EXIT(&ldclp->rwlock);
RW_EXIT(&plistp->rwlock);
mutex_exit(&vgenp->lock);
return (rv);
}
/* set or clear promiscuous mode on the device */
static int
vgen_promisc(void *arg, boolean_t on)
{
_NOTE(ARGUNUSED(arg, on))
return (DDI_SUCCESS);
}
/* set the unicast mac address of the device */
static int
vgen_unicst(void *arg, const uint8_t *mca)
{
_NOTE(ARGUNUSED(arg, mca))
return (DDI_SUCCESS);
}
/* get device statistics */
int
vgen_stat(void *arg, uint_t stat, uint64_t *val)
{
vgen_port_t *portp = (vgen_port_t *)arg;
*val = vgen_port_stat(portp, stat);
return (0);
}
static void
vgen_ioctl(void *arg, queue_t *wq, mblk_t *mp)
{
_NOTE(ARGUNUSED(arg, wq, mp))
}
/* vgen internal functions */
/* detach all ports from the device */
static void
vgen_detach_ports(vgen_t *vgenp)
{
vgen_port_t *portp;
vgen_portlist_t *plistp;
plistp = &(vgenp->vgenports);
WRITE_ENTER(&plistp->rwlock);
while ((portp = plistp->headp) != NULL) {
vgen_port_detach(portp);
}
RW_EXIT(&plistp->rwlock);
}
/*
* detach the given port.
*/
static void
vgen_port_detach(vgen_port_t *portp)
{
vgen_t *vgenp;
vgen_ldclist_t *ldclp;
int port_num;
vgenp = portp->vgenp;
port_num = portp->port_num;
DBG1(vgenp, NULL, "port(%d):enter\n", port_num);
/*
* If this port is connected to the vswitch, then
* potentially there could be ports that may be using
* this port to transmit packets. To address this do
* the following:
* - First set vgenp->vsw_portp to NULL, so that
* its not used after that.
* - Then wait for the refcnt to go down to 0.
* - Now we can safely detach this port.
*/
if (vgenp->vsw_portp == portp) {
vgenp->vsw_portp = NULL;
while (vgenp->vsw_port_refcnt > 0) {
delay(drv_usectohz(vgen_tx_delay));
}
(void) atomic_swap_32(&vgenp->vsw_port_refcnt, 0);
}
if (portp->vhp != NULL) {
vio_net_resource_unreg(portp->vhp);
portp->vhp = NULL;
}
vgen_vlan_destroy_hash(portp);
/* remove it from port list */
vgen_port_list_remove(portp);
/* detach channels from this port */
ldclp = &portp->ldclist;
WRITE_ENTER(&ldclp->rwlock);
while (ldclp->headp) {
vgen_ldc_detach(ldclp->headp);
}
RW_EXIT(&ldclp->rwlock);
rw_destroy(&ldclp->rwlock);
if (portp->num_ldcs != 0) {
kmem_free(portp->ldc_ids, portp->num_ldcs * sizeof (uint64_t));
portp->num_ldcs = 0;
}
mutex_destroy(&portp->lock);
KMEM_FREE(portp);
DBG1(vgenp, NULL, "port(%d):exit\n", port_num);
}
/* add a port to port list */
static void
vgen_port_list_insert(vgen_port_t *portp)
{
vgen_portlist_t *plistp;
vgen_t *vgenp;
vgenp = portp->vgenp;
plistp = &(vgenp->vgenports);
if (plistp->headp == NULL) {
plistp->headp = portp;
} else {
plistp->tailp->nextp = portp;
}
plistp->tailp = portp;
portp->nextp = NULL;
}
/* remove a port from port list */
static void
vgen_port_list_remove(vgen_port_t *portp)
{
vgen_port_t *prevp;
vgen_port_t *nextp;
vgen_portlist_t *plistp;
vgen_t *vgenp;
vgenp = portp->vgenp;
plistp = &(vgenp->vgenports);
if (plistp->headp == NULL)
return;
if (portp == plistp->headp) {
plistp->headp = portp->nextp;
if (portp == plistp->tailp)
plistp->tailp = plistp->headp;
} else {
for (prevp = plistp->headp;
((nextp = prevp->nextp) != NULL) && (nextp != portp);
prevp = nextp)
;
if (nextp == portp) {
prevp->nextp = portp->nextp;
}
if (portp == plistp->tailp)
plistp->tailp = prevp;
}
}
/* lookup a port in the list based on port_num */
static vgen_port_t *
vgen_port_lookup(vgen_portlist_t *plistp, int port_num)
{
vgen_port_t *portp = NULL;
for (portp = plistp->headp; portp != NULL; portp = portp->nextp) {
if (portp->port_num == port_num) {
break;
}
}
return (portp);
}
/* enable ports for transmit/receive */
static void
vgen_init_ports(vgen_t *vgenp)
{
vgen_port_t *portp;
vgen_portlist_t *plistp;
plistp = &(vgenp->vgenports);
READ_ENTER(&plistp->rwlock);
for (portp = plistp->headp; portp != NULL; portp = portp->nextp) {
vgen_port_init(portp);
}
RW_EXIT(&plistp->rwlock);
}
static void
vgen_port_init(vgen_port_t *portp)
{
/* Add the port to the specified vlans */
vgen_vlan_add_ids(portp);
/* Bring up the channels of this port */
vgen_init_ldcs(portp);
}
/* disable transmit/receive on ports */
static void
vgen_uninit_ports(vgen_t *vgenp)
{
vgen_port_t *portp;
vgen_portlist_t *plistp;
plistp = &(vgenp->vgenports);
READ_ENTER(&plistp->rwlock);
for (portp = plistp->headp; portp != NULL; portp = portp->nextp) {
vgen_port_uninit(portp);
}
RW_EXIT(&plistp->rwlock);
}
static void
vgen_port_uninit(vgen_port_t *portp)
{
vgen_uninit_ldcs(portp);
/* remove the port from vlans it has been assigned to */
vgen_vlan_remove_ids(portp);
}
/*
* Scan the machine description for this instance of vnet
* and read its properties. Called only from vgen_init().
* Returns: 0 on success, 1 on failure.
*/
static int
vgen_read_mdprops(vgen_t *vgenp)
{
vnet_t *vnetp = vgenp->vnetp;
md_t *mdp = NULL;
mde_cookie_t rootnode;
mde_cookie_t *listp = NULL;
uint64_t cfgh;
char *name;
int rv = 1;
int num_nodes = 0;
int num_devs = 0;
int listsz = 0;
int i;
if ((mdp = md_get_handle()) == NULL) {
return (rv);
}
num_nodes = md_node_count(mdp);
ASSERT(num_nodes > 0);
listsz = num_nodes * sizeof (mde_cookie_t);
listp = (mde_cookie_t *)kmem_zalloc(listsz, KM_SLEEP);
rootnode = md_root_node(mdp);
/* search for all "virtual_device" nodes */
num_devs = md_scan_dag(mdp, rootnode,
md_find_name(mdp, vdev_propname),
md_find_name(mdp, "fwd"), listp);
if (num_devs <= 0) {
goto vgen_readmd_exit;
}
/*
* Now loop through the list of virtual-devices looking for
* devices with name "network" and for each such device compare
* its instance with what we have from the 'reg' property to
* find the right node in MD and then read all its properties.
*/
for (i = 0; i < num_devs; i++) {
if (md_get_prop_str(mdp, listp[i], "name", &name) != 0) {
goto vgen_readmd_exit;
}
/* is this a "network" device? */
if (strcmp(name, vnet_propname) != 0)
continue;
if (md_get_prop_val(mdp, listp[i], "cfg-handle", &cfgh) != 0) {
goto vgen_readmd_exit;
}
/* is this the required instance of vnet? */
if (vgenp->regprop != cfgh)
continue;
/* now read all properties of this vnet instance */
vgen_read_pri_eth_types(vgenp, mdp, listp[i]);
/* read vlan id properties of this vnet instance */
vgen_vlan_read_ids(vgenp, VGEN_LOCAL, mdp, listp[i],
&vnetp->pvid, &vnetp->vids, &vnetp->nvids,
&vnetp->default_vlan_id);
rv = 0;
break;
}
vgen_readmd_exit:
kmem_free(listp, listsz);
(void) md_fini_handle(mdp);
return (rv);
}
/*
* Read vlan id properties of the given MD node.
* Arguments:
* arg: device argument(vnet device or a port)
* type: type of arg; VGEN_LOCAL(vnet device) or VGEN_PEER(port)
* mdp: machine description
* node: md node cookie
*
* Returns:
* pvidp: port-vlan-id of the node
* vidspp: list of vlan-ids of the node
* nvidsp: # of vlan-ids in the list
* default_idp: default-vlan-id of the node(if node is vnet device)
*/
static void
vgen_vlan_read_ids(void *arg, int type, md_t *mdp, mde_cookie_t node,
uint16_t *pvidp, uint16_t **vidspp, uint16_t *nvidsp,
uint16_t *default_idp)
{
vgen_t *vgenp;
vnet_t *vnetp;
vgen_port_t *portp;
char *pvid_propname;
char *vid_propname;
uint_t nvids;
uint32_t vids_size;
int rv;
int i;
uint64_t *data;
uint64_t val;
int size;
int inst;
if (type == VGEN_LOCAL) {
vgenp = (vgen_t *)arg;
vnetp = vgenp->vnetp;
pvid_propname = vgen_pvid_propname;
vid_propname = vgen_vid_propname;
inst = vnetp->instance;
} else if (type == VGEN_PEER) {
portp = (vgen_port_t *)arg;
vgenp = portp->vgenp;
vnetp = vgenp->vnetp;
pvid_propname = port_pvid_propname;
vid_propname = port_vid_propname;
inst = portp->port_num;
} else {
return;
}
if (type == VGEN_LOCAL && default_idp != NULL) {
rv = md_get_prop_val(mdp, node, vgen_dvid_propname, &val);
if (rv != 0) {
DWARN(vgenp, NULL, "prop(%s) not found",
vgen_dvid_propname);
*default_idp = vnet_default_vlan_id;
} else {
*default_idp = val & 0xFFF;
DBG2(vgenp, NULL, "%s(%d): (%d)\n", vgen_dvid_propname,
inst, *default_idp);
}
}
rv = md_get_prop_val(mdp, node, pvid_propname, &val);
if (rv != 0) {
DWARN(vgenp, NULL, "prop(%s) not found", pvid_propname);
*pvidp = vnet_default_vlan_id;
} else {
*pvidp = val & 0xFFF;
DBG2(vgenp, NULL, "%s(%d): (%d)\n",
pvid_propname, inst, *pvidp);
}
rv = md_get_prop_data(mdp, node, vid_propname, (uint8_t **)&data,
&size);
if (rv != 0) {
DBG2(vgenp, NULL, "prop(%s) not found", vid_propname);
size = 0;
} else {
size /= sizeof (uint64_t);
}
nvids = size;
if (nvids != 0) {
DBG2(vgenp, NULL, "%s(%d): ", vid_propname, inst);
vids_size = sizeof (uint16_t) * nvids;
*vidspp = kmem_zalloc(vids_size, KM_SLEEP);
for (i = 0; i < nvids; i++) {
(*vidspp)[i] = data[i] & 0xFFFF;
DBG2(vgenp, NULL, " %d ", (*vidspp)[i]);
}
DBG2(vgenp, NULL, "\n");
}
*nvidsp = nvids;
}
/*
* Create a vlan id hash table for the given port.
*/
static void
vgen_vlan_create_hash(vgen_port_t *portp)
{
char hashname[MAXNAMELEN];
(void) snprintf(hashname, MAXNAMELEN, "port%d-vlan-hash",
portp->port_num);
portp->vlan_nchains = vgen_vlan_nchains;
portp->vlan_hashp = mod_hash_create_idhash(hashname,
portp->vlan_nchains, mod_hash_null_valdtor);
}
/*
* Destroy the vlan id hash table in the given port.
*/
static void
vgen_vlan_destroy_hash(vgen_port_t *portp)
{
if (portp->vlan_hashp != NULL) {
mod_hash_destroy_hash(portp->vlan_hashp);
portp->vlan_hashp = NULL;
portp->vlan_nchains = 0;
}
}
/*
* Add a port to the vlans specified in its port properites.
*/
static void
vgen_vlan_add_ids(vgen_port_t *portp)
{
int rv;
int i;
rv = mod_hash_insert(portp->vlan_hashp,
(mod_hash_key_t)VLAN_ID_KEY(portp->pvid),
(mod_hash_val_t)B_TRUE);
ASSERT(rv == 0);
for (i = 0; i < portp->nvids; i++) {
rv = mod_hash_insert(portp->vlan_hashp,
(mod_hash_key_t)VLAN_ID_KEY(portp->vids[i]),
(mod_hash_val_t)B_TRUE);
ASSERT(rv == 0);
}
}
/*
* Remove a port from the vlans it has been assigned to.
*/
static void
vgen_vlan_remove_ids(vgen_port_t *portp)
{
int rv;
int i;
mod_hash_val_t vp;
rv = mod_hash_remove(portp->vlan_hashp,
(mod_hash_key_t)VLAN_ID_KEY(portp->pvid),
(mod_hash_val_t *)&vp);
ASSERT(rv == 0);
for (i = 0; i < portp->nvids; i++) {
rv = mod_hash_remove(portp->vlan_hashp,
(mod_hash_key_t)VLAN_ID_KEY(portp->vids[i]),
(mod_hash_val_t *)&vp);
ASSERT(rv == 0);
}
}
/*
* Lookup the vlan id of the given tx frame. If it is a vlan-tagged frame,
* then the vlan-id is available in the tag; otherwise, its vlan id is
* implicitly obtained from the port-vlan-id of the vnet device.
* The vlan id determined is returned in vidp.
* Returns: B_TRUE if it is a tagged frame; B_FALSE if it is untagged.
*/
static boolean_t
vgen_frame_lookup_vid(vnet_t *vnetp, struct ether_header *ehp, uint16_t *vidp)
{
struct ether_vlan_header *evhp;
/* If it's a tagged frame, get the vlan id from vlan header */
if (ehp->ether_type == ETHERTYPE_VLAN) {
evhp = (struct ether_vlan_header *)ehp;
*vidp = VLAN_ID(ntohs(evhp->ether_tci));
return (B_TRUE);
}
/* Untagged frame, vlan-id is the pvid of vnet device */
*vidp = vnetp->pvid;
return (B_FALSE);
}
/*
* Find the given vlan id in the hash table.
* Return: B_TRUE if the id is found; B_FALSE if not found.
*/
static boolean_t
vgen_vlan_lookup(mod_hash_t *vlan_hashp, uint16_t vid)
{
int rv;
mod_hash_val_t vp;
rv = mod_hash_find(vlan_hashp, VLAN_ID_KEY(vid), (mod_hash_val_t *)&vp);
if (rv != 0)
return (B_FALSE);
return (B_TRUE);
}
/*
* This function reads "priority-ether-types" property from md. This property
* is used to enable support for priority frames. Applications which need
* guaranteed and timely delivery of certain high priority frames to/from
* a vnet or vsw within ldoms, should configure this property by providing
* the ether type(s) for which the priority facility is needed.
* Normal data frames are delivered over a ldc channel using the descriptor
* ring mechanism which is constrained by factors such as descriptor ring size,
* the rate at which the ring is processed at the peer ldc end point, etc.
* The priority mechanism provides an Out-Of-Band path to send/receive frames
* as raw pkt data (VIO_PKT_DATA) messages over the channel, avoiding the
* descriptor ring path and enables a more reliable and timely delivery of
* frames to the peer.
*/
static void
vgen_read_pri_eth_types(vgen_t *vgenp, md_t *mdp, mde_cookie_t node)
{
int rv;
uint16_t *types;
uint64_t *data;
int size;
int i;
size_t mblk_sz;
rv = md_get_prop_data(mdp, node, pri_types_propname,
(uint8_t **)&data, &size);
if (rv != 0) {
/*
* Property may not exist if we are running pre-ldoms1.1 f/w.
* Check if 'vgen_pri_eth_type' has been set in that case.
*/
if (vgen_pri_eth_type != 0) {
size = sizeof (vgen_pri_eth_type);
data = &vgen_pri_eth_type;
} else {
DBG2(vgenp, NULL,
"prop(%s) not found", pri_types_propname);
size = 0;
}
}
if (size == 0) {
vgenp->pri_num_types = 0;
return;
}
/*
* we have some priority-ether-types defined;
* allocate a table of these types and also
* allocate a pool of mblks to transmit these
* priority packets.
*/
size /= sizeof (uint64_t);
vgenp->pri_num_types = size;
vgenp->pri_types = kmem_zalloc(size * sizeof (uint16_t), KM_SLEEP);
for (i = 0, types = vgenp->pri_types; i < size; i++) {
types[i] = data[i] & 0xFFFF;
}
mblk_sz = (VIO_PKT_DATA_HDRSIZE + vgenp->max_frame_size + 7) & ~7;
(void) vio_create_mblks(vgen_pri_tx_nmblks, mblk_sz,
&vgenp->pri_tx_vmp);
}
/* register with MD event generator */
static int
vgen_mdeg_reg(vgen_t *vgenp)
{
mdeg_prop_spec_t *pspecp;
mdeg_node_spec_t *parentp;
uint_t templatesz;
int rv;
mdeg_handle_t dev_hdl = NULL;
mdeg_handle_t port_hdl = NULL;
templatesz = sizeof (vgen_prop_template);
pspecp = kmem_zalloc(templatesz, KM_NOSLEEP);
if (pspecp == NULL) {
return (DDI_FAILURE);
}
parentp = kmem_zalloc(sizeof (mdeg_node_spec_t), KM_NOSLEEP);
if (parentp == NULL) {
kmem_free(pspecp, templatesz);
return (DDI_FAILURE);
}
bcopy(vgen_prop_template, pspecp, templatesz);
/*
* NOTE: The instance here refers to the value of "reg" property and
* not the dev_info instance (ddi_get_instance()) of vnet.
*/
VGEN_SET_MDEG_PROP_INST(pspecp, vgenp->regprop);
parentp->namep = "virtual-device";
parentp->specp = pspecp;
/* save parentp in vgen_t */
vgenp->mdeg_parentp = parentp;
/*
* Register an interest in 'virtual-device' nodes with a
* 'name' property of 'network'
*/
rv = mdeg_register(parentp, &vdev_match, vgen_mdeg_cb, vgenp, &dev_hdl);
if (rv != MDEG_SUCCESS) {
DERR(vgenp, NULL, "mdeg_register failed\n");
goto mdeg_reg_fail;
}
/* Register an interest in 'port' nodes */
rv = mdeg_register(parentp, &vport_match, vgen_mdeg_port_cb, vgenp,
&port_hdl);
if (rv != MDEG_SUCCESS) {
DERR(vgenp, NULL, "mdeg_register failed\n");
goto mdeg_reg_fail;
}
/* save mdeg handle in vgen_t */
vgenp->mdeg_dev_hdl = dev_hdl;
vgenp->mdeg_port_hdl = port_hdl;
return (DDI_SUCCESS);
mdeg_reg_fail:
if (dev_hdl != NULL) {
(void) mdeg_unregister(dev_hdl);
}
KMEM_FREE(parentp);
kmem_free(pspecp, templatesz);
vgenp->mdeg_parentp = NULL;
return (DDI_FAILURE);
}
/* unregister with MD event generator */
static void
vgen_mdeg_unreg(vgen_t *vgenp)
{
(void) mdeg_unregister(vgenp->mdeg_dev_hdl);
(void) mdeg_unregister(vgenp->mdeg_port_hdl);
kmem_free(vgenp->mdeg_parentp->specp, sizeof (vgen_prop_template));
KMEM_FREE(vgenp->mdeg_parentp);
vgenp->mdeg_parentp = NULL;
vgenp->mdeg_dev_hdl = NULL;
vgenp->mdeg_port_hdl = NULL;
}
/* mdeg callback function for the port node */
static int
vgen_mdeg_port_cb(void *cb_argp, mdeg_result_t *resp)
{
int idx;
int vsw_idx = -1;
uint64_t val;
vgen_t *vgenp;
if ((resp == NULL) || (cb_argp == NULL)) {
return (MDEG_FAILURE);
}
vgenp = (vgen_t *)cb_argp;
DBG1(vgenp, NULL, "enter\n");
mutex_enter(&vgenp->lock);
DBG1(vgenp, NULL, "ports: removed(%x), "
"added(%x), updated(%x)\n", resp->removed.nelem,
resp->added.nelem, resp->match_curr.nelem);
for (idx = 0; idx < resp->removed.nelem; idx++) {
(void) vgen_remove_port(vgenp, resp->removed.mdp,
resp->removed.mdep[idx]);
}
if (vgenp->vsw_portp == NULL) {
/*
* find vsw_port and add it first, because other ports need
* this when adding fdb entry (see vgen_port_init()).
*/
for (idx = 0; idx < resp->added.nelem; idx++) {
if (!(md_get_prop_val(resp->added.mdp,
resp->added.mdep[idx], swport_propname, &val))) {
if (val == 0) {
/*
* This port is connected to the
* vsw on service domain.
*/
vsw_idx = idx;
if (vgen_add_port(vgenp,
resp->added.mdp,
resp->added.mdep[idx]) !=
DDI_SUCCESS) {
cmn_err(CE_NOTE, "vnet%d Could "
"not initialize virtual "
"switch port.",
vgenp->instance);
mutex_exit(&vgenp->lock);
return (MDEG_FAILURE);
}
break;
}
}
}
if (vsw_idx == -1) {
DWARN(vgenp, NULL, "can't find vsw_port\n");
mutex_exit(&vgenp->lock);
return (MDEG_FAILURE);
}
}
for (idx = 0; idx < resp->added.nelem; idx++) {
if ((vsw_idx != -1) && (vsw_idx == idx)) /* skip vsw_port */
continue;
/* If this port can't be added just skip it. */
(void) vgen_add_port(vgenp, resp->added.mdp,
resp->added.mdep[idx]);
}
for (idx = 0; idx < resp->match_curr.nelem; idx++) {
(void) vgen_update_port(vgenp, resp->match_curr.mdp,
resp->match_curr.mdep[idx],
resp->match_prev.mdp,
resp->match_prev.mdep[idx]);
}
mutex_exit(&vgenp->lock);
DBG1(vgenp, NULL, "exit\n");
return (MDEG_SUCCESS);
}
/* mdeg callback function for the vnet node */
static int
vgen_mdeg_cb(void *cb_argp, mdeg_result_t *resp)
{
vgen_t *vgenp;
vnet_t *vnetp;
md_t *mdp;
mde_cookie_t node;
uint64_t inst;
char *node_name = NULL;
if ((resp == NULL) || (cb_argp == NULL)) {
return (MDEG_FAILURE);
}
vgenp = (vgen_t *)cb_argp;
vnetp = vgenp->vnetp;
DBG1(vgenp, NULL, "%s: added %d : removed %d : curr matched %d"
" : prev matched %d", resp->added.nelem, resp->removed.nelem,
resp->match_curr.nelem, resp->match_prev.nelem);
mutex_enter(&vgenp->lock);
/*
* We get an initial callback for this node as 'added' after
* registering with mdeg. Note that we would have already gathered
* information about this vnet node by walking MD earlier during attach
* (in vgen_read_mdprops()). So, there is a window where the properties
* of this node might have changed when we get this initial 'added'
* callback. We handle this as if an update occured and invoke the same
* function which handles updates to the properties of this vnet-node
* if any. A non-zero 'match' value indicates that the MD has been
* updated and that a 'network' node is present which may or may not
* have been updated. It is up to the clients to examine their own
* nodes and determine if they have changed.
*/
if (resp->added.nelem != 0) {
if (resp->added.nelem != 1) {
cmn_err(CE_NOTE, "!vnet%d: number of nodes added "
"invalid: %d\n", vnetp->instance,
resp->added.nelem);
goto vgen_mdeg_cb_err;
}
mdp = resp->added.mdp;
node = resp->added.mdep[0];
} else if (resp->match_curr.nelem != 0) {
if (resp->match_curr.nelem != 1) {
cmn_err(CE_NOTE, "!vnet%d: number of nodes updated "
"invalid: %d\n", vnetp->instance,
resp->match_curr.nelem);
goto vgen_mdeg_cb_err;
}
mdp = resp->match_curr.mdp;
node = resp->match_curr.mdep[0];
} else {
goto vgen_mdeg_cb_err;
}
/* Validate name and instance */
if (md_get_prop_str(mdp, node, "name", &node_name) != 0) {
DERR(vgenp, NULL, "unable to get node name\n");
goto vgen_mdeg_cb_err;
}
/* is this a virtual-network device? */
if (strcmp(node_name, vnet_propname) != 0) {
DERR(vgenp, NULL, "%s: Invalid node name: %s\n", node_name);
goto vgen_mdeg_cb_err;
}
if (md_get_prop_val(mdp, node, "cfg-handle", &inst)) {
DERR(vgenp, NULL, "prop(cfg-handle) not found\n");
goto vgen_mdeg_cb_err;
}
/* is this the right instance of vnet? */
if (inst != vgenp->regprop) {
DERR(vgenp, NULL, "Invalid cfg-handle: %lx\n", inst);
goto vgen_mdeg_cb_err;
}
vgen_update_md_prop(vgenp, mdp, node);
mutex_exit(&vgenp->lock);
return (MDEG_SUCCESS);
vgen_mdeg_cb_err:
mutex_exit(&vgenp->lock);
return (MDEG_FAILURE);
}
/*
* Check to see if the relevant properties in the specified node have
* changed, and if so take the appropriate action.
*/
static void
vgen_update_md_prop(vgen_t *vgenp, md_t *mdp, mde_cookie_t mdex)
{
uint16_t pvid;
uint16_t *vids;
uint16_t nvids;
vnet_t *vnetp = vgenp->vnetp;
boolean_t updated_vlans = B_FALSE;
/* Read the vlan ids */
vgen_vlan_read_ids(vgenp, VGEN_LOCAL, mdp, mdex, &pvid, &vids,
&nvids, NULL);
/* Determine if there are any vlan id updates */
if ((pvid != vnetp->pvid) || /* pvid changed? */
(nvids != vnetp->nvids) || /* # of vids changed? */
((nvids != 0) && (vnetp->nvids != 0) && /* vids changed? */
bcmp(vids, vnetp->vids, sizeof (uint16_t) * nvids))) {
updated_vlans = B_TRUE;
}
if (updated_vlans == B_FALSE) {
if (nvids != 0) {
kmem_free(vids, sizeof (uint16_t) * nvids);
}
return;
}
/* save the new vlan ids */
vnetp->pvid = pvid;
if (vnetp->nvids != 0) {
kmem_free(vnetp->vids, sizeof (uint16_t) * vnetp->nvids);
vnetp->nvids = 0;
}
if (nvids != 0) {
vnetp->nvids = nvids;
vnetp->vids = vids;
}
/* reset vlan-unaware peers (ver < 1.3) and restart handshake */
vgen_reset_vlan_unaware_ports(vgenp);
}
/* add a new port to the device */
static int
vgen_add_port(vgen_t *vgenp, md_t *mdp, mde_cookie_t mdex)
{
vgen_port_t *portp;
int rv;
portp = kmem_zalloc(sizeof (vgen_port_t), KM_SLEEP);
rv = vgen_port_read_props(portp, vgenp, mdp, mdex);
if (rv != DDI_SUCCESS) {
KMEM_FREE(portp);
return (DDI_FAILURE);
}
rv = vgen_port_attach(portp);
if (rv != DDI_SUCCESS) {
return (DDI_FAILURE);
}
return (DDI_SUCCESS);
}
/* read properties of the port from its md node */
static int
vgen_port_read_props(vgen_port_t *portp, vgen_t *vgenp, md_t *mdp,
mde_cookie_t mdex)
{
uint64_t port_num;
uint64_t *ldc_ids;
uint64_t macaddr;
uint64_t val;
int num_ldcs;
int i;
int addrsz;
int num_nodes = 0;
int listsz = 0;
mde_cookie_t *listp = NULL;
uint8_t *addrp;
struct ether_addr ea;
/* read "id" property to get the port number */
if (md_get_prop_val(mdp, mdex, id_propname, &port_num)) {
DWARN(vgenp, NULL, "prop(%s) not found\n", id_propname);
return (DDI_FAILURE);
}
/*
* Find the channel endpoint node(s) under this port node.
*/
if ((num_nodes = md_node_count(mdp)) <= 0) {
DWARN(vgenp, NULL, "invalid number of nodes found (%d)",
num_nodes);
return (DDI_FAILURE);
}
/* allocate space for node list */
listsz = num_nodes * sizeof (mde_cookie_t);
listp = kmem_zalloc(listsz, KM_NOSLEEP);
if (listp == NULL)
return (DDI_FAILURE);
num_ldcs = md_scan_dag(mdp, mdex,
md_find_name(mdp, channel_propname),
md_find_name(mdp, "fwd"), listp);
if (num_ldcs <= 0) {
DWARN(vgenp, NULL, "can't find %s nodes", channel_propname);
kmem_free(listp, listsz);
return (DDI_FAILURE);
}
DBG2(vgenp, NULL, "num_ldcs %d", num_ldcs);
ldc_ids = kmem_zalloc(num_ldcs * sizeof (uint64_t), KM_NOSLEEP);
if (ldc_ids == NULL) {
kmem_free(listp, listsz);
return (DDI_FAILURE);
}
for (i = 0; i < num_ldcs; i++) {
/* read channel ids */
if (md_get_prop_val(mdp, listp[i], id_propname, &ldc_ids[i])) {
DWARN(vgenp, NULL, "prop(%s) not found\n",
id_propname);
kmem_free(listp, listsz);
kmem_free(ldc_ids, num_ldcs * sizeof (uint64_t));
return (DDI_FAILURE);
}
DBG2(vgenp, NULL, "ldc_id 0x%llx", ldc_ids[i]);
}
kmem_free(listp, listsz);
if (md_get_prop_data(mdp, mdex, rmacaddr_propname, &addrp,
&addrsz)) {
DWARN(vgenp, NULL, "prop(%s) not found\n", rmacaddr_propname);
kmem_free(ldc_ids, num_ldcs * sizeof (uint64_t));
return (DDI_FAILURE);
}
if (addrsz < ETHERADDRL) {
DWARN(vgenp, NULL, "invalid address size (%d)\n", addrsz);
kmem_free(ldc_ids, num_ldcs * sizeof (uint64_t));
return (DDI_FAILURE);
}
macaddr = *((uint64_t *)addrp);
DBG2(vgenp, NULL, "remote mac address 0x%llx\n", macaddr);
for (i = ETHERADDRL - 1; i >= 0; i--) {
ea.ether_addr_octet[i] = macaddr & 0xFF;
macaddr >>= 8;
}
if (vgenp->vsw_portp == NULL) {
if (!(md_get_prop_val(mdp, mdex, swport_propname, &val))) {
if (val == 0) {
(void) atomic_swap_32(
&vgenp->vsw_port_refcnt, 0);
/* This port is connected to the vsw */
vgenp->vsw_portp = portp;
}
}
}
/* now update all properties into the port */
portp->vgenp = vgenp;
portp->port_num = port_num;
ether_copy(&ea, &portp->macaddr);
portp->ldc_ids = kmem_zalloc(sizeof (uint64_t) * num_ldcs, KM_SLEEP);
bcopy(ldc_ids, portp->ldc_ids, sizeof (uint64_t) * num_ldcs);
portp->num_ldcs = num_ldcs;
/* read vlan id properties of this port node */
vgen_vlan_read_ids(portp, VGEN_PEER, mdp, mdex, &portp->pvid,
&portp->vids, &portp->nvids, NULL);
kmem_free(ldc_ids, num_ldcs * sizeof (uint64_t));
return (DDI_SUCCESS);
}
/* remove a port from the device */
static int
vgen_remove_port(vgen_t *vgenp, md_t *mdp, mde_cookie_t mdex)
{
uint64_t port_num;
vgen_port_t *portp;
vgen_portlist_t *plistp;
/* read "id" property to get the port number */
if (md_get_prop_val(mdp, mdex, id_propname, &port_num)) {
DWARN(vgenp, NULL, "prop(%s) not found\n", id_propname);
return (DDI_FAILURE);
}
plistp = &(vgenp->vgenports);
WRITE_ENTER(&plistp->rwlock);
portp = vgen_port_lookup(plistp, (int)port_num);
if (portp == NULL) {
DWARN(vgenp, NULL, "can't find port(%lx)\n", port_num);
RW_EXIT(&plistp->rwlock);
return (DDI_FAILURE);
}
vgen_port_detach_mdeg(portp);
RW_EXIT(&plistp->rwlock);
return (DDI_SUCCESS);
}
/* attach a port to the device based on mdeg data */
static int
vgen_port_attach(vgen_port_t *portp)
{
int i;
vgen_portlist_t *plistp;
vgen_t *vgenp;
uint64_t *ldcids;
uint32_t num_ldcs;
mac_register_t *macp;
vio_net_res_type_t type;
int rv;
ASSERT(portp != NULL);
vgenp = portp->vgenp;
ldcids = portp->ldc_ids;
num_ldcs = portp->num_ldcs;
DBG1(vgenp, NULL, "port_num(%d)\n", portp->port_num);
mutex_init(&portp->lock, NULL, MUTEX_DRIVER, NULL);
rw_init(&portp->ldclist.rwlock, NULL, RW_DRIVER, NULL);
portp->ldclist.headp = NULL;
for (i = 0; i < num_ldcs; i++) {
DBG2(vgenp, NULL, "ldcid (%lx)\n", ldcids[i]);
if (vgen_ldc_attach(portp, ldcids[i]) == DDI_FAILURE) {
vgen_port_detach(portp);
return (DDI_FAILURE);
}
}
/* create vlan id hash table */
vgen_vlan_create_hash(portp);
if (portp == vgenp->vsw_portp) {
/* This port is connected to the switch port */
vgenp->vsw_portp = portp;
(void) atomic_swap_32(&portp->use_vsw_port, B_FALSE);
type = VIO_NET_RES_LDC_SERVICE;
} else {
(void) atomic_swap_32(&portp->use_vsw_port, B_TRUE);
type = VIO_NET_RES_LDC_GUEST;
}
if ((macp = mac_alloc(MAC_VERSION)) == NULL) {
vgen_port_detach(portp);
return (DDI_FAILURE);
}
macp->m_type_ident = MAC_PLUGIN_IDENT_ETHER;
macp->m_driver = portp;
macp->m_dip = vgenp->vnetdip;
macp->m_src_addr = (uint8_t *)&(vgenp->macaddr);
macp->m_callbacks = &vgen_m_callbacks;
macp->m_min_sdu = 0;
macp->m_max_sdu = ETHERMTU;
mutex_enter(&portp->lock);
rv = vio_net_resource_reg(macp, type, vgenp->macaddr,
portp->macaddr, &portp->vhp, &portp->vcb);
mutex_exit(&portp->lock);
mac_free(macp);
if (rv == 0) {
/* link it into the list of ports */
plistp = &(vgenp->vgenports);
WRITE_ENTER(&plistp->rwlock);
vgen_port_list_insert(portp);
RW_EXIT(&plistp->rwlock);
} else {
DERR(vgenp, NULL, "vio_net_resource_reg failed for portp=0x%p",
portp);
vgen_port_detach(portp);
}
DBG1(vgenp, NULL, "exit: port_num(%d)\n", portp->port_num);
return (DDI_SUCCESS);
}
/* detach a port from the device based on mdeg data */
static void
vgen_port_detach_mdeg(vgen_port_t *portp)
{
vgen_t *vgenp = portp->vgenp;
DBG1(vgenp, NULL, "enter: port_num(%d)\n", portp->port_num);
mutex_enter(&portp->lock);
/* stop the port if needed */
if (portp->flags & VGEN_STARTED) {
vgen_port_uninit(portp);
}
mutex_exit(&portp->lock);
vgen_port_detach(portp);
DBG1(vgenp, NULL, "exit: port_num(%d)\n", portp->port_num);
}
static int
vgen_update_port(vgen_t *vgenp, md_t *curr_mdp, mde_cookie_t curr_mdex,
md_t *prev_mdp, mde_cookie_t prev_mdex)
{
uint64_t cport_num;
uint64_t pport_num;
vgen_portlist_t *plistp;
vgen_port_t *portp;
boolean_t updated_vlans = B_FALSE;
uint16_t pvid;
uint16_t *vids;
uint16_t nvids;
/*
* For now, we get port updates only if vlan ids changed.
* We read the port num and do some sanity check.
*/
if (md_get_prop_val(curr_mdp, curr_mdex, id_propname, &cport_num)) {
DWARN(vgenp, NULL, "prop(%s) not found\n", id_propname);
return (DDI_FAILURE);
}
if (md_get_prop_val(prev_mdp, prev_mdex, id_propname, &pport_num)) {
DWARN(vgenp, NULL, "prop(%s) not found\n", id_propname);
return (DDI_FAILURE);
}
if (cport_num != pport_num)
return (DDI_FAILURE);
plistp = &(vgenp->vgenports);
READ_ENTER(&plistp->rwlock);
portp = vgen_port_lookup(plistp, (int)cport_num);
if (portp == NULL) {
DWARN(vgenp, NULL, "can't find port(%lx)\n", cport_num);
RW_EXIT(&plistp->rwlock);
return (DDI_FAILURE);
}
/* Read the vlan ids */
vgen_vlan_read_ids(portp, VGEN_PEER, curr_mdp, curr_mdex, &pvid, &vids,
&nvids, NULL);
/* Determine if there are any vlan id updates */
if ((pvid != portp->pvid) || /* pvid changed? */
(nvids != portp->nvids) || /* # of vids changed? */
((nvids != 0) && (portp->nvids != 0) && /* vids changed? */
bcmp(vids, portp->vids, sizeof (uint16_t) * nvids))) {
updated_vlans = B_TRUE;
}
if (updated_vlans == B_FALSE) {
RW_EXIT(&plistp->rwlock);
return (DDI_FAILURE);
}
/* remove the port from vlans it has been assigned to */
vgen_vlan_remove_ids(portp);
/* save the new vlan ids */
portp->pvid = pvid;
if (portp->nvids != 0) {
kmem_free(portp->vids, sizeof (uint16_t) * portp->nvids);
portp->nvids = 0;
}
if (nvids != 0) {
portp->vids = kmem_zalloc(sizeof (uint16_t) * nvids, KM_SLEEP);
bcopy(vids, portp->vids, sizeof (uint16_t) * nvids);
portp->nvids = nvids;
kmem_free(vids, sizeof (uint16_t) * nvids);
}
/* add port to the new vlans */
vgen_vlan_add_ids(portp);
/* reset the port if it is vlan unaware (ver < 1.3) */
vgen_vlan_unaware_port_reset(portp);
RW_EXIT(&plistp->rwlock);
return (DDI_SUCCESS);
}
static uint64_t
vgen_port_stat(vgen_port_t *portp, uint_t stat)
{
vgen_ldclist_t *ldclp;
vgen_ldc_t *ldcp;
uint64_t val;
val = 0;
ldclp = &portp->ldclist;
READ_ENTER(&ldclp->rwlock);
for (ldcp = ldclp->headp; ldcp != NULL; ldcp = ldcp->nextp) {
val += vgen_ldc_stat(ldcp, stat);
}
RW_EXIT(&ldclp->rwlock);
return (val);
}
/* attach the channel corresponding to the given ldc_id to the port */
static int
vgen_ldc_attach(vgen_port_t *portp, uint64_t ldc_id)
{
vgen_t *vgenp;
vgen_ldclist_t *ldclp;
vgen_ldc_t *ldcp, **prev_ldcp;
ldc_attr_t attr;
int status;
ldc_status_t istatus;
char kname[MAXNAMELEN];
int instance;
enum {AST_init = 0x0, AST_ldc_alloc = 0x1,
AST_mutex_init = 0x2, AST_ldc_init = 0x4,
AST_ldc_reg_cb = 0x8, AST_alloc_tx_ring = 0x10,
AST_create_rxmblks = 0x20,
AST_create_rcv_thread = 0x40} attach_state;
attach_state = AST_init;
vgenp = portp->vgenp;
ldclp = &portp->ldclist;
ldcp = kmem_zalloc(sizeof (vgen_ldc_t), KM_NOSLEEP);
if (ldcp == NULL) {
goto ldc_attach_failed;
}
ldcp->ldc_id = ldc_id;
ldcp->portp = portp;
attach_state |= AST_ldc_alloc;
mutex_init(&ldcp->txlock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&ldcp->cblock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&ldcp->tclock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&ldcp->wrlock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&ldcp->rxlock, NULL, MUTEX_DRIVER, NULL);
attach_state |= AST_mutex_init;
attr.devclass = LDC_DEV_NT;
attr.instance = vgenp->instance;
attr.mode = LDC_MODE_UNRELIABLE;
attr.mtu = vnet_ldc_mtu;
status = ldc_init(ldc_id, &attr, &ldcp->ldc_handle);
if (status != 0) {
DWARN(vgenp, ldcp, "ldc_init failed,rv (%d)\n", status);
goto ldc_attach_failed;
}
attach_state |= AST_ldc_init;
if (vgen_rcv_thread_enabled) {
ldcp->rcv_thr_flags = 0;
mutex_init(&ldcp->rcv_thr_lock, NULL, MUTEX_DRIVER, NULL);
cv_init(&ldcp->rcv_thr_cv, NULL, CV_DRIVER, NULL);
ldcp->rcv_thread = thread_create(NULL, 2 * DEFAULTSTKSZ,
vgen_ldc_rcv_worker, ldcp, 0, &p0, TS_RUN, maxclsyspri);
attach_state |= AST_create_rcv_thread;
if (ldcp->rcv_thread == NULL) {
DWARN(vgenp, ldcp, "Failed to create worker thread");
goto ldc_attach_failed;
}
}
status = ldc_reg_callback(ldcp->ldc_handle, vgen_ldc_cb, (caddr_t)ldcp);
if (status != 0) {
DWARN(vgenp, ldcp, "ldc_reg_callback failed, rv (%d)\n",
status);
goto ldc_attach_failed;
}
/*
* allocate a message for ldc_read()s, big enough to hold ctrl and
* data msgs, including raw data msgs used to recv priority frames.
*/
ldcp->msglen = VIO_PKT_DATA_HDRSIZE + vgenp->max_frame_size;
ldcp->ldcmsg = kmem_alloc(ldcp->msglen, KM_SLEEP);
attach_state |= AST_ldc_reg_cb;
(void) ldc_status(ldcp->ldc_handle, &istatus);
ASSERT(istatus == LDC_INIT);
ldcp->ldc_status = istatus;
/* allocate transmit resources */
status = vgen_alloc_tx_ring(ldcp);
if (status != 0) {
goto ldc_attach_failed;
}
attach_state |= AST_alloc_tx_ring;
/* allocate receive resources */
status = vio_init_multipools(&ldcp->vmp, VGEN_NUM_VMPOOLS,
vgen_rbufsz1, vgen_rbufsz2, vgen_rbufsz3,
vgen_nrbufs1, vgen_nrbufs2, vgen_nrbufs3);
if (status != 0) {
goto ldc_attach_failed;
}
attach_state |= AST_create_rxmblks;
/* Setup kstats for the channel */
instance = vgenp->instance;
(void) sprintf(kname, "vnetldc0x%lx", ldcp->ldc_id);
ldcp->ksp = vgen_setup_kstats("vnet", instance, kname, &ldcp->stats);
if (ldcp->ksp == NULL) {
goto ldc_attach_failed;
}
/* initialize vgen_versions supported */
bcopy(vgen_versions, ldcp->vgen_versions, sizeof (ldcp->vgen_versions));
vgen_reset_vnet_proto_ops(ldcp);
/* link it into the list of channels for this port */
WRITE_ENTER(&ldclp->rwlock);
prev_ldcp = (vgen_ldc_t **)(&ldclp->headp);
ldcp->nextp = *prev_ldcp;
*prev_ldcp = ldcp;
RW_EXIT(&ldclp->rwlock);
ldcp->flags |= CHANNEL_ATTACHED;
return (DDI_SUCCESS);
ldc_attach_failed:
if (attach_state & AST_ldc_reg_cb) {
(void) ldc_unreg_callback(ldcp->ldc_handle);
kmem_free(ldcp->ldcmsg, ldcp->msglen);
}
if (attach_state & AST_create_rcv_thread) {
if (ldcp->rcv_thread != NULL) {
vgen_stop_rcv_thread(ldcp);
}
mutex_destroy(&ldcp->rcv_thr_lock);
cv_destroy(&ldcp->rcv_thr_cv);
}
if (attach_state & AST_create_rxmblks) {
vio_mblk_pool_t *fvmp = NULL;
vio_destroy_multipools(&ldcp->vmp, &fvmp);
ASSERT(fvmp == NULL);
}
if (attach_state & AST_alloc_tx_ring) {
vgen_free_tx_ring(ldcp);
}
if (attach_state & AST_ldc_init) {
(void) ldc_fini(ldcp->ldc_handle);
}
if (attach_state & AST_mutex_init) {
mutex_destroy(&ldcp->tclock);
mutex_destroy(&ldcp->txlock);
mutex_destroy(&ldcp->cblock);
mutex_destroy(&ldcp->wrlock);
mutex_destroy(&ldcp->rxlock);
}
if (attach_state & AST_ldc_alloc) {
KMEM_FREE(ldcp);
}
return (DDI_FAILURE);
}
/* detach a channel from the port */
static void
vgen_ldc_detach(vgen_ldc_t *ldcp)
{
vgen_port_t *portp;
vgen_t *vgenp;
vgen_ldc_t *pldcp;
vgen_ldc_t **prev_ldcp;
vgen_ldclist_t *ldclp;
portp = ldcp->portp;
vgenp = portp->vgenp;
ldclp = &portp->ldclist;
prev_ldcp = (vgen_ldc_t **)&ldclp->headp;
for (; (pldcp = *prev_ldcp) != NULL; prev_ldcp = &pldcp->nextp) {
if (pldcp == ldcp) {
break;
}
}
if (pldcp == NULL) {
/* invalid ldcp? */
return;
}
if (ldcp->ldc_status != LDC_INIT) {
DWARN(vgenp, ldcp, "ldc_status is not INIT\n");
}
if (ldcp->flags & CHANNEL_ATTACHED) {
ldcp->flags &= ~(CHANNEL_ATTACHED);
(void) ldc_unreg_callback(ldcp->ldc_handle);
if (ldcp->rcv_thread != NULL) {
/* First stop the receive thread */
vgen_stop_rcv_thread(ldcp);
mutex_destroy(&ldcp->rcv_thr_lock);
cv_destroy(&ldcp->rcv_thr_cv);
}
kmem_free(ldcp->ldcmsg, ldcp->msglen);
vgen_destroy_kstats(ldcp->ksp);
ldcp->ksp = NULL;
/*
* if we cannot reclaim all mblks, put this
* on the list of pools(vgenp->rmp) to be reclaimed when the
* device gets detached (see vgen_uninit()).
*/
vio_destroy_multipools(&ldcp->vmp, &vgenp->rmp);
/* free transmit resources */
vgen_free_tx_ring(ldcp);
(void) ldc_fini(ldcp->ldc_handle);
mutex_destroy(&ldcp->tclock);
mutex_destroy(&ldcp->txlock);
mutex_destroy(&ldcp->cblock);
mutex_destroy(&ldcp->wrlock);
mutex_destroy(&ldcp->rxlock);
/* unlink it from the list */
*prev_ldcp = ldcp->nextp;
KMEM_FREE(ldcp);
}
}
/*
* This function allocates transmit resources for the channel.
* The resources consist of a transmit descriptor ring and an associated
* transmit buffer ring.
*/
static int
vgen_alloc_tx_ring(vgen_ldc_t *ldcp)
{
void *tbufp;
ldc_mem_info_t minfo;
uint32_t txdsize;
uint32_t tbufsize;
int status;
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
ldcp->num_txds = vnet_ntxds;
txdsize = sizeof (vnet_public_desc_t);
tbufsize = sizeof (vgen_private_desc_t);
/* allocate transmit buffer ring */
tbufp = kmem_zalloc(ldcp->num_txds * tbufsize, KM_NOSLEEP);
if (tbufp == NULL) {
return (DDI_FAILURE);
}
/* create transmit descriptor ring */
status = ldc_mem_dring_create(ldcp->num_txds, txdsize,
&ldcp->tx_dhandle);
if (status) {
DWARN(vgenp, ldcp, "ldc_mem_dring_create() failed\n");
kmem_free(tbufp, ldcp->num_txds * tbufsize);
return (DDI_FAILURE);
}
/* get the addr of descripror ring */
status = ldc_mem_dring_info(ldcp->tx_dhandle, &minfo);
if (status) {
DWARN(vgenp, ldcp, "ldc_mem_dring_info() failed\n");
kmem_free(tbufp, ldcp->num_txds * tbufsize);
(void) ldc_mem_dring_destroy(ldcp->tx_dhandle);
ldcp->tbufp = NULL;
return (DDI_FAILURE);
}
ldcp->txdp = (vnet_public_desc_t *)(minfo.vaddr);
ldcp->tbufp = tbufp;
ldcp->txdendp = &((ldcp->txdp)[ldcp->num_txds]);
ldcp->tbufendp = &((ldcp->tbufp)[ldcp->num_txds]);
return (DDI_SUCCESS);
}
/* Free transmit resources for the channel */
static void
vgen_free_tx_ring(vgen_ldc_t *ldcp)
{
int tbufsize = sizeof (vgen_private_desc_t);
/* free transmit descriptor ring */
(void) ldc_mem_dring_destroy(ldcp->tx_dhandle);
/* free transmit buffer ring */
kmem_free(ldcp->tbufp, ldcp->num_txds * tbufsize);
ldcp->txdp = ldcp->txdendp = NULL;
ldcp->tbufp = ldcp->tbufendp = NULL;
}
/* enable transmit/receive on the channels for the port */
static void
vgen_init_ldcs(vgen_port_t *portp)
{
vgen_ldclist_t *ldclp = &portp->ldclist;
vgen_ldc_t *ldcp;
READ_ENTER(&ldclp->rwlock);
ldcp = ldclp->headp;
for (; ldcp != NULL; ldcp = ldcp->nextp) {
(void) vgen_ldc_init(ldcp);
}
RW_EXIT(&ldclp->rwlock);
}
/* stop transmit/receive on the channels for the port */
static void
vgen_uninit_ldcs(vgen_port_t *portp)
{
vgen_ldclist_t *ldclp = &portp->ldclist;
vgen_ldc_t *ldcp;
READ_ENTER(&ldclp->rwlock);
ldcp = ldclp->headp;
for (; ldcp != NULL; ldcp = ldcp->nextp) {
vgen_ldc_uninit(ldcp);
}
RW_EXIT(&ldclp->rwlock);
}
/* enable transmit/receive on the channel */
static int
vgen_ldc_init(vgen_ldc_t *ldcp)
{
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
ldc_status_t istatus;
int rv;
uint32_t retries = 0;
enum { ST_init = 0x0, ST_ldc_open = 0x1,
ST_init_tbufs = 0x2, ST_cb_enable = 0x4} init_state;
init_state = ST_init;
DBG1(vgenp, ldcp, "enter\n");
LDC_LOCK(ldcp);
rv = ldc_open(ldcp->ldc_handle);
if (rv != 0) {
DWARN(vgenp, ldcp, "ldc_open failed: rv(%d)\n", rv);
goto ldcinit_failed;
}
init_state |= ST_ldc_open;
(void) ldc_status(ldcp->ldc_handle, &istatus);
if (istatus != LDC_OPEN && istatus != LDC_READY) {
DWARN(vgenp, ldcp, "status(%d) is not OPEN/READY\n", istatus);
goto ldcinit_failed;
}
ldcp->ldc_status = istatus;
rv = vgen_init_tbufs(ldcp);
if (rv != 0) {
DWARN(vgenp, ldcp, "vgen_init_tbufs() failed\n");
goto ldcinit_failed;
}
init_state |= ST_init_tbufs;
rv = ldc_set_cb_mode(ldcp->ldc_handle, LDC_CB_ENABLE);
if (rv != 0) {
DWARN(vgenp, ldcp, "ldc_set_cb_mode failed: rv(%d)\n", rv);
goto ldcinit_failed;
}
init_state |= ST_cb_enable;
do {
rv = ldc_up(ldcp->ldc_handle);
if ((rv != 0) && (rv == EWOULDBLOCK)) {
DBG2(vgenp, ldcp, "ldc_up err rv(%d)\n", rv);
drv_usecwait(VGEN_LDC_UP_DELAY);
}
if (retries++ >= vgen_ldcup_retries)
break;
} while (rv == EWOULDBLOCK);
(void) ldc_status(ldcp->ldc_handle, &istatus);
if (istatus == LDC_UP) {
DWARN(vgenp, ldcp, "status(%d) is UP\n", istatus);
}
ldcp->ldc_status = istatus;
/* initialize transmit watchdog timeout */
ldcp->wd_tid = timeout(vgen_ldc_watchdog, (caddr_t)ldcp,
drv_usectohz(vnet_ldcwd_interval * 1000));
ldcp->hphase = -1;
ldcp->flags |= CHANNEL_STARTED;
/* if channel is already UP - start handshake */
if (istatus == LDC_UP) {
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
if (ldcp->portp != vgenp->vsw_portp) {
/*
* As the channel is up, use this port from now on.
*/
(void) atomic_swap_32(
&ldcp->portp->use_vsw_port, B_FALSE);
}
/* Initialize local session id */
ldcp->local_sid = ddi_get_lbolt();
/* clear peer session id */
ldcp->peer_sid = 0;
ldcp->hretries = 0;
/* Initiate Handshake process with peer ldc endpoint */
vgen_reset_hphase(ldcp);
mutex_exit(&ldcp->tclock);
mutex_exit(&ldcp->txlock);
mutex_exit(&ldcp->wrlock);
mutex_exit(&ldcp->rxlock);
vgen_handshake(vh_nextphase(ldcp));
mutex_exit(&ldcp->cblock);
} else {
LDC_UNLOCK(ldcp);
}
return (DDI_SUCCESS);
ldcinit_failed:
if (init_state & ST_cb_enable) {
(void) ldc_set_cb_mode(ldcp->ldc_handle, LDC_CB_DISABLE);
}
if (init_state & ST_init_tbufs) {
vgen_uninit_tbufs(ldcp);
}
if (init_state & ST_ldc_open) {
(void) ldc_close(ldcp->ldc_handle);
}
LDC_UNLOCK(ldcp);
DBG1(vgenp, ldcp, "exit\n");
return (DDI_FAILURE);
}
/* stop transmit/receive on the channel */
static void
vgen_ldc_uninit(vgen_ldc_t *ldcp)
{
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
int rv;
DBG1(vgenp, ldcp, "enter\n");
LDC_LOCK(ldcp);
if ((ldcp->flags & CHANNEL_STARTED) == 0) {
LDC_UNLOCK(ldcp);
DWARN(vgenp, ldcp, "CHANNEL_STARTED flag is not set\n");
return;
}
/* disable further callbacks */
rv = ldc_set_cb_mode(ldcp->ldc_handle, LDC_CB_DISABLE);
if (rv != 0) {
DWARN(vgenp, ldcp, "ldc_set_cb_mode failed\n");
}
if (vgenp->vsw_portp == ldcp->portp) {
vio_net_report_err_t rep_err =
ldcp->portp->vcb.vio_net_report_err;
rep_err(ldcp->portp->vhp, VIO_NET_RES_DOWN);
}
/*
* clear handshake done bit and wait for pending tx and cb to finish.
* release locks before untimeout(9F) is invoked to cancel timeouts.
*/
ldcp->hphase &= ~(VH_DONE);
LDC_UNLOCK(ldcp);
/* cancel handshake watchdog timeout */
if (ldcp->htid) {
(void) untimeout(ldcp->htid);
ldcp->htid = 0;
}
/* cancel transmit watchdog timeout */
if (ldcp->wd_tid) {
(void) untimeout(ldcp->wd_tid);
ldcp->wd_tid = 0;
}
drv_usecwait(1000);
/* acquire locks again; any pending transmits and callbacks are done */
LDC_LOCK(ldcp);
vgen_reset_hphase(ldcp);
vgen_uninit_tbufs(ldcp);
rv = ldc_close(ldcp->ldc_handle);
if (rv != 0) {
DWARN(vgenp, ldcp, "ldc_close err\n");
}
ldcp->ldc_status = LDC_INIT;
ldcp->flags &= ~(CHANNEL_STARTED);
LDC_UNLOCK(ldcp);
DBG1(vgenp, ldcp, "exit\n");
}
/* Initialize the transmit buffer ring for the channel */
static int
vgen_init_tbufs(vgen_ldc_t *ldcp)
{
vgen_private_desc_t *tbufp;
vnet_public_desc_t *txdp;
vio_dring_entry_hdr_t *hdrp;
int i;
int rv;
caddr_t datap = NULL;
int ci;
uint32_t ncookies;
size_t data_sz;
vgen_t *vgenp;
vgenp = LDC_TO_VGEN(ldcp);
bzero(ldcp->tbufp, sizeof (*tbufp) * (ldcp->num_txds));
bzero(ldcp->txdp, sizeof (*txdp) * (ldcp->num_txds));
data_sz = vgenp->max_frame_size + VNET_IPALIGN + VNET_LDCALIGN;
data_sz = VNET_ROUNDUP_2K(data_sz);
ldcp->tx_data_sz = data_sz * ldcp->num_txds;
datap = kmem_zalloc(ldcp->tx_data_sz, KM_SLEEP);
ldcp->tx_datap = datap;
/*
* for each private descriptor, allocate a ldc mem_handle which is
* required to map the data during transmit, set the flags
* to free (available for use by transmit routine).
*/
for (i = 0; i < ldcp->num_txds; i++) {
tbufp = &(ldcp->tbufp[i]);
rv = ldc_mem_alloc_handle(ldcp->ldc_handle,
&(tbufp->memhandle));
if (rv) {
tbufp->memhandle = 0;
goto init_tbufs_failed;
}
/*
* bind ldc memhandle to the corresponding transmit buffer.
*/
ci = ncookies = 0;
rv = ldc_mem_bind_handle(tbufp->memhandle,
(caddr_t)datap, data_sz, LDC_SHADOW_MAP,
LDC_MEM_R, &(tbufp->memcookie[ci]), &ncookies);
if (rv != 0) {
goto init_tbufs_failed;
}
/*
* successful in binding the handle to tx data buffer.
* set datap in the private descr to this buffer.
*/
tbufp->datap = datap;
if ((ncookies == 0) ||
(ncookies > MAX_COOKIES)) {
goto init_tbufs_failed;
}
for (ci = 1; ci < ncookies; ci++) {
rv = ldc_mem_nextcookie(tbufp->memhandle,
&(tbufp->memcookie[ci]));
if (rv != 0) {
goto init_tbufs_failed;
}
}
tbufp->ncookies = ncookies;
datap += data_sz;
tbufp->flags = VGEN_PRIV_DESC_FREE;
txdp = &(ldcp->txdp[i]);
hdrp = &txdp->hdr;
hdrp->dstate = VIO_DESC_FREE;
hdrp->ack = B_FALSE;
tbufp->descp = txdp;
}
/* reset tbuf walking pointers */
ldcp->next_tbufp = ldcp->tbufp;
ldcp->cur_tbufp = ldcp->tbufp;
/* initialize tx seqnum and index */
ldcp->next_txseq = VNET_ISS;
ldcp->next_txi = 0;
ldcp->resched_peer = B_TRUE;
ldcp->resched_peer_txi = 0;
return (DDI_SUCCESS);
init_tbufs_failed:;
vgen_uninit_tbufs(ldcp);
return (DDI_FAILURE);
}
/* Uninitialize transmit buffer ring for the channel */
static void
vgen_uninit_tbufs(vgen_ldc_t *ldcp)
{
vgen_private_desc_t *tbufp = ldcp->tbufp;
int i;
/* for each tbuf (priv_desc), free ldc mem_handle */
for (i = 0; i < ldcp->num_txds; i++) {
tbufp = &(ldcp->tbufp[i]);
if (tbufp->datap) { /* if bound to a ldc memhandle */
(void) ldc_mem_unbind_handle(tbufp->memhandle);
tbufp->datap = NULL;
}
if (tbufp->memhandle) {
(void) ldc_mem_free_handle(tbufp->memhandle);
tbufp->memhandle = 0;
}
}
if (ldcp->tx_datap) {
/* prealloc'd tx data buffer */
kmem_free(ldcp->tx_datap, ldcp->tx_data_sz);
ldcp->tx_datap = NULL;
ldcp->tx_data_sz = 0;
}
bzero(ldcp->tbufp, sizeof (vgen_private_desc_t) * (ldcp->num_txds));
bzero(ldcp->txdp, sizeof (vnet_public_desc_t) * (ldcp->num_txds));
}
/* clobber tx descriptor ring */
static void
vgen_clobber_tbufs(vgen_ldc_t *ldcp)
{
vnet_public_desc_t *txdp;
vgen_private_desc_t *tbufp;
vio_dring_entry_hdr_t *hdrp;
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
int i;
#ifdef DEBUG
int ndone = 0;
#endif
for (i = 0; i < ldcp->num_txds; i++) {
tbufp = &(ldcp->tbufp[i]);
txdp = tbufp->descp;
hdrp = &txdp->hdr;
if (tbufp->flags & VGEN_PRIV_DESC_BUSY) {
tbufp->flags = VGEN_PRIV_DESC_FREE;
#ifdef DEBUG
if (hdrp->dstate == VIO_DESC_DONE)
ndone++;
#endif
hdrp->dstate = VIO_DESC_FREE;
hdrp->ack = B_FALSE;
}
}
/* reset tbuf walking pointers */
ldcp->next_tbufp = ldcp->tbufp;
ldcp->cur_tbufp = ldcp->tbufp;
/* reset tx seqnum and index */
ldcp->next_txseq = VNET_ISS;
ldcp->next_txi = 0;
ldcp->resched_peer = B_TRUE;
ldcp->resched_peer_txi = 0;
DBG2(vgenp, ldcp, "num descrs done (%d)\n", ndone);
}
/* clobber receive descriptor ring */
static void
vgen_clobber_rxds(vgen_ldc_t *ldcp)
{
ldcp->rx_dhandle = 0;
bzero(&ldcp->rx_dcookie, sizeof (ldcp->rx_dcookie));
ldcp->rxdp = NULL;
ldcp->next_rxi = 0;
ldcp->num_rxds = 0;
ldcp->next_rxseq = VNET_ISS;
}
/* initialize receive descriptor ring */
static int
vgen_init_rxds(vgen_ldc_t *ldcp, uint32_t num_desc, uint32_t desc_size,
ldc_mem_cookie_t *dcookie, uint32_t ncookies)
{
int rv;
ldc_mem_info_t minfo;
rv = ldc_mem_dring_map(ldcp->ldc_handle, dcookie, ncookies, num_desc,
desc_size, LDC_SHADOW_MAP, &(ldcp->rx_dhandle));
if (rv != 0) {
return (DDI_FAILURE);
}
/*
* sucessfully mapped, now try to
* get info about the mapped dring
*/
rv = ldc_mem_dring_info(ldcp->rx_dhandle, &minfo);
if (rv != 0) {
(void) ldc_mem_dring_unmap(ldcp->rx_dhandle);
return (DDI_FAILURE);
}
/*
* save ring address, number of descriptors.
*/
ldcp->rxdp = (vnet_public_desc_t *)(minfo.vaddr);
bcopy(dcookie, &(ldcp->rx_dcookie), sizeof (*dcookie));
ldcp->num_rxdcookies = ncookies;
ldcp->num_rxds = num_desc;
ldcp->next_rxi = 0;
ldcp->next_rxseq = VNET_ISS;
return (DDI_SUCCESS);
}
/* get channel statistics */
static uint64_t
vgen_ldc_stat(vgen_ldc_t *ldcp, uint_t stat)
{
vgen_stats_t *statsp;
uint64_t val;
val = 0;
statsp = &ldcp->stats;
switch (stat) {
case MAC_STAT_MULTIRCV:
val = statsp->multircv;
break;
case MAC_STAT_BRDCSTRCV:
val = statsp->brdcstrcv;
break;
case MAC_STAT_MULTIXMT:
val = statsp->multixmt;
break;
case MAC_STAT_BRDCSTXMT:
val = statsp->brdcstxmt;
break;
case MAC_STAT_NORCVBUF:
val = statsp->norcvbuf;
break;
case MAC_STAT_IERRORS:
val = statsp->ierrors;
break;
case MAC_STAT_NOXMTBUF:
val = statsp->noxmtbuf;
break;
case MAC_STAT_OERRORS:
val = statsp->oerrors;
break;
case MAC_STAT_COLLISIONS:
break;
case MAC_STAT_RBYTES:
val = statsp->rbytes;
break;
case MAC_STAT_IPACKETS:
val = statsp->ipackets;
break;
case MAC_STAT_OBYTES:
val = statsp->obytes;
break;
case MAC_STAT_OPACKETS:
val = statsp->opackets;
break;
/* stats not relevant to ldc, return 0 */
case MAC_STAT_IFSPEED:
case ETHER_STAT_ALIGN_ERRORS:
case ETHER_STAT_FCS_ERRORS:
case ETHER_STAT_FIRST_COLLISIONS:
case ETHER_STAT_MULTI_COLLISIONS:
case ETHER_STAT_DEFER_XMTS:
case ETHER_STAT_TX_LATE_COLLISIONS:
case ETHER_STAT_EX_COLLISIONS:
case ETHER_STAT_MACXMT_ERRORS:
case ETHER_STAT_CARRIER_ERRORS:
case ETHER_STAT_TOOLONG_ERRORS:
case ETHER_STAT_XCVR_ADDR:
case ETHER_STAT_XCVR_ID:
case ETHER_STAT_XCVR_INUSE:
case ETHER_STAT_CAP_1000FDX:
case ETHER_STAT_CAP_1000HDX:
case ETHER_STAT_CAP_100FDX:
case ETHER_STAT_CAP_100HDX:
case ETHER_STAT_CAP_10FDX:
case ETHER_STAT_CAP_10HDX:
case ETHER_STAT_CAP_ASMPAUSE:
case ETHER_STAT_CAP_PAUSE:
case ETHER_STAT_CAP_AUTONEG:
case ETHER_STAT_ADV_CAP_1000FDX:
case ETHER_STAT_ADV_CAP_1000HDX:
case ETHER_STAT_ADV_CAP_100FDX:
case ETHER_STAT_ADV_CAP_100HDX:
case ETHER_STAT_ADV_CAP_10FDX:
case ETHER_STAT_ADV_CAP_10HDX:
case ETHER_STAT_ADV_CAP_ASMPAUSE:
case ETHER_STAT_ADV_CAP_PAUSE:
case ETHER_STAT_ADV_CAP_AUTONEG:
case ETHER_STAT_LP_CAP_1000FDX:
case ETHER_STAT_LP_CAP_1000HDX:
case ETHER_STAT_LP_CAP_100FDX:
case ETHER_STAT_LP_CAP_100HDX:
case ETHER_STAT_LP_CAP_10FDX:
case ETHER_STAT_LP_CAP_10HDX:
case ETHER_STAT_LP_CAP_ASMPAUSE:
case ETHER_STAT_LP_CAP_PAUSE:
case ETHER_STAT_LP_CAP_AUTONEG:
case ETHER_STAT_LINK_ASMPAUSE:
case ETHER_STAT_LINK_PAUSE:
case ETHER_STAT_LINK_AUTONEG:
case ETHER_STAT_LINK_DUPLEX:
default:
val = 0;
break;
}
return (val);
}
/*
* LDC channel is UP, start handshake process with peer.
*/
static void
vgen_handle_evt_up(vgen_ldc_t *ldcp)
{
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
DBG1(vgenp, ldcp, "enter\n");
ASSERT(MUTEX_HELD(&ldcp->cblock));
if (ldcp->portp != vgenp->vsw_portp) {
/*
* As the channel is up, use this port from now on.
*/
(void) atomic_swap_32(&ldcp->portp->use_vsw_port, B_FALSE);
}
/* Initialize local session id */
ldcp->local_sid = ddi_get_lbolt();
/* clear peer session id */
ldcp->peer_sid = 0;
ldcp->hretries = 0;
if (ldcp->hphase != VH_PHASE0) {
vgen_handshake_reset(ldcp);
}
/* Initiate Handshake process with peer ldc endpoint */
vgen_handshake(vh_nextphase(ldcp));
DBG1(vgenp, ldcp, "exit\n");
}
/*
* LDC channel is Reset, terminate connection with peer and try to
* bring the channel up again.
*/
static void
vgen_handle_evt_reset(vgen_ldc_t *ldcp)
{
ldc_status_t istatus;
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
int rv;
DBG1(vgenp, ldcp, "enter\n");
ASSERT(MUTEX_HELD(&ldcp->cblock));
if ((ldcp->portp != vgenp->vsw_portp) &&
(vgenp->vsw_portp != NULL)) {
/*
* As the channel is down, use the switch port until
* the channel becomes ready to be used.
*/
(void) atomic_swap_32(&ldcp->portp->use_vsw_port, B_TRUE);
}
if (vgenp->vsw_portp == ldcp->portp) {
vio_net_report_err_t rep_err =
ldcp->portp->vcb.vio_net_report_err;
/* Post a reset message */
rep_err(ldcp->portp->vhp, VIO_NET_RES_DOWN);
}
if (ldcp->hphase != VH_PHASE0) {
vgen_handshake_reset(ldcp);
}
/* try to bring the channel up */
rv = ldc_up(ldcp->ldc_handle);
if (rv != 0) {
DWARN(vgenp, ldcp, "ldc_up err rv(%d)\n", rv);
}
if (ldc_status(ldcp->ldc_handle, &istatus) != 0) {
DWARN(vgenp, ldcp, "ldc_status err\n");
} else {
ldcp->ldc_status = istatus;
}
/* if channel is already UP - restart handshake */
if (ldcp->ldc_status == LDC_UP) {
vgen_handle_evt_up(ldcp);
}
DBG1(vgenp, ldcp, "exit\n");
}
/* Interrupt handler for the channel */
static uint_t
vgen_ldc_cb(uint64_t event, caddr_t arg)
{
_NOTE(ARGUNUSED(event))
vgen_ldc_t *ldcp;
vgen_t *vgenp;
ldc_status_t istatus;
vgen_stats_t *statsp;
ldcp = (vgen_ldc_t *)arg;
vgenp = LDC_TO_VGEN(ldcp);
statsp = &ldcp->stats;
DBG1(vgenp, ldcp, "enter\n");
mutex_enter(&ldcp->cblock);
statsp->callbacks++;
if ((ldcp->ldc_status == LDC_INIT) || (ldcp->ldc_handle == NULL)) {
DWARN(vgenp, ldcp, "status(%d) is LDC_INIT\n",
ldcp->ldc_status);
mutex_exit(&ldcp->cblock);
return (LDC_SUCCESS);
}
/*
* NOTE: not using switch() as event could be triggered by
* a state change and a read request. Also the ordering of the
* check for the event types is deliberate.
*/
if (event & LDC_EVT_UP) {
if (ldc_status(ldcp->ldc_handle, &istatus) != 0) {
DWARN(vgenp, ldcp, "ldc_status err\n");
/* status couldn't be determined */
mutex_exit(&ldcp->cblock);
return (LDC_FAILURE);
}
ldcp->ldc_status = istatus;
if (ldcp->ldc_status != LDC_UP) {
DWARN(vgenp, ldcp, "LDC_EVT_UP received "
" but ldc status is not UP(0x%x)\n",
ldcp->ldc_status);
/* spurious interrupt, return success */
mutex_exit(&ldcp->cblock);
return (LDC_SUCCESS);
}
DWARN(vgenp, ldcp, "event(%lx) UP, status(%d)\n",
event, ldcp->ldc_status);
vgen_handle_evt_up(ldcp);
ASSERT((event & (LDC_EVT_RESET | LDC_EVT_DOWN)) == 0);
}
/* Handle RESET/DOWN before READ event */
if (event & (LDC_EVT_RESET | LDC_EVT_DOWN)) {
if (ldc_status(ldcp->ldc_handle, &istatus) != 0) {
DWARN(vgenp, ldcp, "ldc_status error\n");
/* status couldn't be determined */
mutex_exit(&ldcp->cblock);
return (LDC_FAILURE);
}
ldcp->ldc_status = istatus;
DWARN(vgenp, ldcp, "event(%lx) RESET/DOWN, status(%d)\n",
event, ldcp->ldc_status);
vgen_handle_evt_reset(ldcp);
/*
* As the channel is down/reset, ignore READ event
* but print a debug warning message.
*/
if (event & LDC_EVT_READ) {
DWARN(vgenp, ldcp,
"LDC_EVT_READ set along with RESET/DOWN\n");
event &= ~LDC_EVT_READ;
}
}
if (event & LDC_EVT_READ) {
DBG2(vgenp, ldcp, "event(%lx) READ, status(%d)\n",
event, ldcp->ldc_status);
ASSERT((event & (LDC_EVT_RESET | LDC_EVT_DOWN)) == 0);
if (ldcp->rcv_thread != NULL) {
/*
* If the receive thread is enabled, then
* wakeup the receive thread to process the
* LDC messages.
*/
mutex_exit(&ldcp->cblock);
mutex_enter(&ldcp->rcv_thr_lock);
if (!(ldcp->rcv_thr_flags & VGEN_WTHR_DATARCVD)) {
ldcp->rcv_thr_flags |= VGEN_WTHR_DATARCVD;
cv_signal(&ldcp->rcv_thr_cv);
}
mutex_exit(&ldcp->rcv_thr_lock);
mutex_enter(&ldcp->cblock);
} else {
vgen_handle_evt_read(ldcp);
}
}
mutex_exit(&ldcp->cblock);
if (ldcp->cancel_htid) {
/*
* Cancel handshake timer.
* untimeout(9F) will not return until the pending callback is
* cancelled or has run. No problems will result from calling
* untimeout if the handler has already completed.
* If the timeout handler did run, then it would just
* return as cancel_htid is set.
*/
(void) untimeout(ldcp->cancel_htid);
ldcp->cancel_htid = 0;
}
DBG1(vgenp, ldcp, "exit\n");
return (LDC_SUCCESS);
}
static void
vgen_handle_evt_read(vgen_ldc_t *ldcp)
{
int rv;
uint64_t *ldcmsg;
size_t msglen;
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
vio_msg_tag_t *tagp;
ldc_status_t istatus;
boolean_t has_data;
DBG1(vgenp, ldcp, "enter\n");
ldcmsg = ldcp->ldcmsg;
/*
* If the receive thread is enabled, then the cblock
* need to be acquired here. If not, the vgen_ldc_cb()
* calls this function with cblock held already.
*/
if (ldcp->rcv_thread != NULL) {
mutex_enter(&ldcp->cblock);
} else {
ASSERT(MUTEX_HELD(&ldcp->cblock));
}
vgen_evt_read:
do {
msglen = ldcp->msglen;
rv = ldc_read(ldcp->ldc_handle, (caddr_t)ldcmsg, &msglen);
if (rv != 0) {
DWARN(vgenp, ldcp, "err rv(%d) len(%d)\n",
rv, msglen);
if (rv == ECONNRESET)
goto vgen_evtread_error;
break;
}
if (msglen == 0) {
DBG2(vgenp, ldcp, "ldc_read NODATA");
break;
}
DBG2(vgenp, ldcp, "ldc_read msglen(%d)", msglen);
tagp = (vio_msg_tag_t *)ldcmsg;
if (ldcp->peer_sid) {
/*
* check sid only after we have received peer's sid
* in the version negotiate msg.
*/
#ifdef DEBUG
if (vgen_hdbg & HDBG_BAD_SID) {
/* simulate bad sid condition */
tagp->vio_sid = 0;
vgen_hdbg &= ~(HDBG_BAD_SID);
}
#endif
rv = vgen_check_sid(ldcp, tagp);
if (rv != VGEN_SUCCESS) {
/*
* If sid mismatch is detected,
* reset the channel.
*/
ldcp->need_ldc_reset = B_TRUE;
goto vgen_evtread_error;
}
}
switch (tagp->vio_msgtype) {
case VIO_TYPE_CTRL:
rv = vgen_handle_ctrlmsg(ldcp, tagp);
break;
case VIO_TYPE_DATA:
rv = vgen_handle_datamsg(ldcp, tagp, msglen);
break;
case VIO_TYPE_ERR:
vgen_handle_errmsg(ldcp, tagp);
break;
default:
DWARN(vgenp, ldcp, "Unknown VIO_TYPE(%x)\n",
tagp->vio_msgtype);
break;
}
/*
* If an error is encountered, stop processing and
* handle the error.
*/
if (rv != 0) {
goto vgen_evtread_error;
}
} while (msglen);
/* check once more before exiting */
rv = ldc_chkq(ldcp->ldc_handle, &has_data);
if ((rv == 0) && (has_data == B_TRUE)) {
DTRACE_PROBE(vgen_chkq);
goto vgen_evt_read;
}
vgen_evtread_error:
if (rv == ECONNRESET) {
if (ldc_status(ldcp->ldc_handle, &istatus) != 0) {
DWARN(vgenp, ldcp, "ldc_status err\n");
} else {
ldcp->ldc_status = istatus;
}
vgen_handle_evt_reset(ldcp);
} else if (rv) {
vgen_handshake_retry(ldcp);
}
/*
* If the receive thread is not enabled, then cancel the
* handshake timeout here.
*/
if (ldcp->rcv_thread != NULL) {
mutex_exit(&ldcp->cblock);
if (ldcp->cancel_htid) {
/*
* Cancel handshake timer. untimeout(9F) will
* not return until the pending callback is cancelled
* or has run. No problems will result from calling
* untimeout if the handler has already completed.
* If the timeout handler did run, then it would just
* return as cancel_htid is set.
*/
(void) untimeout(ldcp->cancel_htid);
ldcp->cancel_htid = 0;
}
}
DBG1(vgenp, ldcp, "exit\n");
}
/* vgen handshake functions */
/* change the hphase for the channel to the next phase */
static vgen_ldc_t *
vh_nextphase(vgen_ldc_t *ldcp)
{
if (ldcp->hphase == VH_PHASE3) {
ldcp->hphase = VH_DONE;
} else {
ldcp->hphase++;
}
return (ldcp);
}
/*
* wrapper routine to send the given message over ldc using ldc_write().
*/
static int
vgen_sendmsg(vgen_ldc_t *ldcp, caddr_t msg, size_t msglen,
boolean_t caller_holds_lock)
{
int rv;
size_t len;
uint32_t retries = 0;
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
vio_msg_tag_t *tagp = (vio_msg_tag_t *)msg;
vio_dring_msg_t *dmsg;
vio_raw_data_msg_t *rmsg;
boolean_t data_msg = B_FALSE;
len = msglen;
if ((len == 0) || (msg == NULL))
return (VGEN_FAILURE);
if (!caller_holds_lock) {
mutex_enter(&ldcp->wrlock);
}
if (tagp->vio_subtype == VIO_SUBTYPE_INFO) {
if (tagp->vio_subtype_env == VIO_DRING_DATA) {
dmsg = (vio_dring_msg_t *)tagp;
dmsg->seq_num = ldcp->next_txseq;
data_msg = B_TRUE;
} else if (tagp->vio_subtype_env == VIO_PKT_DATA) {
rmsg = (vio_raw_data_msg_t *)tagp;
rmsg->seq_num = ldcp->next_txseq;
data_msg = B_TRUE;
}
}
do {
len = msglen;
rv = ldc_write(ldcp->ldc_handle, (caddr_t)msg, &len);
if (retries++ >= vgen_ldcwr_retries)
break;
} while (rv == EWOULDBLOCK);
if (rv == 0 && data_msg == B_TRUE) {
ldcp->next_txseq++;
}
if (!caller_holds_lock) {
mutex_exit(&ldcp->wrlock);
}
if (rv != 0) {
DWARN(vgenp, ldcp, "ldc_write failed: rv(%d)\n",
rv, msglen);
return (rv);
}
if (len != msglen) {
DWARN(vgenp, ldcp, "ldc_write failed: rv(%d) msglen (%d)\n",
rv, msglen);
return (VGEN_FAILURE);
}
return (VGEN_SUCCESS);
}
/* send version negotiate message to the peer over ldc */
static int
vgen_send_version_negotiate(vgen_ldc_t *ldcp)
{
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
vio_ver_msg_t vermsg;
vio_msg_tag_t *tagp = &vermsg.tag;
int rv;
bzero(&vermsg, sizeof (vermsg));
tagp->vio_msgtype = VIO_TYPE_CTRL;
tagp->vio_subtype = VIO_SUBTYPE_INFO;
tagp->vio_subtype_env = VIO_VER_INFO;
tagp->vio_sid = ldcp->local_sid;
/* get version msg payload from ldcp->local */
vermsg.ver_major = ldcp->local_hparams.ver_major;
vermsg.ver_minor = ldcp->local_hparams.ver_minor;
vermsg.dev_class = ldcp->local_hparams.dev_class;
rv = vgen_sendmsg(ldcp, (caddr_t)tagp, sizeof (vermsg), B_FALSE);
if (rv != VGEN_SUCCESS) {
DWARN(vgenp, ldcp, "vgen_sendmsg failed\n");
return (rv);
}
ldcp->hstate |= VER_INFO_SENT;
DBG2(vgenp, ldcp, "VER_INFO_SENT ver(%d,%d)\n",
vermsg.ver_major, vermsg.ver_minor);
return (VGEN_SUCCESS);
}
/* send attr info message to the peer over ldc */
static int
vgen_send_attr_info(vgen_ldc_t *ldcp)
{
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
vnet_attr_msg_t attrmsg;
vio_msg_tag_t *tagp = &attrmsg.tag;
int rv;
bzero(&attrmsg, sizeof (attrmsg));
tagp->vio_msgtype = VIO_TYPE_CTRL;
tagp->vio_subtype = VIO_SUBTYPE_INFO;
tagp->vio_subtype_env = VIO_ATTR_INFO;
tagp->vio_sid = ldcp->local_sid;
/* get attr msg payload from ldcp->local */
attrmsg.mtu = ldcp->local_hparams.mtu;
attrmsg.addr = ldcp->local_hparams.addr;
attrmsg.addr_type = ldcp->local_hparams.addr_type;
attrmsg.xfer_mode = ldcp->local_hparams.xfer_mode;
attrmsg.ack_freq = ldcp->local_hparams.ack_freq;
rv = vgen_sendmsg(ldcp, (caddr_t)tagp, sizeof (attrmsg), B_FALSE);
if (rv != VGEN_SUCCESS) {
DWARN(vgenp, ldcp, "vgen_sendmsg failed\n");
return (rv);
}
ldcp->hstate |= ATTR_INFO_SENT;
DBG2(vgenp, ldcp, "ATTR_INFO_SENT\n");
return (VGEN_SUCCESS);
}
/* send descriptor ring register message to the peer over ldc */
static int
vgen_send_dring_reg(vgen_ldc_t *ldcp)
{
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
vio_dring_reg_msg_t msg;
vio_msg_tag_t *tagp = &msg.tag;
int rv;
bzero(&msg, sizeof (msg));
tagp->vio_msgtype = VIO_TYPE_CTRL;
tagp->vio_subtype = VIO_SUBTYPE_INFO;
tagp->vio_subtype_env = VIO_DRING_REG;
tagp->vio_sid = ldcp->local_sid;
/* get dring info msg payload from ldcp->local */
bcopy(&(ldcp->local_hparams.dring_cookie), (msg.cookie),
sizeof (ldc_mem_cookie_t));
msg.ncookies = ldcp->local_hparams.num_dcookies;
msg.num_descriptors = ldcp->local_hparams.num_desc;
msg.descriptor_size = ldcp->local_hparams.desc_size;
/*
* dring_ident is set to 0. After mapping the dring, peer sets this
* value and sends it in the ack, which is saved in
* vgen_handle_dring_reg().
*/
msg.dring_ident = 0;
rv = vgen_sendmsg(ldcp, (caddr_t)tagp, sizeof (msg), B_FALSE);
if (rv != VGEN_SUCCESS) {
DWARN(vgenp, ldcp, "vgen_sendmsg failed\n");
return (rv);
}
ldcp->hstate |= DRING_INFO_SENT;
DBG2(vgenp, ldcp, "DRING_INFO_SENT \n");
return (VGEN_SUCCESS);
}
static int
vgen_send_rdx_info(vgen_ldc_t *ldcp)
{
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
vio_rdx_msg_t rdxmsg;
vio_msg_tag_t *tagp = &rdxmsg.tag;
int rv;
bzero(&rdxmsg, sizeof (rdxmsg));
tagp->vio_msgtype = VIO_TYPE_CTRL;
tagp->vio_subtype = VIO_SUBTYPE_INFO;
tagp->vio_subtype_env = VIO_RDX;
tagp->vio_sid = ldcp->local_sid;
rv = vgen_sendmsg(ldcp, (caddr_t)tagp, sizeof (rdxmsg), B_FALSE);
if (rv != VGEN_SUCCESS) {
DWARN(vgenp, ldcp, "vgen_sendmsg failed\n");
return (rv);
}
ldcp->hstate |= RDX_INFO_SENT;
DBG2(vgenp, ldcp, "RDX_INFO_SENT\n");
return (VGEN_SUCCESS);
}
/* send descriptor ring data message to the peer over ldc */
static int
vgen_send_dring_data(vgen_ldc_t *ldcp, uint32_t start, int32_t end)
{
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
vio_dring_msg_t dringmsg, *msgp = &dringmsg;
vio_msg_tag_t *tagp = &msgp->tag;
vgen_stats_t *statsp = &ldcp->stats;
int rv;
bzero(msgp, sizeof (*msgp));
tagp->vio_msgtype = VIO_TYPE_DATA;
tagp->vio_subtype = VIO_SUBTYPE_INFO;
tagp->vio_subtype_env = VIO_DRING_DATA;
tagp->vio_sid = ldcp->local_sid;
msgp->dring_ident = ldcp->local_hparams.dring_ident;
msgp->start_idx = start;
msgp->end_idx = end;
rv = vgen_sendmsg(ldcp, (caddr_t)tagp, sizeof (dringmsg), B_TRUE);
if (rv != VGEN_SUCCESS) {
DWARN(vgenp, ldcp, "vgen_sendmsg failed\n");
return (rv);
}
statsp->dring_data_msgs++;
DBG2(vgenp, ldcp, "DRING_DATA_SENT \n");
return (VGEN_SUCCESS);
}
/* send multicast addr info message to vsw */
static int
vgen_send_mcast_info(vgen_ldc_t *ldcp)
{
vnet_mcast_msg_t mcastmsg;
vnet_mcast_msg_t *msgp;
vio_msg_tag_t *tagp;
vgen_t *vgenp;
struct ether_addr *mca;
int rv;
int i;
uint32_t size;
uint32_t mccount;
uint32_t n;
msgp = &mcastmsg;
tagp = &msgp->tag;
vgenp = LDC_TO_VGEN(ldcp);
mccount = vgenp->mccount;
i = 0;
do {
tagp->vio_msgtype = VIO_TYPE_CTRL;
tagp->vio_subtype = VIO_SUBTYPE_INFO;
tagp->vio_subtype_env = VNET_MCAST_INFO;
tagp->vio_sid = ldcp->local_sid;
n = ((mccount >= VNET_NUM_MCAST) ? VNET_NUM_MCAST : mccount);
size = n * sizeof (struct ether_addr);
mca = &(vgenp->mctab[i]);
bcopy(mca, (msgp->mca), size);
msgp->set = B_TRUE;
msgp->count = n;
rv = vgen_sendmsg(ldcp, (caddr_t)tagp, sizeof (*msgp),
B_FALSE);
if (rv != VGEN_SUCCESS) {
DWARN(vgenp, ldcp, "vgen_sendmsg err(%d)\n", rv);
return (rv);
}
mccount -= n;
i += n;
} while (mccount);
return (VGEN_SUCCESS);
}
/* Initiate Phase 2 of handshake */
static int
vgen_handshake_phase2(vgen_ldc_t *ldcp)
{
int rv;
uint32_t ncookies = 0;
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
#ifdef DEBUG
if (vgen_hdbg & HDBG_OUT_STATE) {
/* simulate out of state condition */
vgen_hdbg &= ~(HDBG_OUT_STATE);
rv = vgen_send_rdx_info(ldcp);
return (rv);
}
if (vgen_hdbg & HDBG_TIMEOUT) {
/* simulate timeout condition */
vgen_hdbg &= ~(HDBG_TIMEOUT);
return (VGEN_SUCCESS);
}
#endif
rv = vgen_send_attr_info(ldcp);
if (rv != VGEN_SUCCESS) {
return (rv);
}
/* Bind descriptor ring to the channel */
if (ldcp->num_txdcookies == 0) {
rv = ldc_mem_dring_bind(ldcp->ldc_handle, ldcp->tx_dhandle,
LDC_SHADOW_MAP, LDC_MEM_RW, &ldcp->tx_dcookie, &ncookies);
if (rv != 0) {
DWARN(vgenp, ldcp, "ldc_mem_dring_bind failed "
"rv(%x)\n", rv);
return (rv);
}
ASSERT(ncookies == 1);
ldcp->num_txdcookies = ncookies;
}
/* update local dring_info params */
bcopy(&(ldcp->tx_dcookie), &(ldcp->local_hparams.dring_cookie),
sizeof (ldc_mem_cookie_t));
ldcp->local_hparams.num_dcookies = ldcp->num_txdcookies;
ldcp->local_hparams.num_desc = ldcp->num_txds;
ldcp->local_hparams.desc_size = sizeof (vnet_public_desc_t);
rv = vgen_send_dring_reg(ldcp);
if (rv != VGEN_SUCCESS) {
return (rv);
}
return (VGEN_SUCCESS);
}
/*
* Set vnet-protocol-version dependent functions based on version.
*/
static void
vgen_set_vnet_proto_ops(vgen_ldc_t *ldcp)
{
vgen_hparams_t *lp = &ldcp->local_hparams;
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
if (VGEN_VER_GTEQ(ldcp, 1, 3)) {
/*
* If the version negotiated with peer is >= 1.3,
* set the mtu in our attributes to max_frame_size.
*/
lp->mtu = vgenp->max_frame_size;
} else {
vgen_port_t *portp = ldcp->portp;
vnet_t *vnetp = vgenp->vnetp;
/*
* Pre-1.3 peers expect max frame size of ETHERMAX.
* We can negotiate that size with those peers provided the
* following conditions are true:
* - Our max_frame_size is greater only by VLAN_TAGSZ (4).
* - Only pvid is defined for our peer and there are no vids.
* - pvids are equal.
* If the above conditions are true, then we can send/recv only
* untagged frames of max size ETHERMAX.
*/
if ((vgenp->max_frame_size == ETHERMAX + VLAN_TAGSZ) &&
portp->nvids == 0 && portp->pvid == vnetp->pvid) {
lp->mtu = ETHERMAX;
}
}
if (VGEN_VER_GTEQ(ldcp, 1, 2)) {
/* Versions >= 1.2 */
if (VGEN_PRI_ETH_DEFINED(vgenp)) {
/*
* enable priority routines and pkt mode only if
* at least one pri-eth-type is specified in MD.
*/
ldcp->tx = vgen_ldcsend;
ldcp->rx_pktdata = vgen_handle_pkt_data;
/* set xfer mode for vgen_send_attr_info() */
lp->xfer_mode = VIO_PKT_MODE | VIO_DRING_MODE_V1_2;
} else {
/* no priority eth types defined in MD */
ldcp->tx = vgen_ldcsend_dring;
ldcp->rx_pktdata = vgen_handle_pkt_data_nop;
/* set xfer mode for vgen_send_attr_info() */
lp->xfer_mode = VIO_DRING_MODE_V1_2;
}
} else {
/* Versions prior to 1.2 */
vgen_reset_vnet_proto_ops(ldcp);
}
}
/*
* Reset vnet-protocol-version dependent functions to pre-v1.2.
*/
static void
vgen_reset_vnet_proto_ops(vgen_ldc_t *ldcp)
{
vgen_hparams_t *lp = &ldcp->local_hparams;
ldcp->tx = vgen_ldcsend_dring;
ldcp->rx_pktdata = vgen_handle_pkt_data_nop;
/* set xfer mode for vgen_send_attr_info() */
lp->xfer_mode = VIO_DRING_MODE_V1_0;
}
static void
vgen_vlan_unaware_port_reset(vgen_port_t *portp)
{
vgen_ldclist_t *ldclp;
vgen_ldc_t *ldcp;
vgen_t *vgenp = portp->vgenp;
vnet_t *vnetp = vgenp->vnetp;
ldclp = &portp->ldclist;
READ_ENTER(&ldclp->rwlock);
/*
* NOTE: for now, we will assume we have a single channel.
*/
if (ldclp->headp == NULL) {
RW_EXIT(&ldclp->rwlock);
return;
}
ldcp = ldclp->headp;
mutex_enter(&ldcp->cblock);
/*
* If the peer is vlan_unaware(ver < 1.3), reset channel and terminate
* the connection. See comments in vgen_set_vnet_proto_ops().
*/
if (ldcp->hphase == VH_DONE && VGEN_VER_LT(ldcp, 1, 3) &&
(portp->nvids != 0 || portp->pvid != vnetp->pvid)) {
ldcp->need_ldc_reset = B_TRUE;
vgen_handshake_retry(ldcp);
}
mutex_exit(&ldcp->cblock);
RW_EXIT(&ldclp->rwlock);
}
static void
vgen_reset_vlan_unaware_ports(vgen_t *vgenp)
{
vgen_port_t *portp;
vgen_portlist_t *plistp;
plistp = &(vgenp->vgenports);
READ_ENTER(&plistp->rwlock);
for (portp = plistp->headp; portp != NULL; portp = portp->nextp) {
vgen_vlan_unaware_port_reset(portp);
}
RW_EXIT(&plistp->rwlock);
}
/*
* This function resets the handshake phase to VH_PHASE0(pre-handshake phase).
* This can happen after a channel comes up (status: LDC_UP) or
* when handshake gets terminated due to various conditions.
*/
static void
vgen_reset_hphase(vgen_ldc_t *ldcp)
{
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
ldc_status_t istatus;
int rv;
DBG1(vgenp, ldcp, "enter\n");
/* reset hstate and hphase */
ldcp->hstate = 0;
ldcp->hphase = VH_PHASE0;
vgen_reset_vnet_proto_ops(ldcp);
/*
* Save the id of pending handshake timer in cancel_htid.
* This will be checked in vgen_ldc_cb() and the handshake timer will
* be cancelled after releasing cblock.
*/
if (ldcp->htid) {
ldcp->cancel_htid = ldcp->htid;
ldcp->htid = 0;
}
if (ldcp->local_hparams.dring_ready) {
ldcp->local_hparams.dring_ready = B_FALSE;
}
/* Unbind tx descriptor ring from the channel */
if (ldcp->num_txdcookies) {
rv = ldc_mem_dring_unbind(ldcp->tx_dhandle);
if (rv != 0) {
DWARN(vgenp, ldcp, "ldc_mem_dring_unbind failed\n");
}
ldcp->num_txdcookies = 0;
}
if (ldcp->peer_hparams.dring_ready) {
ldcp->peer_hparams.dring_ready = B_FALSE;
/* Unmap peer's dring */
(void) ldc_mem_dring_unmap(ldcp->rx_dhandle);
vgen_clobber_rxds(ldcp);
}
vgen_clobber_tbufs(ldcp);
/*
* clear local handshake params and initialize.
*/
bzero(&(ldcp->local_hparams), sizeof (ldcp->local_hparams));
/* set version to the highest version supported */
ldcp->local_hparams.ver_major =
ldcp->vgen_versions[0].ver_major;
ldcp->local_hparams.ver_minor =
ldcp->vgen_versions[0].ver_minor;
ldcp->local_hparams.dev_class = VDEV_NETWORK;
/* set attr_info params */
ldcp->local_hparams.mtu = vgenp->max_frame_size;
ldcp->local_hparams.addr =
vnet_macaddr_strtoul(vgenp->macaddr);
ldcp->local_hparams.addr_type = ADDR_TYPE_MAC;
ldcp->local_hparams.xfer_mode = VIO_DRING_MODE_V1_0;
ldcp->local_hparams.ack_freq = 0; /* don't need acks */
/*
* Note: dring is created, but not bound yet.
* local dring_info params will be updated when we bind the dring in
* vgen_handshake_phase2().
* dring_ident is set to 0. After mapping the dring, peer sets this
* value and sends it in the ack, which is saved in
* vgen_handle_dring_reg().
*/
ldcp->local_hparams.dring_ident = 0;
/* clear peer_hparams */
bzero(&(ldcp->peer_hparams), sizeof (ldcp->peer_hparams));
/* reset the channel if required */
if (ldcp->need_ldc_reset) {
DWARN(vgenp, ldcp, "Doing Channel Reset...\n");
ldcp->need_ldc_reset = B_FALSE;
(void) ldc_down(ldcp->ldc_handle);
(void) ldc_status(ldcp->ldc_handle, &istatus);
DBG2(vgenp, ldcp, "Reset Done,ldc_status(%x)\n", istatus);
ldcp->ldc_status = istatus;
/* clear sids */
ldcp->local_sid = 0;
ldcp->peer_sid = 0;
/* try to bring the channel up */
rv = ldc_up(ldcp->ldc_handle);
if (rv != 0) {
DWARN(vgenp, ldcp, "ldc_up err rv(%d)\n", rv);
}
if (ldc_status(ldcp->ldc_handle, &istatus) != 0) {
DWARN(vgenp, ldcp, "ldc_status err\n");
} else {
ldcp->ldc_status = istatus;
}
}
}
/* wrapper function for vgen_reset_hphase */
static void
vgen_handshake_reset(vgen_ldc_t *ldcp)
{
ASSERT(MUTEX_HELD(&ldcp->cblock));
mutex_enter(&ldcp->rxlock);
mutex_enter(&ldcp->wrlock);
mutex_enter(&ldcp->txlock);
mutex_enter(&ldcp->tclock);
vgen_reset_hphase(ldcp);
mutex_exit(&ldcp->tclock);
mutex_exit(&ldcp->txlock);
mutex_exit(&ldcp->wrlock);
mutex_exit(&ldcp->rxlock);
}
/*
* Initiate handshake with the peer by sending various messages
* based on the handshake-phase that the channel is currently in.
*/
static void
vgen_handshake(vgen_ldc_t *ldcp)
{
uint32_t hphase = ldcp->hphase;
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
ldc_status_t istatus;
int rv = 0;
switch (hphase) {
case VH_PHASE1:
/*
* start timer, for entire handshake process, turn this timer
* off if all phases of handshake complete successfully and
* hphase goes to VH_DONE(below) or
* vgen_reset_hphase() gets called or
* channel is reset due to errors or
* vgen_ldc_uninit() is invoked(vgen_stop).
*/
ldcp->htid = timeout(vgen_hwatchdog, (caddr_t)ldcp,
drv_usectohz(vgen_hwd_interval * MICROSEC));
/* Phase 1 involves negotiating the version */
rv = vgen_send_version_negotiate(ldcp);
break;
case VH_PHASE2:
rv = vgen_handshake_phase2(ldcp);
break;
case VH_PHASE3:
rv = vgen_send_rdx_info(ldcp);
break;
case VH_DONE:
/*
* Save the id of pending handshake timer in cancel_htid.
* This will be checked in vgen_ldc_cb() and the handshake
* timer will be cancelled after releasing cblock.
*/
if (ldcp->htid) {
ldcp->cancel_htid = ldcp->htid;
ldcp->htid = 0;
}
ldcp->hretries = 0;
DBG1(vgenp, ldcp, "Handshake Done\n");
if (ldcp->portp == vgenp->vsw_portp) {
/*
* If this channel(port) is connected to vsw,
* need to sync multicast table with vsw.
*/
mutex_exit(&ldcp->cblock);
mutex_enter(&vgenp->lock);
rv = vgen_send_mcast_info(ldcp);
mutex_exit(&vgenp->lock);
mutex_enter(&ldcp->cblock);
if (rv != VGEN_SUCCESS)
break;
}
/*
* Check if mac layer should be notified to restart
* transmissions. This can happen if the channel got
* reset and vgen_clobber_tbufs() is called, while
* need_resched is set.
*/
mutex_enter(&ldcp->tclock);
if (ldcp->need_resched) {
vio_net_tx_update_t vtx_update =
ldcp->portp->vcb.vio_net_tx_update;
ldcp->need_resched = B_FALSE;
vtx_update(ldcp->portp->vhp);
}
mutex_exit(&ldcp->tclock);
break;
default:
break;
}
if (rv == ECONNRESET) {
if (ldc_status(ldcp->ldc_handle, &istatus) != 0) {
DWARN(vgenp, ldcp, "ldc_status err\n");
} else {
ldcp->ldc_status = istatus;
}
vgen_handle_evt_reset(ldcp);
} else if (rv) {
vgen_handshake_reset(ldcp);
}
}
/*
* Check if the current handshake phase has completed successfully and
* return the status.
*/
static int
vgen_handshake_done(vgen_ldc_t *ldcp)
{
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
uint32_t hphase = ldcp->hphase;
int status = 0;
switch (hphase) {
case VH_PHASE1:
/*
* Phase1 is done, if version negotiation
* completed successfully.
*/
status = ((ldcp->hstate & VER_NEGOTIATED) ==
VER_NEGOTIATED);
break;
case VH_PHASE2:
/*
* Phase 2 is done, if attr info and dring info
* have been exchanged successfully.
*/
status = (((ldcp->hstate & ATTR_INFO_EXCHANGED) ==
ATTR_INFO_EXCHANGED) &&
((ldcp->hstate & DRING_INFO_EXCHANGED) ==
DRING_INFO_EXCHANGED));
break;
case VH_PHASE3:
/* Phase 3 is done, if rdx msg has been exchanged */
status = ((ldcp->hstate & RDX_EXCHANGED) ==
RDX_EXCHANGED);
break;
default:
break;
}
if (status == 0) {
return (VGEN_FAILURE);
}
DBG2(vgenp, ldcp, "PHASE(%d)\n", hphase);
return (VGEN_SUCCESS);
}
/* retry handshake on failure */
static void
vgen_handshake_retry(vgen_ldc_t *ldcp)
{
/* reset handshake phase */
vgen_handshake_reset(ldcp);
/* handshake retry is specified and the channel is UP */
if (vgen_max_hretries && (ldcp->ldc_status == LDC_UP)) {
if (ldcp->hretries++ < vgen_max_hretries) {
ldcp->local_sid = ddi_get_lbolt();
vgen_handshake(vh_nextphase(ldcp));
}
}
}
/*
* Handle a version info msg from the peer or an ACK/NACK from the peer
* to a version info msg that we sent.
*/
static int
vgen_handle_version_negotiate(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp)
{
vgen_t *vgenp;
vio_ver_msg_t *vermsg = (vio_ver_msg_t *)tagp;
int ack = 0;
int failed = 0;
int idx;
vgen_ver_t *versions = ldcp->vgen_versions;
int rv = 0;
vgenp = LDC_TO_VGEN(ldcp);
DBG1(vgenp, ldcp, "enter\n");
switch (tagp->vio_subtype) {
case VIO_SUBTYPE_INFO:
/* Cache sid of peer if this is the first time */
if (ldcp->peer_sid == 0) {
DBG2(vgenp, ldcp, "Caching peer_sid(%x)\n",
tagp->vio_sid);
ldcp->peer_sid = tagp->vio_sid;
}
if (ldcp->hphase != VH_PHASE1) {
/*
* If we are not already in VH_PHASE1, reset to
* pre-handshake state, and initiate handshake
* to the peer too.
*/
vgen_handshake_reset(ldcp);
vgen_handshake(vh_nextphase(ldcp));
}
ldcp->hstate |= VER_INFO_RCVD;
/* save peer's requested values */
ldcp->peer_hparams.ver_major = vermsg->ver_major;
ldcp->peer_hparams.ver_minor = vermsg->ver_minor;
ldcp->peer_hparams.dev_class = vermsg->dev_class;
if ((vermsg->dev_class != VDEV_NETWORK) &&
(vermsg->dev_class != VDEV_NETWORK_SWITCH)) {
/* unsupported dev_class, send NACK */
DWARN(vgenp, ldcp, "Version Negotiation Failed\n");
tagp->vio_subtype = VIO_SUBTYPE_NACK;
tagp->vio_sid = ldcp->local_sid;
/* send reply msg back to peer */
rv = vgen_sendmsg(ldcp, (caddr_t)tagp,
sizeof (*vermsg), B_FALSE);
if (rv != VGEN_SUCCESS) {
return (rv);
}
return (VGEN_FAILURE);
}
DBG2(vgenp, ldcp, "VER_INFO_RCVD, ver(%d,%d)\n",
vermsg->ver_major, vermsg->ver_minor);
idx = 0;
for (;;) {
if (vermsg->ver_major > versions[idx].ver_major) {
/* nack with next lower version */
tagp->vio_subtype = VIO_SUBTYPE_NACK;
vermsg->ver_major = versions[idx].ver_major;
vermsg->ver_minor = versions[idx].ver_minor;
break;
}
if (vermsg->ver_major == versions[idx].ver_major) {
/* major version match - ACK version */
tagp->vio_subtype = VIO_SUBTYPE_ACK;
ack = 1;
/*
* lower minor version to the one this endpt
* supports, if necessary
*/
if (vermsg->ver_minor >
versions[idx].ver_minor) {
vermsg->ver_minor =
versions[idx].ver_minor;
ldcp->peer_hparams.ver_minor =
versions[idx].ver_minor;
}
break;
}
idx++;
if (idx == VGEN_NUM_VER) {
/* no version match - send NACK */
tagp->vio_subtype = VIO_SUBTYPE_NACK;
vermsg->ver_major = 0;
vermsg->ver_minor = 0;
failed = 1;
break;
}
}
tagp->vio_sid = ldcp->local_sid;
/* send reply msg back to peer */
rv = vgen_sendmsg(ldcp, (caddr_t)tagp, sizeof (*vermsg),
B_FALSE);
if (rv != VGEN_SUCCESS) {
return (rv);
}
if (ack) {
ldcp->hstate |= VER_ACK_SENT;
DBG2(vgenp, ldcp, "VER_ACK_SENT, ver(%d,%d) \n",
vermsg->ver_major, vermsg->ver_minor);
}
if (failed) {
DWARN(vgenp, ldcp, "Negotiation Failed\n");
return (VGEN_FAILURE);
}
if (vgen_handshake_done(ldcp) == VGEN_SUCCESS) {
/* VER_ACK_SENT and VER_ACK_RCVD */
/* local and peer versions match? */
ASSERT((ldcp->local_hparams.ver_major ==
ldcp->peer_hparams.ver_major) &&
(ldcp->local_hparams.ver_minor ==
ldcp->peer_hparams.ver_minor));
vgen_set_vnet_proto_ops(ldcp);
/* move to the next phase */
vgen_handshake(vh_nextphase(ldcp));
}
break;
case VIO_SUBTYPE_ACK:
if (ldcp->hphase != VH_PHASE1) {
/* This should not happen. */
DWARN(vgenp, ldcp, "Invalid Phase(%u)\n", ldcp->hphase);
return (VGEN_FAILURE);
}
/* SUCCESS - we have agreed on a version */
ldcp->local_hparams.ver_major = vermsg->ver_major;
ldcp->local_hparams.ver_minor = vermsg->ver_minor;
ldcp->hstate |= VER_ACK_RCVD;
DBG2(vgenp, ldcp, "VER_ACK_RCVD, ver(%d,%d) \n",
vermsg->ver_major, vermsg->ver_minor);
if (vgen_handshake_done(ldcp) == VGEN_SUCCESS) {
/* VER_ACK_SENT and VER_ACK_RCVD */
/* local and peer versions match? */
ASSERT((ldcp->local_hparams.ver_major ==
ldcp->peer_hparams.ver_major) &&
(ldcp->local_hparams.ver_minor ==
ldcp->peer_hparams.ver_minor));
vgen_set_vnet_proto_ops(ldcp);
/* move to the next phase */
vgen_handshake(vh_nextphase(ldcp));
}
break;
case VIO_SUBTYPE_NACK:
if (ldcp->hphase != VH_PHASE1) {
/* This should not happen. */
DWARN(vgenp, ldcp, "VER_NACK_RCVD Invalid "
"Phase(%u)\n", ldcp->hphase);
return (VGEN_FAILURE);
}
DBG2(vgenp, ldcp, "VER_NACK_RCVD next ver(%d,%d)\n",
vermsg->ver_major, vermsg->ver_minor);
/* check if version in NACK is zero */
if (vermsg->ver_major == 0 && vermsg->ver_minor == 0) {
/*
* Version Negotiation has failed.
*/
DWARN(vgenp, ldcp, "Version Negotiation Failed\n");
return (VGEN_FAILURE);
}
idx = 0;
for (;;) {
if (vermsg->ver_major > versions[idx].ver_major) {
/* select next lower version */
ldcp->local_hparams.ver_major =
versions[idx].ver_major;
ldcp->local_hparams.ver_minor =
versions[idx].ver_minor;
break;
}
if (vermsg->ver_major == versions[idx].ver_major) {
/* major version match */
ldcp->local_hparams.ver_major =
versions[idx].ver_major;
ldcp->local_hparams.ver_minor =
versions[idx].ver_minor;
break;
}
idx++;
if (idx == VGEN_NUM_VER) {
/*
* no version match.
* Version Negotiation has failed.
*/
DWARN(vgenp, ldcp,
"Version Negotiation Failed\n");
return (VGEN_FAILURE);
}
}
rv = vgen_send_version_negotiate(ldcp);
if (rv != VGEN_SUCCESS) {
return (rv);
}
break;
}
DBG1(vgenp, ldcp, "exit\n");
return (VGEN_SUCCESS);
}
/* Check if the attributes are supported */
static int
vgen_check_attr_info(vgen_ldc_t *ldcp, vnet_attr_msg_t *msg)
{
vgen_hparams_t *lp = &ldcp->local_hparams;
if ((msg->mtu != lp->mtu) ||
(msg->addr_type != ADDR_TYPE_MAC) ||
(msg->ack_freq > 64) ||
(msg->xfer_mode != lp->xfer_mode)) {
return (VGEN_FAILURE);
}
return (VGEN_SUCCESS);
}
/*
* Handle an attribute info msg from the peer or an ACK/NACK from the peer
* to an attr info msg that we sent.
*/
static int
vgen_handle_attr_info(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp)
{
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
vnet_attr_msg_t *attrmsg = (vnet_attr_msg_t *)tagp;
int ack = 0;
int rv = 0;
DBG1(vgenp, ldcp, "enter\n");
if (ldcp->hphase != VH_PHASE2) {
DWARN(vgenp, ldcp, "Rcvd ATTR_INFO subtype(%d),"
" Invalid Phase(%u)\n",
tagp->vio_subtype, ldcp->hphase);
return (VGEN_FAILURE);
}
switch (tagp->vio_subtype) {
case VIO_SUBTYPE_INFO:
DBG2(vgenp, ldcp, "ATTR_INFO_RCVD \n");
ldcp->hstate |= ATTR_INFO_RCVD;
/* save peer's values */
ldcp->peer_hparams.mtu = attrmsg->mtu;
ldcp->peer_hparams.addr = attrmsg->addr;
ldcp->peer_hparams.addr_type = attrmsg->addr_type;
ldcp->peer_hparams.xfer_mode = attrmsg->xfer_mode;
ldcp->peer_hparams.ack_freq = attrmsg->ack_freq;
if (vgen_check_attr_info(ldcp, attrmsg) == VGEN_FAILURE) {
/* unsupported attr, send NACK */
tagp->vio_subtype = VIO_SUBTYPE_NACK;
} else {
ack = 1;
tagp->vio_subtype = VIO_SUBTYPE_ACK;
}
tagp->vio_sid = ldcp->local_sid;
/* send reply msg back to peer */
rv = vgen_sendmsg(ldcp, (caddr_t)tagp, sizeof (*attrmsg),
B_FALSE);
if (rv != VGEN_SUCCESS) {
return (rv);
}
if (ack) {
ldcp->hstate |= ATTR_ACK_SENT;
DBG2(vgenp, ldcp, "ATTR_ACK_SENT \n");
} else {
/* failed */
DWARN(vgenp, ldcp, "ATTR_NACK_SENT \n");
return (VGEN_FAILURE);
}
if (vgen_handshake_done(ldcp) == VGEN_SUCCESS) {
vgen_handshake(vh_nextphase(ldcp));
}
break;
case VIO_SUBTYPE_ACK:
ldcp->hstate |= ATTR_ACK_RCVD;
DBG2(vgenp, ldcp, "ATTR_ACK_RCVD \n");
if (vgen_handshake_done(ldcp) == VGEN_SUCCESS) {
vgen_handshake(vh_nextphase(ldcp));
}
break;
case VIO_SUBTYPE_NACK:
DBG2(vgenp, ldcp, "ATTR_NACK_RCVD \n");
return (VGEN_FAILURE);
}
DBG1(vgenp, ldcp, "exit\n");
return (VGEN_SUCCESS);
}
/* Check if the dring info msg is ok */
static int
vgen_check_dring_reg(vio_dring_reg_msg_t *msg)
{
/* check if msg contents are ok */
if ((msg->num_descriptors < 128) || (msg->descriptor_size <
sizeof (vnet_public_desc_t))) {
return (VGEN_FAILURE);
}
return (VGEN_SUCCESS);
}
/*
* Handle a descriptor ring register msg from the peer or an ACK/NACK from
* the peer to a dring register msg that we sent.
*/
static int
vgen_handle_dring_reg(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp)
{
vio_dring_reg_msg_t *msg = (vio_dring_reg_msg_t *)tagp;
ldc_mem_cookie_t dcookie;
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
int ack = 0;
int rv = 0;
DBG1(vgenp, ldcp, "enter\n");
if (ldcp->hphase < VH_PHASE2) {
/* dring_info can be rcvd in any of the phases after Phase1 */
DWARN(vgenp, ldcp,
"Rcvd DRING_INFO Subtype (%d), Invalid Phase(%u)\n",
tagp->vio_subtype, ldcp->hphase);
return (VGEN_FAILURE);
}
switch (tagp->vio_subtype) {
case VIO_SUBTYPE_INFO:
DBG2(vgenp, ldcp, "DRING_INFO_RCVD \n");
ldcp->hstate |= DRING_INFO_RCVD;
bcopy((msg->cookie), &dcookie, sizeof (dcookie));
ASSERT(msg->ncookies == 1);
if (vgen_check_dring_reg(msg) == VGEN_SUCCESS) {
/*
* verified dring info msg to be ok,
* now try to map the remote dring.
*/
rv = vgen_init_rxds(ldcp, msg->num_descriptors,
msg->descriptor_size, &dcookie,
msg->ncookies);
if (rv == DDI_SUCCESS) {
/* now we can ack the peer */
ack = 1;
}
}
if (ack == 0) {
/* failed, send NACK */
tagp->vio_subtype = VIO_SUBTYPE_NACK;
} else {
if (!(ldcp->peer_hparams.dring_ready)) {
/* save peer's dring_info values */
bcopy(&dcookie,
&(ldcp->peer_hparams.dring_cookie),
sizeof (dcookie));
ldcp->peer_hparams.num_desc =
msg->num_descriptors;
ldcp->peer_hparams.desc_size =
msg->descriptor_size;
ldcp->peer_hparams.num_dcookies =
msg->ncookies;
/* set dring_ident for the peer */
ldcp->peer_hparams.dring_ident =
(uint64_t)ldcp->rxdp;
/* return the dring_ident in ack msg */
msg->dring_ident =
(uint64_t)ldcp->rxdp;
ldcp->peer_hparams.dring_ready = B_TRUE;
}
tagp->vio_subtype = VIO_SUBTYPE_ACK;
}
tagp->vio_sid = ldcp->local_sid;
/* send reply msg back to peer */
rv = vgen_sendmsg(ldcp, (caddr_t)tagp, sizeof (*msg),
B_FALSE);
if (rv != VGEN_SUCCESS) {
return (rv);
}
if (ack) {
ldcp->hstate |= DRING_ACK_SENT;
DBG2(vgenp, ldcp, "DRING_ACK_SENT");
} else {
DWARN(vgenp, ldcp, "DRING_NACK_SENT");
return (VGEN_FAILURE);
}
if (vgen_handshake_done(ldcp) == VGEN_SUCCESS) {
vgen_handshake(vh_nextphase(ldcp));
}
break;
case VIO_SUBTYPE_ACK:
ldcp->hstate |= DRING_ACK_RCVD;
DBG2(vgenp, ldcp, "DRING_ACK_RCVD");
if (!(ldcp->local_hparams.dring_ready)) {
/* local dring is now ready */
ldcp->local_hparams.dring_ready = B_TRUE;
/* save dring_ident acked by peer */
ldcp->local_hparams.dring_ident =
msg->dring_ident;
}
if (vgen_handshake_done(ldcp) == VGEN_SUCCESS) {
vgen_handshake(vh_nextphase(ldcp));
}
break;
case VIO_SUBTYPE_NACK:
DBG2(vgenp, ldcp, "DRING_NACK_RCVD");
return (VGEN_FAILURE);
}
DBG1(vgenp, ldcp, "exit\n");
return (VGEN_SUCCESS);
}
/*
* Handle a rdx info msg from the peer or an ACK/NACK
* from the peer to a rdx info msg that we sent.
*/
static int
vgen_handle_rdx_info(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp)
{
int rv = 0;
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
DBG1(vgenp, ldcp, "enter\n");
if (ldcp->hphase != VH_PHASE3) {
DWARN(vgenp, ldcp,
"Rcvd RDX_INFO Subtype (%d), Invalid Phase(%u)\n",
tagp->vio_subtype, ldcp->hphase);
return (VGEN_FAILURE);
}
switch (tagp->vio_subtype) {
case VIO_SUBTYPE_INFO:
DBG2(vgenp, ldcp, "RDX_INFO_RCVD \n");
ldcp->hstate |= RDX_INFO_RCVD;
tagp->vio_subtype = VIO_SUBTYPE_ACK;
tagp->vio_sid = ldcp->local_sid;
/* send reply msg back to peer */
rv = vgen_sendmsg(ldcp, (caddr_t)tagp, sizeof (vio_rdx_msg_t),
B_FALSE);
if (rv != VGEN_SUCCESS) {
return (rv);
}
ldcp->hstate |= RDX_ACK_SENT;
DBG2(vgenp, ldcp, "RDX_ACK_SENT \n");
if (vgen_handshake_done(ldcp) == VGEN_SUCCESS) {
vgen_handshake(vh_nextphase(ldcp));
}
break;
case VIO_SUBTYPE_ACK:
ldcp->hstate |= RDX_ACK_RCVD;
DBG2(vgenp, ldcp, "RDX_ACK_RCVD \n");
if (vgen_handshake_done(ldcp) == VGEN_SUCCESS) {
vgen_handshake(vh_nextphase(ldcp));
}
break;
case VIO_SUBTYPE_NACK:
DBG2(vgenp, ldcp, "RDX_NACK_RCVD \n");
return (VGEN_FAILURE);
}
DBG1(vgenp, ldcp, "exit\n");
return (VGEN_SUCCESS);
}
/* Handle ACK/NACK from vsw to a set multicast msg that we sent */
static int
vgen_handle_mcast_info(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp)
{
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
vnet_mcast_msg_t *msgp = (vnet_mcast_msg_t *)tagp;
struct ether_addr *addrp;
int count;
int i;
DBG1(vgenp, ldcp, "enter\n");
switch (tagp->vio_subtype) {
case VIO_SUBTYPE_INFO:
/* vnet shouldn't recv set mcast msg, only vsw handles it */
DWARN(vgenp, ldcp, "rcvd SET_MCAST_INFO \n");
break;
case VIO_SUBTYPE_ACK:
/* success adding/removing multicast addr */
DBG1(vgenp, ldcp, "rcvd SET_MCAST_ACK \n");
break;
case VIO_SUBTYPE_NACK:
DWARN(vgenp, ldcp, "rcvd SET_MCAST_NACK \n");
if (!(msgp->set)) {
/* multicast remove request failed */
break;
}
/* multicast add request failed */
for (count = 0; count < msgp->count; count++) {
addrp = &(msgp->mca[count]);
/* delete address from the table */
for (i = 0; i < vgenp->mccount; i++) {
if (ether_cmp(addrp,
&(vgenp->mctab[i])) == 0) {
if (vgenp->mccount > 1) {
int t = vgenp->mccount - 1;
vgenp->mctab[i] =
vgenp->mctab[t];
}
vgenp->mccount--;
break;
}
}
}
break;
}
DBG1(vgenp, ldcp, "exit\n");
return (VGEN_SUCCESS);
}
/* handler for control messages received from the peer ldc end-point */
static int
vgen_handle_ctrlmsg(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp)
{
int rv = 0;
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
DBG1(vgenp, ldcp, "enter\n");
switch (tagp->vio_subtype_env) {
case VIO_VER_INFO:
rv = vgen_handle_version_negotiate(ldcp, tagp);
break;
case VIO_ATTR_INFO:
rv = vgen_handle_attr_info(ldcp, tagp);
break;
case VIO_DRING_REG:
rv = vgen_handle_dring_reg(ldcp, tagp);
break;
case VIO_RDX:
rv = vgen_handle_rdx_info(ldcp, tagp);
break;
case VNET_MCAST_INFO:
rv = vgen_handle_mcast_info(ldcp, tagp);
break;
case VIO_DDS_INFO:
rv = vgen_dds_rx(ldcp, tagp);
break;
}
DBG1(vgenp, ldcp, "exit rv(%d)\n", rv);
return (rv);
}
/* handler for data messages received from the peer ldc end-point */
static int
vgen_handle_datamsg(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp, uint32_t msglen)
{
int rv = 0;
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
DBG1(vgenp, ldcp, "enter\n");
if (ldcp->hphase != VH_DONE)
return (rv);
if (tagp->vio_subtype == VIO_SUBTYPE_INFO) {
rv = vgen_check_datamsg_seq(ldcp, tagp);
if (rv != 0) {
return (rv);
}
}
switch (tagp->vio_subtype_env) {
case VIO_DRING_DATA:
rv = vgen_handle_dring_data(ldcp, tagp);
break;
case VIO_PKT_DATA:
ldcp->rx_pktdata((void *)ldcp, (void *)tagp, msglen);
break;
default:
break;
}
DBG1(vgenp, ldcp, "exit rv(%d)\n", rv);
return (rv);
}
/*
* dummy pkt data handler function for vnet protocol version 1.0
*/
static void
vgen_handle_pkt_data_nop(void *arg1, void *arg2, uint32_t msglen)
{
_NOTE(ARGUNUSED(arg1, arg2, msglen))
}
/*
* This function handles raw pkt data messages received over the channel.
* Currently, only priority-eth-type frames are received through this mechanism.
* In this case, the frame(data) is present within the message itself which
* is copied into an mblk before sending it up the stack.
*/
static void
vgen_handle_pkt_data(void *arg1, void *arg2, uint32_t msglen)
{
vgen_ldc_t *ldcp = (vgen_ldc_t *)arg1;
vio_raw_data_msg_t *pkt = (vio_raw_data_msg_t *)arg2;
uint32_t size;
mblk_t *mp;
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
vgen_stats_t *statsp = &ldcp->stats;
vgen_hparams_t *lp = &ldcp->local_hparams;
vio_net_rx_cb_t vrx_cb;
ASSERT(MUTEX_HELD(&ldcp->cblock));
mutex_exit(&ldcp->cblock);
size = msglen - VIO_PKT_DATA_HDRSIZE;
if (size < ETHERMIN || size > lp->mtu) {
(void) atomic_inc_32(&statsp->rx_pri_fail);
goto exit;
}
mp = vio_multipool_allocb(&ldcp->vmp, size);
if (mp == NULL) {
mp = allocb(size, BPRI_MED);
if (mp == NULL) {
(void) atomic_inc_32(&statsp->rx_pri_fail);
DWARN(vgenp, ldcp, "allocb failure, "
"unable to process priority frame\n");
goto exit;
}
}
/* copy the frame from the payload of raw data msg into the mblk */
bcopy(pkt->data, mp->b_rptr, size);
mp->b_wptr = mp->b_rptr + size;
/* update stats */
(void) atomic_inc_64(&statsp->rx_pri_packets);
(void) atomic_add_64(&statsp->rx_pri_bytes, size);
/* send up; call vrx_cb() as cblock is already released */
vrx_cb = ldcp->portp->vcb.vio_net_rx_cb;
vrx_cb(ldcp->portp->vhp, mp);
exit:
mutex_enter(&ldcp->cblock);
}
static int
vgen_send_dring_ack(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp, uint32_t start,
int32_t end, uint8_t pstate)
{
int rv = 0;
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
vio_dring_msg_t *msgp = (vio_dring_msg_t *)tagp;
tagp->vio_subtype = VIO_SUBTYPE_ACK;
tagp->vio_sid = ldcp->local_sid;
msgp->start_idx = start;
msgp->end_idx = end;
msgp->dring_process_state = pstate;
rv = vgen_sendmsg(ldcp, (caddr_t)tagp, sizeof (*msgp), B_FALSE);
if (rv != VGEN_SUCCESS) {
DWARN(vgenp, ldcp, "vgen_sendmsg failed\n");
}
return (rv);
}
static int
vgen_handle_dring_data(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp)
{
int rv = 0;
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
DBG1(vgenp, ldcp, "enter\n");
switch (tagp->vio_subtype) {
case VIO_SUBTYPE_INFO:
/*
* To reduce the locking contention, release the
* cblock here and re-acquire it once we are done
* receiving packets.
*/
mutex_exit(&ldcp->cblock);
mutex_enter(&ldcp->rxlock);
rv = vgen_handle_dring_data_info(ldcp, tagp);
mutex_exit(&ldcp->rxlock);
mutex_enter(&ldcp->cblock);
break;
case VIO_SUBTYPE_ACK:
rv = vgen_handle_dring_data_ack(ldcp, tagp);
break;
case VIO_SUBTYPE_NACK:
rv = vgen_handle_dring_data_nack(ldcp, tagp);
break;
}
DBG1(vgenp, ldcp, "exit rv(%d)\n", rv);
return (rv);
}
static int
vgen_handle_dring_data_info(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp)
{
uint32_t start;
int32_t end;
int rv = 0;
vio_dring_msg_t *dringmsg = (vio_dring_msg_t *)tagp;
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
#ifdef VGEN_HANDLE_LOST_PKTS
vgen_stats_t *statsp = &ldcp->stats;
uint32_t rxi;
int n;
#endif
DBG1(vgenp, ldcp, "enter\n");
start = dringmsg->start_idx;
end = dringmsg->end_idx;
/*
* received a data msg, which contains the start and end
* indices of the descriptors within the rx ring holding data,
* the seq_num of data packet corresponding to the start index,
* and the dring_ident.
* We can now read the contents of each of these descriptors
* and gather data from it.
*/
DBG1(vgenp, ldcp, "INFO: start(%d), end(%d)\n",
start, end);
/* validate rx start and end indeces */
if (!(CHECK_RXI(start, ldcp)) || ((end != -1) &&
!(CHECK_RXI(end, ldcp)))) {
DWARN(vgenp, ldcp, "Invalid Rx start(%d) or end(%d)\n",
start, end);
/* drop the message if invalid index */
return (rv);
}
/* validate dring_ident */
if (dringmsg->dring_ident != ldcp->peer_hparams.dring_ident) {
DWARN(vgenp, ldcp, "Invalid dring ident 0x%x\n",
dringmsg->dring_ident);
/* invalid dring_ident, drop the msg */
return (rv);
}
#ifdef DEBUG
if (vgen_trigger_rxlost) {
/* drop this msg to simulate lost pkts for debugging */
vgen_trigger_rxlost = 0;
return (rv);
}
#endif
#ifdef VGEN_HANDLE_LOST_PKTS
/* receive start index doesn't match expected index */
if (ldcp->next_rxi != start) {
DWARN(vgenp, ldcp, "next_rxi(%d) != start(%d)\n",
ldcp->next_rxi, start);
/* calculate the number of pkts lost */
if (start >= ldcp->next_rxi) {
n = start - ldcp->next_rxi;
} else {
n = ldcp->num_rxds - (ldcp->next_rxi - start);
}
statsp->rx_lost_pkts += n;
tagp->vio_subtype = VIO_SUBTYPE_NACK;
tagp->vio_sid = ldcp->local_sid;
/* indicate the range of lost descriptors */
dringmsg->start_idx = ldcp->next_rxi;
rxi = start;
DECR_RXI(rxi, ldcp);
dringmsg->end_idx = rxi;
/* dring ident is left unchanged */
rv = vgen_sendmsg(ldcp, (caddr_t)tagp,
sizeof (*dringmsg), B_FALSE);
if (rv != VGEN_SUCCESS) {
DWARN(vgenp, ldcp,
"vgen_sendmsg failed, stype:NACK\n");
return (rv);
}
/*
* treat this range of descrs/pkts as dropped
* and set the new expected value of next_rxi
* and continue(below) to process from the new
* start index.
*/
ldcp->next_rxi = start;
}
#endif /* VGEN_HANDLE_LOST_PKTS */
/* Now receive messages */
rv = vgen_process_dring_data(ldcp, tagp);
DBG1(vgenp, ldcp, "exit rv(%d)\n", rv);
return (rv);
}
static int
vgen_process_dring_data(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp)
{
boolean_t set_ack_start = B_FALSE;
uint32_t start;
uint32_t ack_end;
uint32_t next_rxi;
uint32_t rxi;
int count = 0;
int rv = 0;
uint32_t retries = 0;
vgen_stats_t *statsp;
vnet_public_desc_t *rxdp;
vio_dring_entry_hdr_t *hdrp;
mblk_t *bp = NULL;
mblk_t *bpt = NULL;
uint32_t ack_start;
uint32_t datalen;
uint32_t ncookies;
boolean_t rxd_err = B_FALSE;
mblk_t *mp = NULL;
size_t nbytes;
boolean_t ack_needed = B_FALSE;
size_t nread;
uint64_t off = 0;
struct ether_header *ehp;
vio_dring_msg_t *dringmsg = (vio_dring_msg_t *)tagp;
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
DBG1(vgenp, ldcp, "enter\n");
statsp = &ldcp->stats;
start = dringmsg->start_idx;
/*
* start processing the descriptors from the specified
* start index, up to the index a descriptor is not ready
* to be processed or we process the entire descriptor ring
* and wrap around upto the start index.
*/
/* need to set the start index of descriptors to be ack'd */
set_ack_start = B_TRUE;
/* index upto which we have ack'd */
ack_end = start;
DECR_RXI(ack_end, ldcp);
next_rxi = rxi = start;
do {
vgen_recv_retry:
rv = ldc_mem_dring_acquire(ldcp->rx_dhandle, rxi, rxi);
if (rv != 0) {
DWARN(vgenp, ldcp, "ldc_mem_dring_acquire() failed"
" rv(%d)\n", rv);
statsp->ierrors++;
return (rv);
}
rxdp = &(ldcp->rxdp[rxi]);
hdrp = &rxdp->hdr;
if (hdrp->dstate != VIO_DESC_READY) {
/*
* Before waiting and retry here, send up
* the packets that are received already
*/
if (bp != NULL) {
DTRACE_PROBE1(vgen_rcv_msgs, int, count);
vgen_rx(ldcp, bp);
count = 0;
bp = bpt = NULL;
}
/*
* descriptor is not ready.
* retry descriptor acquire, stop processing
* after max # retries.
*/
if (retries == vgen_recv_retries)
break;
retries++;
drv_usecwait(vgen_recv_delay);
goto vgen_recv_retry;
}
retries = 0;
if (set_ack_start) {
/*
* initialize the start index of the range
* of descriptors to be ack'd.
*/
ack_start = rxi;
set_ack_start = B_FALSE;
}
datalen = rxdp->nbytes;
ncookies = rxdp->ncookies;
if ((datalen < ETHERMIN) ||
(ncookies == 0) ||
(ncookies > MAX_COOKIES)) {
rxd_err = B_TRUE;
} else {
/*
* Try to allocate an mblk from the free pool
* of recv mblks for the channel.
* If this fails, use allocb().
*/
nbytes = (VNET_IPALIGN + datalen + 7) & ~7;
mp = vio_multipool_allocb(&ldcp->vmp, nbytes);
if (!mp) {
/*
* The data buffer returned by
* allocb(9F) is 8byte aligned. We
* allocate extra 8 bytes to ensure
* size is multiple of 8 bytes for
* ldc_mem_copy().
*/
statsp->rx_vio_allocb_fail++;
mp = allocb(VNET_IPALIGN + datalen + 8,
BPRI_MED);
}
}
if ((rxd_err) || (mp == NULL)) {
/*
* rxd_err or allocb() failure,
* drop this packet, get next.
*/
if (rxd_err) {
statsp->ierrors++;
rxd_err = B_FALSE;
} else {
statsp->rx_allocb_fail++;
}
ack_needed = hdrp->ack;
/* set descriptor done bit */
hdrp->dstate = VIO_DESC_DONE;
rv = ldc_mem_dring_release(ldcp->rx_dhandle,
rxi, rxi);
if (rv != 0) {
DWARN(vgenp, ldcp,
"ldc_mem_dring_release err rv(%d)\n", rv);
return (rv);
}
if (ack_needed) {
ack_needed = B_FALSE;
/*
* sender needs ack for this packet,
* ack pkts upto this index.
*/
ack_end = rxi;
rv = vgen_send_dring_ack(ldcp, tagp,
ack_start, ack_end,
VIO_DP_ACTIVE);
if (rv != VGEN_SUCCESS) {
goto error_ret;
}
/* need to set new ack start index */
set_ack_start = B_TRUE;
}
goto vgen_next_rxi;
}
nread = nbytes;
rv = ldc_mem_copy(ldcp->ldc_handle,
(caddr_t)mp->b_rptr, off, &nread,
rxdp->memcookie, ncookies, LDC_COPY_IN);
/* if ldc_mem_copy() failed */
if (rv) {
DWARN(vgenp, ldcp, "ldc_mem_copy err rv(%d)\n", rv);
statsp->ierrors++;
freemsg(mp);
goto error_ret;
}
ack_needed = hdrp->ack;
hdrp->dstate = VIO_DESC_DONE;
rv = ldc_mem_dring_release(ldcp->rx_dhandle, rxi, rxi);
if (rv != 0) {
DWARN(vgenp, ldcp,
"ldc_mem_dring_release err rv(%d)\n", rv);
goto error_ret;
}
mp->b_rptr += VNET_IPALIGN;
if (ack_needed) {
ack_needed = B_FALSE;
/*
* sender needs ack for this packet,
* ack pkts upto this index.
*/
ack_end = rxi;
rv = vgen_send_dring_ack(ldcp, tagp,
ack_start, ack_end, VIO_DP_ACTIVE);
if (rv != VGEN_SUCCESS) {
goto error_ret;
}
/* need to set new ack start index */
set_ack_start = B_TRUE;
}
if (nread != nbytes) {
DWARN(vgenp, ldcp,
"ldc_mem_copy nread(%lx), nbytes(%lx)\n",
nread, nbytes);
statsp->ierrors++;
freemsg(mp);
goto vgen_next_rxi;
}
/* point to the actual end of data */
mp->b_wptr = mp->b_rptr + datalen;
/* update stats */
statsp->ipackets++;
statsp->rbytes += datalen;
ehp = (struct ether_header *)mp->b_rptr;
if (IS_BROADCAST(ehp))
statsp->brdcstrcv++;
else if (IS_MULTICAST(ehp))
statsp->multircv++;
/* build a chain of received packets */
if (bp == NULL) {
/* first pkt */
bp = mp;
bpt = bp;
bpt->b_next = NULL;
} else {
mp->b_next = NULL;
bpt->b_next = mp;
bpt = mp;
}
if (count++ > vgen_chain_len) {
DTRACE_PROBE1(vgen_rcv_msgs, int, count);
vgen_rx(ldcp, bp);
count = 0;
bp = bpt = NULL;
}
vgen_next_rxi:
/* update end index of range of descrs to be ack'd */
ack_end = rxi;
/* update the next index to be processed */
INCR_RXI(next_rxi, ldcp);
if (next_rxi == start) {
/*
* processed the entire descriptor ring upto
* the index at which we started.
*/
break;
}
rxi = next_rxi;
_NOTE(CONSTCOND)
} while (1);
/*
* send an ack message to peer indicating that we have stopped
* processing descriptors.
*/
if (set_ack_start) {
/*
* We have ack'd upto some index and we have not
* processed any descriptors beyond that index.
* Use the last ack'd index as both the start and
* end of range of descrs being ack'd.
* Note: This results in acking the last index twice
* and should be harmless.
*/
ack_start = ack_end;
}
rv = vgen_send_dring_ack(ldcp, tagp, ack_start, ack_end,
VIO_DP_STOPPED);
if (rv != VGEN_SUCCESS) {
goto error_ret;
}
/* save new recv index of next dring msg */
ldcp->next_rxi = next_rxi;
error_ret:
/* send up packets received so far */
if (bp != NULL) {
DTRACE_PROBE1(vgen_rcv_msgs, int, count);
vgen_rx(ldcp, bp);
bp = bpt = NULL;
}
DBG1(vgenp, ldcp, "exit rv(%d)\n", rv);
return (rv);
}
static int
vgen_handle_dring_data_ack(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp)
{
int rv = 0;
uint32_t start;
int32_t end;
uint32_t txi;
boolean_t ready_txd = B_FALSE;
vgen_stats_t *statsp;
vgen_private_desc_t *tbufp;
vnet_public_desc_t *txdp;
vio_dring_entry_hdr_t *hdrp;
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
vio_dring_msg_t *dringmsg = (vio_dring_msg_t *)tagp;
DBG1(vgenp, ldcp, "enter\n");
start = dringmsg->start_idx;
end = dringmsg->end_idx;
statsp = &ldcp->stats;
/*
* received an ack corresponding to a specific descriptor for
* which we had set the ACK bit in the descriptor (during
* transmit). This enables us to reclaim descriptors.
*/
DBG2(vgenp, ldcp, "ACK: start(%d), end(%d)\n", start, end);
/* validate start and end indeces in the tx ack msg */
if (!(CHECK_TXI(start, ldcp)) || !(CHECK_TXI(end, ldcp))) {
/* drop the message if invalid index */
DWARN(vgenp, ldcp, "Invalid Tx ack start(%d) or end(%d)\n",
start, end);
return (rv);
}
/* validate dring_ident */
if (dringmsg->dring_ident != ldcp->local_hparams.dring_ident) {
/* invalid dring_ident, drop the msg */
DWARN(vgenp, ldcp, "Invalid dring ident 0x%x\n",
dringmsg->dring_ident);
return (rv);
}
statsp->dring_data_acks++;
/* reclaim descriptors that are done */
vgen_reclaim(ldcp);
if (dringmsg->dring_process_state != VIO_DP_STOPPED) {
/*
* receiver continued processing descriptors after
* sending us the ack.
*/
return (rv);
}
statsp->dring_stopped_acks++;
/* receiver stopped processing descriptors */
mutex_enter(&ldcp->wrlock);
mutex_enter(&ldcp->tclock);
/*
* determine if there are any pending tx descriptors
* ready to be processed by the receiver(peer) and if so,
* send a message to the peer to restart receiving.
*/
ready_txd = B_FALSE;
/*
* using the end index of the descriptor range for which
* we received the ack, check if the next descriptor is
* ready.
*/
txi = end;
INCR_TXI(txi, ldcp);
tbufp = &ldcp->tbufp[txi];
txdp = tbufp->descp;
hdrp = &txdp->hdr;
if (hdrp->dstate == VIO_DESC_READY) {
ready_txd = B_TRUE;
} else {
/*
* descr next to the end of ack'd descr range is not
* ready.
* starting from the current reclaim index, check
* if any descriptor is ready.
*/
txi = ldcp->cur_tbufp - ldcp->tbufp;
tbufp = &ldcp->tbufp[txi];
txdp = tbufp->descp;
hdrp = &txdp->hdr;
if (hdrp->dstate == VIO_DESC_READY) {
ready_txd = B_TRUE;
}
}
if (ready_txd) {
/*
* we have tx descriptor(s) ready to be
* processed by the receiver.
* send a message to the peer with the start index
* of ready descriptors.
*/
rv = vgen_send_dring_data(ldcp, txi, -1);
if (rv != VGEN_SUCCESS) {
ldcp->resched_peer = B_TRUE;
ldcp->resched_peer_txi = txi;
mutex_exit(&ldcp->tclock);
mutex_exit(&ldcp->wrlock);
return (rv);
}
} else {
/*
* no ready tx descriptors. set the flag to send a
* message to peer when tx descriptors are ready in
* transmit routine.
*/
ldcp->resched_peer = B_TRUE;
ldcp->resched_peer_txi = ldcp->cur_tbufp - ldcp->tbufp;
}
mutex_exit(&ldcp->tclock);
mutex_exit(&ldcp->wrlock);
DBG1(vgenp, ldcp, "exit rv(%d)\n", rv);
return (rv);
}
static int
vgen_handle_dring_data_nack(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp)
{
int rv = 0;
uint32_t start;
int32_t end;
uint32_t txi;
vnet_public_desc_t *txdp;
vio_dring_entry_hdr_t *hdrp;
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
vio_dring_msg_t *dringmsg = (vio_dring_msg_t *)tagp;
DBG1(vgenp, ldcp, "enter\n");
start = dringmsg->start_idx;
end = dringmsg->end_idx;
/*
* peer sent a NACK msg to indicate lost packets.
* The start and end correspond to the range of descriptors
* for which the peer didn't receive a dring data msg and so
* didn't receive the corresponding data.
*/
DWARN(vgenp, ldcp, "NACK: start(%d), end(%d)\n", start, end);
/* validate start and end indeces in the tx nack msg */
if (!(CHECK_TXI(start, ldcp)) || !(CHECK_TXI(end, ldcp))) {
/* drop the message if invalid index */
DWARN(vgenp, ldcp, "Invalid Tx nack start(%d) or end(%d)\n",
start, end);
return (rv);
}
/* validate dring_ident */
if (dringmsg->dring_ident != ldcp->local_hparams.dring_ident) {
/* invalid dring_ident, drop the msg */
DWARN(vgenp, ldcp, "Invalid dring ident 0x%x\n",
dringmsg->dring_ident);
return (rv);
}
mutex_enter(&ldcp->txlock);
mutex_enter(&ldcp->tclock);
if (ldcp->next_tbufp == ldcp->cur_tbufp) {
/* no busy descriptors, bogus nack ? */
mutex_exit(&ldcp->tclock);
mutex_exit(&ldcp->txlock);
return (rv);
}
/* we just mark the descrs as done so they can be reclaimed */
for (txi = start; txi <= end; ) {
txdp = &(ldcp->txdp[txi]);
hdrp = &txdp->hdr;
if (hdrp->dstate == VIO_DESC_READY)
hdrp->dstate = VIO_DESC_DONE;
INCR_TXI(txi, ldcp);
}
mutex_exit(&ldcp->tclock);
mutex_exit(&ldcp->txlock);
DBG1(vgenp, ldcp, "exit rv(%d)\n", rv);
return (rv);
}
static void
vgen_reclaim(vgen_ldc_t *ldcp)
{
mutex_enter(&ldcp->tclock);
vgen_reclaim_dring(ldcp);
ldcp->reclaim_lbolt = ddi_get_lbolt();
mutex_exit(&ldcp->tclock);
}
/*
* transmit reclaim function. starting from the current reclaim index
* look for descriptors marked DONE and reclaim the descriptor and the
* corresponding buffers (tbuf).
*/
static void
vgen_reclaim_dring(vgen_ldc_t *ldcp)
{
int count = 0;
vnet_public_desc_t *txdp;
vgen_private_desc_t *tbufp;
vio_dring_entry_hdr_t *hdrp;
#ifdef DEBUG
if (vgen_trigger_txtimeout)
return;
#endif
tbufp = ldcp->cur_tbufp;
txdp = tbufp->descp;
hdrp = &txdp->hdr;
while ((hdrp->dstate == VIO_DESC_DONE) &&
(tbufp != ldcp->next_tbufp)) {
tbufp->flags = VGEN_PRIV_DESC_FREE;
hdrp->dstate = VIO_DESC_FREE;
hdrp->ack = B_FALSE;
tbufp = NEXTTBUF(ldcp, tbufp);
txdp = tbufp->descp;
hdrp = &txdp->hdr;
count++;
}
ldcp->cur_tbufp = tbufp;
/*
* Check if mac layer should be notified to restart transmissions
*/
if ((ldcp->need_resched) && (count > 0)) {
vio_net_tx_update_t vtx_update =
ldcp->portp->vcb.vio_net_tx_update;
ldcp->need_resched = B_FALSE;
vtx_update(ldcp->portp->vhp);
}
}
/* return the number of pending transmits for the channel */
static int
vgen_num_txpending(vgen_ldc_t *ldcp)
{
int n;
if (ldcp->next_tbufp >= ldcp->cur_tbufp) {
n = ldcp->next_tbufp - ldcp->cur_tbufp;
} else {
/* cur_tbufp > next_tbufp */
n = ldcp->num_txds - (ldcp->cur_tbufp - ldcp->next_tbufp);
}
return (n);
}
/* determine if the transmit descriptor ring is full */
static int
vgen_tx_dring_full(vgen_ldc_t *ldcp)
{
vgen_private_desc_t *tbufp;
vgen_private_desc_t *ntbufp;
tbufp = ldcp->next_tbufp;
ntbufp = NEXTTBUF(ldcp, tbufp);
if (ntbufp == ldcp->cur_tbufp) { /* out of tbufs/txds */
return (VGEN_SUCCESS);
}
return (VGEN_FAILURE);
}
/* determine if timeout condition has occured */
static int
vgen_ldc_txtimeout(vgen_ldc_t *ldcp)
{
if (((ddi_get_lbolt() - ldcp->reclaim_lbolt) >
drv_usectohz(vnet_ldcwd_txtimeout * 1000)) &&
(vnet_ldcwd_txtimeout) &&
(vgen_tx_dring_full(ldcp) == VGEN_SUCCESS)) {
return (VGEN_SUCCESS);
} else {
return (VGEN_FAILURE);
}
}
/* transmit watchdog timeout handler */
static void
vgen_ldc_watchdog(void *arg)
{
vgen_ldc_t *ldcp;
vgen_t *vgenp;
int rv;
ldcp = (vgen_ldc_t *)arg;
vgenp = LDC_TO_VGEN(ldcp);
rv = vgen_ldc_txtimeout(ldcp);
if (rv == VGEN_SUCCESS) {
DWARN(vgenp, ldcp, "transmit timeout\n");
#ifdef DEBUG
if (vgen_trigger_txtimeout) {
/* tx timeout triggered for debugging */
vgen_trigger_txtimeout = 0;
}
#endif
mutex_enter(&ldcp->cblock);
ldcp->need_ldc_reset = B_TRUE;
vgen_handshake_retry(ldcp);
mutex_exit(&ldcp->cblock);
if (ldcp->need_resched) {
vio_net_tx_update_t vtx_update =
ldcp->portp->vcb.vio_net_tx_update;
ldcp->need_resched = B_FALSE;
vtx_update(ldcp->portp->vhp);
}
}
ldcp->wd_tid = timeout(vgen_ldc_watchdog, (caddr_t)ldcp,
drv_usectohz(vnet_ldcwd_interval * 1000));
}
/* handler for error messages received from the peer ldc end-point */
static void
vgen_handle_errmsg(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp)
{
_NOTE(ARGUNUSED(ldcp, tagp))
}
static int
vgen_check_datamsg_seq(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp)
{
vio_raw_data_msg_t *rmsg;
vio_dring_msg_t *dmsg;
uint64_t seq_num;
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
if (tagp->vio_subtype_env == VIO_DRING_DATA) {
dmsg = (vio_dring_msg_t *)tagp;
seq_num = dmsg->seq_num;
} else if (tagp->vio_subtype_env == VIO_PKT_DATA) {
rmsg = (vio_raw_data_msg_t *)tagp;
seq_num = rmsg->seq_num;
} else {
return (EINVAL);
}
if (seq_num != ldcp->next_rxseq) {
/* seqnums don't match */
DWARN(vgenp, ldcp,
"next_rxseq(0x%lx) != seq_num(0x%lx)\n",
ldcp->next_rxseq, seq_num);
ldcp->need_ldc_reset = B_TRUE;
return (EINVAL);
}
ldcp->next_rxseq++;
return (0);
}
/* Check if the session id in the received message is valid */
static int
vgen_check_sid(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp)
{
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
if (tagp->vio_sid != ldcp->peer_sid) {
DWARN(vgenp, ldcp, "sid mismatch: expected(%x), rcvd(%x)\n",
ldcp->peer_sid, tagp->vio_sid);
return (VGEN_FAILURE);
}
else
return (VGEN_SUCCESS);
}
static caddr_t
vgen_print_ethaddr(uint8_t *a, char *ebuf)
{
(void) sprintf(ebuf,
"%x:%x:%x:%x:%x:%x", a[0], a[1], a[2], a[3], a[4], a[5]);
return (ebuf);
}
/* Handshake watchdog timeout handler */
static void
vgen_hwatchdog(void *arg)
{
vgen_ldc_t *ldcp = (vgen_ldc_t *)arg;
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
DWARN(vgenp, ldcp,
"handshake timeout ldc(%lx) phase(%x) state(%x)\n",
ldcp->hphase, ldcp->hstate);
mutex_enter(&ldcp->cblock);
if (ldcp->cancel_htid) {
ldcp->cancel_htid = 0;
mutex_exit(&ldcp->cblock);
return;
}
ldcp->htid = 0;
ldcp->need_ldc_reset = B_TRUE;
vgen_handshake_retry(ldcp);
mutex_exit(&ldcp->cblock);
}
static void
vgen_print_hparams(vgen_hparams_t *hp)
{
uint8_t addr[6];
char ea[6];
ldc_mem_cookie_t *dc;
cmn_err(CE_CONT, "version_info:\n");
cmn_err(CE_CONT,
"\tver_major: %d, ver_minor: %d, dev_class: %d\n",
hp->ver_major, hp->ver_minor, hp->dev_class);
vnet_macaddr_ultostr(hp->addr, addr);
cmn_err(CE_CONT, "attr_info:\n");
cmn_err(CE_CONT, "\tMTU: %lx, addr: %s\n", hp->mtu,
vgen_print_ethaddr(addr, ea));
cmn_err(CE_CONT,
"\taddr_type: %x, xfer_mode: %x, ack_freq: %x\n",
hp->addr_type, hp->xfer_mode, hp->ack_freq);
dc = &hp->dring_cookie;
cmn_err(CE_CONT, "dring_info:\n");
cmn_err(CE_CONT,
"\tlength: %d, dsize: %d\n", hp->num_desc, hp->desc_size);
cmn_err(CE_CONT,
"\tldc_addr: 0x%lx, ldc_size: %ld\n",
dc->addr, dc->size);
cmn_err(CE_CONT, "\tdring_ident: 0x%lx\n", hp->dring_ident);
}
static void
vgen_print_ldcinfo(vgen_ldc_t *ldcp)
{
vgen_hparams_t *hp;
cmn_err(CE_CONT, "Channel Information:\n");
cmn_err(CE_CONT,
"\tldc_id: 0x%lx, ldc_status: 0x%x\n",
ldcp->ldc_id, ldcp->ldc_status);
cmn_err(CE_CONT,
"\tlocal_sid: 0x%x, peer_sid: 0x%x\n",
ldcp->local_sid, ldcp->peer_sid);
cmn_err(CE_CONT,
"\thphase: 0x%x, hstate: 0x%x\n",
ldcp->hphase, ldcp->hstate);
cmn_err(CE_CONT, "Local handshake params:\n");
hp = &ldcp->local_hparams;
vgen_print_hparams(hp);
cmn_err(CE_CONT, "Peer handshake params:\n");
hp = &ldcp->peer_hparams;
vgen_print_hparams(hp);
}
/*
* Send received packets up the stack.
*/
static void
vgen_rx(vgen_ldc_t *ldcp, mblk_t *bp)
{
vio_net_rx_cb_t vrx_cb = ldcp->portp->vcb.vio_net_rx_cb;
if (ldcp->rcv_thread != NULL) {
ASSERT(MUTEX_HELD(&ldcp->rxlock));
mutex_exit(&ldcp->rxlock);
} else {
ASSERT(MUTEX_HELD(&ldcp->cblock));
mutex_exit(&ldcp->cblock);
}
vrx_cb(ldcp->portp->vhp, bp);
if (ldcp->rcv_thread != NULL) {
mutex_enter(&ldcp->rxlock);
} else {
mutex_enter(&ldcp->cblock);
}
}
/*
* vgen_ldc_rcv_worker -- A per LDC worker thread to receive data.
* This thread is woken up by the LDC interrupt handler to process
* LDC packets and receive data.
*/
static void
vgen_ldc_rcv_worker(void *arg)
{
callb_cpr_t cprinfo;
vgen_ldc_t *ldcp = (vgen_ldc_t *)arg;
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
DBG1(vgenp, ldcp, "enter\n");
CALLB_CPR_INIT(&cprinfo, &ldcp->rcv_thr_lock, callb_generic_cpr,
"vnet_rcv_thread");
mutex_enter(&ldcp->rcv_thr_lock);
ldcp->rcv_thr_flags |= VGEN_WTHR_RUNNING;
while (!(ldcp->rcv_thr_flags & VGEN_WTHR_STOP)) {
CALLB_CPR_SAFE_BEGIN(&cprinfo);
/*
* Wait until the data is received or a stop
* request is received.
*/
while (!(ldcp->rcv_thr_flags &
(VGEN_WTHR_DATARCVD | VGEN_WTHR_STOP))) {
cv_wait(&ldcp->rcv_thr_cv, &ldcp->rcv_thr_lock);
}
CALLB_CPR_SAFE_END(&cprinfo, &ldcp->rcv_thr_lock)
/*
* First process the stop request.
*/
if (ldcp->rcv_thr_flags & VGEN_WTHR_STOP) {
DBG2(vgenp, ldcp, "stopped\n");
break;
}
ldcp->rcv_thr_flags &= ~VGEN_WTHR_DATARCVD;
mutex_exit(&ldcp->rcv_thr_lock);
DBG2(vgenp, ldcp, "calling vgen_handle_evt_read\n");
vgen_handle_evt_read(ldcp);
mutex_enter(&ldcp->rcv_thr_lock);
}
/*
* Update the run status and wakeup the thread that
* has sent the stop request.
*/
ldcp->rcv_thr_flags &= ~VGEN_WTHR_RUNNING;
cv_signal(&ldcp->rcv_thr_cv);
CALLB_CPR_EXIT(&cprinfo);
thread_exit();
DBG1(vgenp, ldcp, "exit\n");
}
/* vgen_stop_rcv_thread -- Co-ordinate with receive thread to stop it */
static void
vgen_stop_rcv_thread(vgen_ldc_t *ldcp)
{
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
DBG1(vgenp, ldcp, "enter\n");
/*
* Send a stop request by setting the stop flag and
* wait until the receive thread stops.
*/
mutex_enter(&ldcp->rcv_thr_lock);
if (ldcp->rcv_thr_flags & VGEN_WTHR_RUNNING) {
ldcp->rcv_thr_flags |= VGEN_WTHR_STOP;
cv_signal(&ldcp->rcv_thr_cv);
DBG2(vgenp, ldcp, "waiting...");
while (ldcp->rcv_thr_flags & VGEN_WTHR_RUNNING) {
cv_wait(&ldcp->rcv_thr_cv, &ldcp->rcv_thr_lock);
}
}
mutex_exit(&ldcp->rcv_thr_lock);
ldcp->rcv_thread = NULL;
DBG1(vgenp, ldcp, "exit\n");
}
/*
* vgen_dds_rx -- post DDS messages to vnet.
*/
static int
vgen_dds_rx(vgen_ldc_t *ldcp, vio_msg_tag_t *tagp)
{
vio_dds_msg_t *dmsg = (vio_dds_msg_t *)tagp;
vgen_t *vgenp = LDC_TO_VGEN(ldcp);
if (dmsg->dds_class != DDS_VNET_NIU) {
DWARN(vgenp, ldcp, "Unknown DDS class, dropping");
return (EBADMSG);
}
vnet_dds_rx(vgenp->vnetp, dmsg);
return (0);
}
/*
* vgen_dds_tx -- an interface called by vnet to send DDS messages.
*/
int
vgen_dds_tx(void *arg, void *msg)
{
vgen_t *vgenp = arg;
vio_dds_msg_t *dmsg = msg;
vgen_portlist_t *plistp = &vgenp->vgenports;
vgen_ldc_t *ldcp;
vgen_ldclist_t *ldclp;
int rv = EIO;
READ_ENTER(&plistp->rwlock);
ldclp = &(vgenp->vsw_portp->ldclist);
READ_ENTER(&ldclp->rwlock);
ldcp = ldclp->headp;
if ((ldcp == NULL) || (ldcp->hphase != VH_DONE)) {
goto vgen_dsend_exit;
}
dmsg->tag.vio_sid = ldcp->local_sid;
rv = vgen_sendmsg(ldcp, (caddr_t)dmsg, sizeof (vio_dds_msg_t), B_FALSE);
if (rv != VGEN_SUCCESS) {
rv = EIO;
} else {
rv = 0;
}
vgen_dsend_exit:
RW_EXIT(&ldclp->rwlock);
RW_EXIT(&plistp->rwlock);
return (rv);
}
#if DEBUG
/*
* Print debug messages - set to 0xf to enable all msgs
*/
static void
debug_printf(const char *fname, vgen_t *vgenp,
vgen_ldc_t *ldcp, const char *fmt, ...)
{
char buf[256];
char *bufp = buf;
va_list ap;
if ((vgenp != NULL) && (vgenp->vnetp != NULL)) {
(void) sprintf(bufp, "vnet%d:",
((vnet_t *)(vgenp->vnetp))->instance);
bufp += strlen(bufp);
}
if (ldcp != NULL) {
(void) sprintf(bufp, "ldc(%ld):", ldcp->ldc_id);
bufp += strlen(bufp);
}
(void) sprintf(bufp, "%s: ", fname);
bufp += strlen(bufp);
va_start(ap, fmt);
(void) vsprintf(bufp, fmt, ap);
va_end(ap);
if ((ldcp == NULL) ||(vgendbg_ldcid == -1) ||
(vgendbg_ldcid == ldcp->ldc_id)) {
cmn_err(CE_CONT, "%s\n", buf);
}
}
#endif