dr_cpu.c revision 1d4b38e0077763e7c9b20768eacb841957e787bc
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* sun4v CPU DR Module
*/
#include <sys/modctl.h>
#include <sys/processor.h>
#include <sys/cpuvar.h>
#include <sys/sunddi.h>
#include <sys/sunndi.h>
#include <sys/note.h>
#include <sys/sysevent/dr.h>
#include <sys/hypervisor_api.h>
#include <sys/mach_descrip.h>
#include <sys/mdesc.h>
#include <sys/ds.h>
#include <sys/drctl.h>
#include <sys/dr_util.h>
#include <sys/dr_cpu.h>
#include <sys/promif.h>
#include <sys/machsystm.h>
static struct modlmisc modlmisc = {
&mod_miscops,
"sun4v CPU DR %I%"
};
static struct modlinkage modlinkage = {
MODREV_1,
(void *)&modlmisc,
NULL
};
typedef int (*fn_t)(processorid_t, int *, boolean_t);
/*
* Global DS Handle
*/
static ds_svc_hdl_t ds_handle;
/*
* Supported DS Capability Versions
*/
static ds_ver_t dr_cpu_vers[] = { { 1, 0 } };
#define DR_CPU_NVERS (sizeof (dr_cpu_vers) / sizeof (dr_cpu_vers[0]))
/*
* DS Capability Description
*/
static ds_capability_t dr_cpu_cap = {
DR_CPU_DS_ID, /* svc_id */
dr_cpu_vers, /* vers */
DR_CPU_NVERS /* nvers */
};
/*
* DS Callbacks
*/
static void dr_cpu_reg_handler(ds_cb_arg_t, ds_ver_t *, ds_svc_hdl_t);
static void dr_cpu_unreg_handler(ds_cb_arg_t arg);
static void dr_cpu_data_handler(ds_cb_arg_t arg, void *buf, size_t buflen);
/*
* DS Client Ops Vector
*/
static ds_clnt_ops_t dr_cpu_ops = {
dr_cpu_reg_handler, /* ds_reg_cb */
dr_cpu_unreg_handler, /* ds_unreg_cb */
dr_cpu_data_handler, /* ds_data_cb */
NULL /* cb_arg */
};
/*
* Internal Functions
*/
static int dr_cpu_init(void);
static int dr_cpu_fini(void);
static int dr_cpu_list_wrk(dr_cpu_hdr_t *, dr_cpu_hdr_t **, int *, fn_t);
static int dr_cpu_list_status(dr_cpu_hdr_t *, dr_cpu_hdr_t **, int *);
static int dr_cpu_unconfigure(processorid_t, int *status, boolean_t force);
static int dr_cpu_configure(processorid_t, int *status, boolean_t force);
static int dr_cpu_status(processorid_t, int *status);
static int dr_cpu_probe(processorid_t newcpuid);
static int dr_cpu_deprobe(processorid_t cpuid);
static dev_info_t *dr_cpu_find_node(processorid_t cpuid);
static mde_cookie_t dr_cpu_find_node_md(processorid_t, md_t *, mde_cookie_t *);
static void dr_cpu_check_cpus(uint32_t *cpuids, int ncpus, dr_cpu_stat_t *stat);
int
_init(void)
{
int status;
/* check that CPU DR is enabled */
if (dr_is_disabled(DR_TYPE_CPU)) {
cmn_err(CE_CONT, "!CPU DR is disabled\n");
return (-1);
}
if ((status = dr_cpu_init()) != 0) {
cmn_err(CE_NOTE, "CPU DR initialization failed");
return (status);
}
if ((status = mod_install(&modlinkage)) != 0) {
(void) dr_cpu_fini();
}
return (status);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
int dr_cpu_allow_unload;
int
_fini(void)
{
int status;
if (dr_cpu_allow_unload == 0)
return (EBUSY);
if ((status = mod_remove(&modlinkage)) == 0) {
(void) dr_cpu_fini();
}
return (status);
}
static int
dr_cpu_init(void)
{
int rv;
if ((rv = ds_cap_init(&dr_cpu_cap, &dr_cpu_ops)) != 0) {
cmn_err(CE_NOTE, "ds_cap_init failed: %d", rv);
return (-1);
}
return (0);
}
static int
dr_cpu_fini(void)
{
int rv;
if ((rv = ds_cap_fini(&dr_cpu_cap)) != 0) {
cmn_err(CE_NOTE, "ds_cap_fini failed: %d", rv);
return (-1);
}
return (0);
}
static void
dr_cpu_reg_handler(ds_cb_arg_t arg, ds_ver_t *ver, ds_svc_hdl_t hdl)
{
DR_DBG_CPU("reg_handler: arg=0x%p, ver=%d.%d, hdl=0x%lx\n", arg,
ver->major, ver->minor, hdl);
ds_handle = hdl;
}
static void
dr_cpu_unreg_handler(ds_cb_arg_t arg)
{
DR_DBG_CPU("unreg_handler: arg=0x%p\n", arg);
ds_handle = DS_INVALID_HDL;
}
static void
dr_cpu_data_handler(ds_cb_arg_t arg, void *buf, size_t buflen)
{
_NOTE(ARGUNUSED(arg))
dr_cpu_hdr_t *req = buf;
dr_cpu_hdr_t err_resp;
dr_cpu_hdr_t *resp = &err_resp;
int resp_len = 0;
int rv;
/*
* Sanity check the message
*/
if (buflen < sizeof (dr_cpu_hdr_t)) {
DR_DBG_CPU("incoming message short: expected at least %ld "
"bytes, received %ld\n", sizeof (dr_cpu_hdr_t), buflen);
goto done;
}
if (req == NULL) {
DR_DBG_CPU("empty message: expected at least %ld bytes\n",
sizeof (dr_cpu_hdr_t));
goto done;
}
DR_DBG_CPU("incoming request:\n");
DR_DBG_DUMP_MSG(buf, buflen);
if (req->num_records > NCPU) {
DR_DBG_CPU("CPU list too long: %d when %d is the maximum\n",
req->num_records, NCPU);
goto done;
}
if (req->num_records == 0) {
DR_DBG_CPU("No CPU specified for operation\n");
goto done;
}
/*
* Process the command
*/
switch (req->msg_type) {
case DR_CPU_CONFIGURE:
rv = dr_cpu_list_wrk(req, &resp, &resp_len, dr_cpu_configure);
if (rv != 0)
DR_DBG_CPU("dr_cpu_list_configure failed (%d)\n", rv);
break;
case DR_CPU_UNCONFIGURE:
case DR_CPU_FORCE_UNCONFIG:
rv = dr_cpu_list_wrk(req, &resp, &resp_len, dr_cpu_unconfigure);
if (rv != 0)
DR_DBG_CPU("dr_cpu_list_unconfigure failed (%d)\n", rv);
break;
case DR_CPU_STATUS:
if ((rv = dr_cpu_list_status(req, &resp, &resp_len)) != 0)
DR_DBG_CPU("dr_cpu_list_status failed (%d)\n", rv);
break;
default:
cmn_err(CE_NOTE, "unsupported DR operation (%d)",
req->msg_type);
break;
}
done:
/* check if an error occurred */
if (resp == &err_resp) {
resp->req_num = (req) ? req->req_num : 0;
resp->msg_type = DR_CPU_ERROR;
resp->num_records = 0;
resp_len = sizeof (dr_cpu_hdr_t);
}
/* send back the response */
if (ds_cap_send(ds_handle, resp, resp_len) != 0) {
DR_DBG_CPU("ds_send failed\n");
}
/* free any allocated memory */
if (resp != &err_resp) {
kmem_free(resp, resp_len);
}
}
/*
* Common routine to config or unconfig multiple cpus. The unconfig
* case checks with the OS to see if the removal of cpus will be
* permitted, but can be overridden by the "force" version of the
* command. Otherwise, the logic for both cases is identical.
*
* Note: Do not modify result buffer or length on error.
*/
static int
dr_cpu_list_wrk(dr_cpu_hdr_t *rq, dr_cpu_hdr_t **resp, int *resp_len, fn_t f)
{
/* related to request message (based on cpu_hdr_t *rq function arg) */
uint32_t *rq_cpus; /* address of cpuid array in request */
/* the response message to our caller (passed back via **resp) */
dr_cpu_hdr_t *rs; /* address of allocated response msg */
size_t rs_len; /* length of response msg */
dr_cpu_stat_t *rs_stat; /* addr. of status array in response */
caddr_t rs_str; /* addr. of string area in response */
size_t rs_stat_len; /* length of status area in response */
size_t rs_str_len; /* length of string area in response */
/* the request message sent to drctl_config_[init|fini] */
drctl_rsrc_t *dr_rq; /* addr. of allocated msg for drctl */
size_t dr_rq_len; /* length of same */
/* the response message received from drctl_config_init */
drctl_rsrc_t *dr_rs; /* &response from drctl_config_init */
size_t dr_rs_len = 0; /* length of response from same */
caddr_t dr_rs_str; /* &(string area) in same */
drctl_cookie_t dr_rs_ck; /* the cookie from same */
/* common temp variables */
int idx;
int cmd;
int result;
int status;
int count;
int rv;
int flags;
int force;
int fail_status;
static const char me[] = "dr_cpu_list_wrk";
ASSERT(rq != NULL && rq->num_records != 0);
count = rq->num_records;
flags = 0;
force = B_FALSE;
switch (rq->msg_type) {
case DR_CPU_CONFIGURE:
cmd = DRCTL_CPU_CONFIG_REQUEST;
fail_status = DR_CPU_STAT_UNCONFIGURED;
break;
case DR_CPU_FORCE_UNCONFIG:
flags = DRCTL_FLAG_FORCE;
force = B_TRUE;
_NOTE(FALLTHROUGH)
case DR_CPU_UNCONFIGURE:
cmd = DRCTL_CPU_UNCONFIG_REQUEST;
fail_status = DR_CPU_STAT_CONFIGURED;
break;
default:
/* Programming error if we reach this. */
ASSERT(0);
cmn_err(CE_NOTE, "%s: bad msg_type %d\n", me, rq->msg_type);
return (-1);
}
/* the incoming array of cpuids to configure */
rq_cpus = (uint32_t *)((caddr_t)rq + sizeof (dr_cpu_hdr_t));
/* allocate drctl request msg based on incoming resource count */
dr_rq_len = sizeof (drctl_rsrc_t) * count;
dr_rq = kmem_zalloc(dr_rq_len, KM_SLEEP);
/* copy the cpuids for the drctl call from the incoming request msg */
for (idx = 0; idx < count; idx++)
dr_rq[idx].res_cpu_id = rq_cpus[idx];
rv = drctl_config_init(cmd,
flags, dr_rq, count, &dr_rs, &dr_rs_len, &dr_rs_ck);
if (rv != 0) {
cmn_err(CE_CONT,
"?%s: drctl_config_init returned: %d\n", me, rv);
kmem_free(dr_rq, dr_rq_len);
return (-1);
}
ASSERT(dr_rs != NULL && dr_rs_len != 0);
/*
* Allocate a response buffer for our caller. It consists of
* the header plus the (per resource) status array and a string
* area the size of which is equal to the size of the string
* area in the drctl_config_init response. The latter is
* simply the size difference between the config_init request
* and config_init response messages (and may be zero).
*/
rs_stat_len = count * sizeof (dr_cpu_stat_t);
rs_str_len = dr_rs_len - dr_rq_len;
rs_len = sizeof (dr_cpu_hdr_t) + rs_stat_len + rs_str_len;
rs = kmem_zalloc(rs_len, KM_SLEEP);
/* fill in the known data */
rs->req_num = rq->req_num;
rs->msg_type = DR_CPU_OK;
rs->num_records = count;
/* stat array for the response */
rs_stat = (dr_cpu_stat_t *)((caddr_t)rs + sizeof (dr_cpu_hdr_t));
if (rq->msg_type == DR_CPU_FORCE_UNCONFIG)
dr_cpu_check_cpus(rq_cpus, count, rs_stat);
/* [un]configure each of the CPUs */
for (idx = 0; idx < count; idx++) {
if (dr_rs[idx].status != DRCTL_STATUS_ALLOW ||
rs_stat[idx].result == DR_CPU_RES_BLOCKED) {
result = DR_CPU_RES_FAILURE;
status = fail_status;
} else {
result = (*f)(rq_cpus[idx], &status, force);
}
/* save off results of the configure */
rs_stat[idx].cpuid = rq_cpus[idx];
rs_stat[idx].result = result;
rs_stat[idx].status = status;
/*
* Convert any string offset from being relative to
* the start of the drctl response to being relative
* to the start of the response sent to our caller.
*/
if (dr_rs[idx].offset != 0)
rs_stat[idx].string_off = (uint32_t)dr_rs[idx].offset -
dr_rq_len + (rs_len - rs_str_len);
/* save result for _fini() reusing _init msg memory */
dr_rq[idx].status = (status == fail_status) ?
DRCTL_STATUS_CONFIG_FAILURE : DRCTL_STATUS_CONFIG_SUCCESS;
DR_DBG_CPU("%s: cpuid %d status %d result %d off %d",
me, rq_cpus[idx], dr_rq[idx].status,
result, rs_stat[idx].string_off);
}
/* copy the strings (if any) from drctl resp. into resp. for caller */
dr_rs_str = (caddr_t)dr_rs + dr_rq_len;
rs_str = (caddr_t)rs + rs_len - rs_str_len;
bcopy(dr_rs_str, rs_str, rs_str_len);
rv = drctl_config_fini(&dr_rs_ck, dr_rq, count);
if (rv != 0)
cmn_err(CE_CONT,
"?%s: drctl_config_fini returned: %d\n", me, rv);
kmem_free(dr_rs, dr_rs_len);
kmem_free(dr_rq, dr_rq_len);
*resp = rs;
*resp_len = rs_len;
dr_generate_event(DR_TYPE_CPU, SE_HINT_INSERT);
return (0);
}
static void
dr_cpu_check_cpus(uint32_t *cpuids, int ncpus, dr_cpu_stat_t *stat)
{
int idx;
kthread_t *tp;
proc_t *pp;
DR_DBG_CPU("dr_cpu_check_cpus...\n");
mutex_enter(&cpu_lock);
/* process each cpu that is part of the request */
for (idx = 0; idx < ncpus; idx++) {
if (cpu_get(cpuids[idx]) == NULL)
continue;
mutex_enter(&pidlock);
/*
* Walk the active processes, checking if each
* thread belonging to the process is bound.
*/
for (pp = practive; pp != NULL; pp = pp->p_next) {
mutex_enter(&pp->p_lock);
tp = pp->p_tlist;
if (tp == NULL || (pp->p_flag & SSYS)) {
mutex_exit(&pp->p_lock);
continue;
}
do {
if (tp->t_bind_cpu != cpuids[idx])
continue;
DR_DBG_CPU("thread(s) bound to cpu %d\n",
cpuids[idx]);
stat[idx].cpuid = cpuids[idx];
stat[idx].result = DR_CPU_RES_BLOCKED;
stat[idx].status = DR_CPU_STAT_CONFIGURED;
break;
} while ((tp = tp->t_forw) != pp->p_tlist);
mutex_exit(&pp->p_lock);
}
mutex_exit(&pidlock);
}
mutex_exit(&cpu_lock);
}
/*
* Do not modify result buffer or length on error.
*/
static int
dr_cpu_list_status(dr_cpu_hdr_t *req, dr_cpu_hdr_t **resp, int *resp_len)
{
int idx;
int result;
int status;
int rlen;
uint32_t *cpuids;
dr_cpu_hdr_t *rp;
dr_cpu_stat_t *stat;
md_t *mdp = NULL;
int num_nodes;
int listsz;
mde_cookie_t *listp = NULL;
mde_cookie_t cpunode;
boolean_t walk_md = B_FALSE;
/* the incoming array of cpuids to configure */
cpuids = (uint32_t *)((caddr_t)req + sizeof (dr_cpu_hdr_t));
/* allocate a response message */
rlen = sizeof (dr_cpu_hdr_t);
rlen += req->num_records * sizeof (dr_cpu_stat_t);
rp = kmem_zalloc(rlen, KM_SLEEP);
/* fill in the known data */
rp->req_num = req->req_num;
rp->msg_type = DR_CPU_STATUS;
rp->num_records = req->num_records;
/* stat array for the response */
stat = (dr_cpu_stat_t *)((caddr_t)rp + sizeof (dr_cpu_hdr_t));
/* get the status for each of the CPUs */
for (idx = 0; idx < req->num_records; idx++) {
result = dr_cpu_status(cpuids[idx], &status);
if (result == DR_CPU_RES_FAILURE)
walk_md = B_TRUE;
/* save off results of the status */
stat[idx].cpuid = cpuids[idx];
stat[idx].result = result;
stat[idx].status = status;
}
if (walk_md == B_FALSE)
goto done;
/*
* At least one of the cpus did not have a CPU
* structure. So, consult the MD to determine if
* they are present.
*/
if ((mdp = md_get_handle()) == NULL) {
DR_DBG_CPU("unable to initialize MD\n");
goto done;
}
num_nodes = md_node_count(mdp);
ASSERT(num_nodes > 0);
listsz = num_nodes * sizeof (mde_cookie_t);
listp = kmem_zalloc(listsz, KM_SLEEP);
for (idx = 0; idx < req->num_records; idx++) {
if (stat[idx].result != DR_CPU_RES_FAILURE)
continue;
/* check the MD for the current cpuid */
cpunode = dr_cpu_find_node_md(stat[idx].cpuid, mdp, listp);
stat[idx].result = DR_CPU_RES_OK;
if (cpunode == MDE_INVAL_ELEM_COOKIE) {
stat[idx].status = DR_CPU_STAT_NOT_PRESENT;
} else {
stat[idx].status = DR_CPU_STAT_UNCONFIGURED;
}
}
kmem_free(listp, listsz);
(void) md_fini_handle(mdp);
done:
*resp = rp;
*resp_len = rlen;
return (0);
}
static int
dr_cpu_configure(processorid_t cpuid, int *status, boolean_t force)
{
_NOTE(ARGUNUSED(force))
struct cpu *cp;
int rv = 0;
DR_DBG_CPU("dr_cpu_configure...\n");
/*
* Build device tree node for the CPU
*/
if ((rv = dr_cpu_probe(cpuid)) != 0) {
DR_DBG_CPU("failed to probe CPU %d (%d)\n", cpuid, rv);
if (rv == EINVAL) {
*status = DR_CPU_STAT_NOT_PRESENT;
return (DR_CPU_RES_NOT_IN_MD);
}
*status = DR_CPU_STAT_UNCONFIGURED;
return (DR_CPU_RES_FAILURE);
}
mutex_enter(&cpu_lock);
/*
* Configure the CPU
*/
if ((cp = cpu_get(cpuid)) == NULL) {
if ((rv = cpu_configure(cpuid)) != 0) {
DR_DBG_CPU("failed to configure CPU %d (%d)\n",
cpuid, rv);
rv = DR_CPU_RES_FAILURE;
*status = DR_CPU_STAT_UNCONFIGURED;
goto done;
}
DR_DBG_CPU("CPU %d configured\n", cpuid);
/* CPU struct should exist now */
cp = cpu_get(cpuid);
}
ASSERT(cp);
/*
* Power on the CPU. In sun4v, this brings the stopped
* CPU into the guest from the Hypervisor.
*/
if (cpu_is_poweredoff(cp)) {
if ((rv = cpu_poweron(cp)) != 0) {
DR_DBG_CPU("failed to power on CPU %d (%d)\n",
cpuid, rv);
rv = DR_CPU_RES_FAILURE;
*status = DR_CPU_STAT_UNCONFIGURED;
goto done;
}
DR_DBG_CPU("CPU %d powered on\n", cpuid);
}
/*
* Online the CPU
*/
if (cpu_is_offline(cp)) {
if ((rv = cpu_online(cp)) != 0) {
DR_DBG_CPU("failed to online CPU %d (%d)\n",
cpuid, rv);
rv = DR_CPU_RES_FAILURE;
/* offline is still configured */
*status = DR_CPU_STAT_CONFIGURED;
goto done;
}
DR_DBG_CPU("CPU %d online\n", cpuid);
}
rv = DR_CPU_RES_OK;
*status = DR_CPU_STAT_CONFIGURED;
done:
mutex_exit(&cpu_lock);
return (rv);
}
static int
dr_cpu_unconfigure(processorid_t cpuid, int *status, boolean_t force)
{
struct cpu *cp;
int rv = 0;
int cpu_flags;
DR_DBG_CPU("dr_cpu_unconfigure%s...\n", (force) ? " (force)" : "");
mutex_enter(&cpu_lock);
cp = cpu_get(cpuid);
if (cp == NULL) {
/*
* The OS CPU structures are already torn down,
* Attempt to deprobe the CPU to make sure the
* device tree is up to date.
*/
if (dr_cpu_deprobe(cpuid) != 0) {
DR_DBG_CPU("failed to deprobe CPU %d\n", cpuid);
rv = DR_CPU_RES_FAILURE;
*status = DR_CPU_STAT_UNCONFIGURED;
goto done;
}
goto done;
}
ASSERT(cp->cpu_id == cpuid);
/*
* Offline the CPU
*/
if (cpu_is_active(cp)) {
/* set the force flag correctly */
cpu_flags = (force) ? CPU_FORCED : 0;
if ((rv = cpu_offline(cp, cpu_flags)) != 0) {
DR_DBG_CPU("failed to offline CPU %d (%d)\n",
cpuid, rv);
rv = DR_CPU_RES_FAILURE;
*status = DR_CPU_STAT_CONFIGURED;
goto done;
}
DR_DBG_CPU("CPU %d offline\n", cpuid);
}
/*
* Power off the CPU. In sun4v, this puts the running
* CPU into the stopped state in the Hypervisor.
*/
if (!cpu_is_poweredoff(cp)) {
if ((rv = cpu_poweroff(cp)) != 0) {
DR_DBG_CPU("failed to power off CPU %d (%d)\n",
cpuid, rv);
rv = DR_CPU_RES_FAILURE;
*status = DR_CPU_STAT_CONFIGURED;
goto done;
}
DR_DBG_CPU("CPU %d powered off\n", cpuid);
}
/*
* Unconfigure the CPU
*/
if ((rv = cpu_unconfigure(cpuid)) != 0) {
DR_DBG_CPU("failed to unconfigure CPU %d (%d)\n", cpuid, rv);
rv = DR_CPU_RES_FAILURE;
*status = DR_CPU_STAT_UNCONFIGURED;
goto done;
}
DR_DBG_CPU("CPU %d unconfigured\n", cpuid);
/*
* Tear down device tree.
*/
if ((rv = dr_cpu_deprobe(cpuid)) != 0) {
DR_DBG_CPU("failed to deprobe CPU %d (%d)\n", cpuid, rv);
rv = DR_CPU_RES_FAILURE;
*status = DR_CPU_STAT_UNCONFIGURED;
goto done;
}
rv = DR_CPU_RES_OK;
*status = DR_CPU_STAT_UNCONFIGURED;
done:
mutex_exit(&cpu_lock);
return (rv);
}
/*
* Determine the state of a CPU. If the CPU structure is not present,
* it does not attempt to determine whether or not the CPU is in the
* MD. It is more efficient to do this at the higher level for all
* CPUs since it may not even be necessary to search the MD if all
* the CPUs are accounted for. Returns DR_CPU_RES_OK if the CPU
* structure is present, and DR_CPU_RES_FAILURE otherwise as a signal
* that an MD walk is necessary.
*/
static int
dr_cpu_status(processorid_t cpuid, int *status)
{
int rv;
struct cpu *cp;
DR_DBG_CPU("dr_cpu_status...\n");
mutex_enter(&cpu_lock);
if ((cp = cpu_get(cpuid)) == NULL) {
/* need to check if cpu is in the MD */
rv = DR_CPU_RES_FAILURE;
goto done;
}
if (cpu_is_poweredoff(cp)) {
/*
* The CPU is powered off, so it is considered
* unconfigured from the service entity point of
* view. The CPU is not available to the system
* and intervention by the service entity would
* be required to change that.
*/
*status = DR_CPU_STAT_UNCONFIGURED;
} else {
/*
* The CPU is powered on, so it is considered
* configured from the service entity point of
* view. It is available for use by the system
* and service entities are not concerned about
* the operational status (offline, online, etc.)
* of the CPU in terms of DR.
*/
*status = DR_CPU_STAT_CONFIGURED;
}
rv = DR_CPU_RES_OK;
done:
mutex_exit(&cpu_lock);
return (rv);
}
typedef struct {
md_t *mdp;
mde_cookie_t cpunode;
dev_info_t *dip;
} cb_arg_t;
#define STR_ARR_LEN 5
static int
new_cpu_node(dev_info_t *new_node, void *arg, uint_t flags)
{
_NOTE(ARGUNUSED(flags))
char *compat;
uint64_t freq;
uint64_t cpuid = 0;
int regbuf[4];
int len = 0;
cb_arg_t *cba;
char *str_arr[STR_ARR_LEN];
char *curr;
int idx = 0;
DR_DBG_CPU("new_cpu_node...\n");
cba = (cb_arg_t *)arg;
/*
* Add 'name' property
*/
if (ndi_prop_update_string(DDI_DEV_T_NONE, new_node,
"name", "cpu") != DDI_SUCCESS) {
DR_DBG_CPU("new_cpu_node: failed to create 'name' property\n");
return (DDI_WALK_ERROR);
}
/*
* Add 'compatible' property
*/
if (md_get_prop_data(cba->mdp, cba->cpunode, "compatible",
(uint8_t **)(&compat), &len)) {
DR_DBG_CPU("new_cpu_node: failed to read 'compatible' property "
"from MD\n");
return (DDI_WALK_ERROR);
}
DR_DBG_CPU("'compatible' len is %d\n", len);
/* parse the MD string array */
curr = compat;
while (curr < (compat + len)) {
DR_DBG_CPU("adding '%s' to 'compatible' property\n", curr);
str_arr[idx++] = curr;
curr += strlen(curr) + 1;
if (idx == STR_ARR_LEN) {
DR_DBG_CPU("exceeded str_arr len (%d)\n", STR_ARR_LEN);
break;
}
}
if (ndi_prop_update_string_array(DDI_DEV_T_NONE, new_node,
"compatible", str_arr, idx) != DDI_SUCCESS) {
DR_DBG_CPU("new_cpu_node: failed to create 'compatible' "
"property\n");
return (DDI_WALK_ERROR);
}
/*
* Add 'device_type' property
*/
if (ndi_prop_update_string(DDI_DEV_T_NONE, new_node,
"device_type", "cpu") != DDI_SUCCESS) {
DR_DBG_CPU("new_cpu_node: failed to create 'device_type' "
"property\n");
return (DDI_WALK_ERROR);
}
/*
* Add 'clock-frequency' property
*/
if (md_get_prop_val(cba->mdp, cba->cpunode, "clock-frequency", &freq)) {
DR_DBG_CPU("new_cpu_node: failed to read 'clock-frequency' "
"property from MD\n");
return (DDI_WALK_ERROR);
}
if (ndi_prop_update_int(DDI_DEV_T_NONE, new_node,
"clock-frequency", freq) != DDI_SUCCESS) {
DR_DBG_CPU("new_cpu_node: failed to create 'clock-frequency' "
"property\n");
return (DDI_WALK_ERROR);
}
/*
* Add 'reg' (cpuid) property
*/
if (md_get_prop_val(cba->mdp, cba->cpunode, "id", &cpuid)) {
DR_DBG_CPU("new_cpu_node: failed to read 'id' property "
"from MD\n");
return (DDI_WALK_ERROR);
}
DR_DBG_CPU("new cpuid=0x%lx\n", cpuid);
bzero(regbuf, 4 * sizeof (int));
regbuf[0] = 0xc0000000 | cpuid;
if (ndi_prop_update_int_array(DDI_DEV_T_NONE, new_node,
"reg", regbuf, 4) != DDI_SUCCESS) {
DR_DBG_CPU("new_cpu_node: failed to create 'reg' property\n");
return (DDI_WALK_ERROR);
}
cba->dip = new_node;
return (DDI_WALK_TERMINATE);
}
static int
dr_cpu_probe(processorid_t cpuid)
{
dev_info_t *pdip;
dev_info_t *dip;
devi_branch_t br;
md_t *mdp = NULL;
int num_nodes;
int rv = 0;
int listsz;
mde_cookie_t *listp = NULL;
cb_arg_t cba;
mde_cookie_t cpunode;
if ((dip = dr_cpu_find_node(cpuid)) != NULL) {
/* nothing to do */
e_ddi_branch_rele(dip);
return (0);
}
if ((mdp = md_get_handle()) == NULL) {
DR_DBG_CPU("unable to initialize machine description\n");
return (-1);
}
num_nodes = md_node_count(mdp);
ASSERT(num_nodes > 0);
listsz = num_nodes * sizeof (mde_cookie_t);
listp = kmem_zalloc(listsz, KM_SLEEP);
cpunode = dr_cpu_find_node_md(cpuid, mdp, listp);
if (cpunode == MDE_INVAL_ELEM_COOKIE) {
rv = EINVAL;
goto done;
}
/* pass in MD cookie for CPU */
cba.mdp = mdp;
cba.cpunode = cpunode;
br.arg = (void *)&cba;
br.type = DEVI_BRANCH_SID;
br.create.sid_branch_create = new_cpu_node;
br.devi_branch_callback = NULL;
pdip = ddi_root_node();
if ((rv = e_ddi_branch_create(pdip, &br, NULL, 0))) {
DR_DBG_CPU("e_ddi_branch_create failed: %d\n", rv);
rv = -1;
goto done;
}
DR_DBG_CPU("CPU %d probed\n", cpuid);
rv = 0;
done:
if (listp)
kmem_free(listp, listsz);
if (mdp)
(void) md_fini_handle(mdp);
return (rv);
}
static int
dr_cpu_deprobe(processorid_t cpuid)
{
dev_info_t *fdip = NULL;
dev_info_t *dip;
if ((dip = dr_cpu_find_node(cpuid)) == NULL) {
DR_DBG_CPU("cpuid %d already deprobed\n", cpuid);
return (0);
}
ASSERT(e_ddi_branch_held(dip));
if (e_ddi_branch_destroy(dip, &fdip, 0)) {
char *path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
/*
* If non-NULL, fdip is held and must be released.
*/
if (fdip != NULL) {
(void) ddi_pathname(fdip, path);
ddi_release_devi(fdip);
} else {
(void) ddi_pathname(dip, path);
}
cmn_err(CE_NOTE, "node removal failed: %s (%p)",
path, (fdip) ? (void *)fdip : (void *)dip);
kmem_free(path, MAXPATHLEN);
return (-1);
}
DR_DBG_CPU("CPU %d deprobed\n", cpuid);
return (0);
}
typedef struct {
processorid_t cpuid;
dev_info_t *dip;
} dr_search_arg_t;
static int
dr_cpu_check_node(dev_info_t *dip, void *arg)
{
char *name;
processorid_t cpuid;
dr_search_arg_t *sarg = (dr_search_arg_t *)arg;
if (dip == ddi_root_node()) {
return (DDI_WALK_CONTINUE);
}
name = ddi_node_name(dip);
if (strcmp(name, "cpu") != 0) {
return (DDI_WALK_PRUNECHILD);
}
cpuid = ddi_prop_get_int(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
"reg", -1);
cpuid = PROM_CFGHDL_TO_CPUID(cpuid);
DR_DBG_CPU("found cpuid=0x%x, looking for 0x%x\n", cpuid, sarg->cpuid);
if (cpuid == sarg->cpuid) {
DR_DBG_CPU("matching node\n");
/* matching node must be returned held */
if (!e_ddi_branch_held(dip))
e_ddi_branch_hold(dip);
sarg->dip = dip;
return (DDI_WALK_TERMINATE);
}
return (DDI_WALK_CONTINUE);
}
/*
* Walk the device tree to find the dip corresponding to the cpuid
* passed in. If present, the dip is returned held. The caller must
* release the hold on the dip once it is no longer required. If no
* matching node if found, NULL is returned.
*/
static dev_info_t *
dr_cpu_find_node(processorid_t cpuid)
{
dr_search_arg_t arg;
DR_DBG_CPU("dr_cpu_find_node...\n");
arg.cpuid = cpuid;
arg.dip = NULL;
ddi_walk_devs(ddi_root_node(), dr_cpu_check_node, &arg);
ASSERT((arg.dip == NULL) || (e_ddi_branch_held(arg.dip)));
return ((arg.dip) ? arg.dip : NULL);
}
/*
* Look up a particular cpuid in the MD. Returns the mde_cookie_t
* representing that CPU if present, and MDE_INVAL_ELEM_COOKIE
* otherwise. It is assumed the scratch array has already been
* allocated so that it can accommodate the worst case scenario,
* every node in the MD.
*/
static mde_cookie_t
dr_cpu_find_node_md(processorid_t cpuid, md_t *mdp, mde_cookie_t *listp)
{
int idx;
int nnodes;
mde_cookie_t rootnode;
uint64_t cpuid_prop;
mde_cookie_t result = MDE_INVAL_ELEM_COOKIE;
rootnode = md_root_node(mdp);
ASSERT(rootnode != MDE_INVAL_ELEM_COOKIE);
/*
* Scan the DAG for all the CPU nodes
*/
nnodes = md_scan_dag(mdp, rootnode, md_find_name(mdp, "cpu"),
md_find_name(mdp, "fwd"), listp);
if (nnodes < 0) {
DR_DBG_CPU("Scan for CPUs failed\n");
return (result);
}
DR_DBG_CPU("dr_cpu_find_node_md: found %d CPUs in the MD\n", nnodes);
/*
* Find the CPU of interest
*/
for (idx = 0; idx < nnodes; idx++) {
if (md_get_prop_val(mdp, listp[idx], "id", &cpuid_prop)) {
DR_DBG_CPU("Missing 'id' property for CPU node %d\n",
idx);
break;
}
if (cpuid_prop == cpuid) {
/* found a match */
DR_DBG_CPU("dr_cpu_find_node_md: found CPU %d "
"in MD\n", cpuid);
result = listp[idx];
break;
}
}
if (result == MDE_INVAL_ELEM_COOKIE) {
DR_DBG_CPU("CPU %d not in MD\n", cpuid);
}
return (result);
}