iosram.c revision d3d50737e566cade9a08d73d2af95105ac7cd960
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2009 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* IOSRAM leaf driver to SBBC nexus driver. This driver is used
* by Starcat Domain SW to read/write from/to the IO sram.
*/
#include <sys/types.h>
#include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/ddi_impldefs.h>
#include <sys/obpdefs.h>
#include <sys/promif.h>
#include <sys/prom_plat.h>
#include <sys/cmn_err.h>
#include <sys/conf.h> /* req. by dev_ops flags MTSAFE etc. */
#include <sys/modctl.h> /* for modldrv */
#include <sys/stat.h> /* ddi_create_minor_node S_IFCHR */
#include <sys/errno.h>
#include <sys/kmem.h>
#include <sys/kstat.h>
#include <sys/debug.h>
#include <sys/axq.h>
#include <sys/iosramreg.h>
#include <sys/iosramio.h>
#include <sys/iosramvar.h>
#if defined(DEBUG)
int iosram_debug = 0;
static void iosram_dprintf(const char *fmt, ...);
#define DPRINTF(level, arg) \
{ if (iosram_debug >= level) iosram_dprintf arg; }
#else /* !DEBUG */
#define DPRINTF(level, arg)
#endif /* !DEBUG */
/*
* IOSRAM module global state
*/
static void *iosramsoft_statep; /* IOSRAM state pointer */
static kmutex_t iosram_mutex; /* mutex lock */
static iosram_chunk_t *chunks = NULL; /* array of TOC entries */
static int nchunks = 0; /* # of TOC entries */
static iosram_chunk_t *iosram_hashtab[IOSRAM_HASHSZ]; /* key hash table */
static kcondvar_t iosram_tswitch_wait; /* tunnel switch wait cv */
static int iosram_tswitch_wakeup = 0; /* flag indicationg one or */
/* more threads waiting on */
/* iosram_tswitch_wait cv */
static int iosram_tswitch_active = 0; /* tunnel switch active flag */
static int iosram_tswitch_aborted = 0; /* tunnel switch abort flag */
static clock_t iosram_tswitch_tstamp = 0; /* lbolt of last tswitch end */
static kcondvar_t iosram_rw_wait; /* read/write wait cv */
static int iosram_rw_wakeup = 0; /* flag indicationg one or */
/* more threads waiting on */
/* iosram_rw_wait cv */
static int iosram_rw_active = 0; /* # threads accessing IOSRAM */
#if defined(DEBUG)
static int iosram_rw_active_max = 0;
#endif
static struct iosramsoft *iosram_new_master = NULL; /* new tunnel target */
static struct iosramsoft *iosram_master = NULL; /* master tunnel */
static struct iosramsoft *iosram_instances = NULL; /* list of softstates */
static ddi_acc_handle_t iosram_handle = NULL; /* master IOSRAM map handle */
static void (*iosram_hdrchange_handler)() = NULL;
#if IOSRAM_STATS
static struct iosram_stat iosram_stats; /* IOSRAM statistics */
static void iosram_print_stats(); /* forward declaration */
#endif /* IOSRAM_STATS */
#if IOSRAM_LOG
kmutex_t iosram_log_mutex;
int iosram_log_level = 1;
int iosram_log_print = 0; /* print log when recorded */
uint32_t iosram_logseq;
iosram_log_t iosram_logbuf[IOSRAM_MAXLOG];
static void iosram_print_log(int cnt); /* forward declaration */
#endif /* IOSRAM_LOG */
/* driver entry point fn definitions */
static int iosram_open(dev_t *, int, int, cred_t *);
static int iosram_close(dev_t, int, int, cred_t *);
static int iosram_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
/* configuration entry point fn definitions */
static int iosram_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
static int iosram_attach(dev_info_t *, ddi_attach_cmd_t);
static int iosram_detach(dev_info_t *, ddi_detach_cmd_t);
/* forward declaractions */
static iosram_chunk_t *iosram_find_chunk(uint32_t key);
static void iosram_set_master(struct iosramsoft *softp);
static int iosram_is_chosen(struct iosramsoft *softp);
static int iosram_tunnel_capable(struct iosramsoft *softp);
static int iosram_read_toc(struct iosramsoft *softp);
static void iosram_init_hashtab(void);
static void iosram_update_addrs(struct iosramsoft *softp);
static int iosram_setup_map(struct iosramsoft *softp);
static void iosram_remove_map(struct iosramsoft *softp);
static int iosram_add_intr(iosramsoft_t *);
static int iosram_remove_intr(iosramsoft_t *);
static void iosram_add_instance(struct iosramsoft *softp);
static void iosram_remove_instance(int instance);
static int iosram_switch_tunnel(iosramsoft_t *softp);
static void iosram_abort_tswitch();
#if defined(DEBUG)
/* forward declaractions for debugging */
static int iosram_get_keys(iosram_toc_entry_t *buf, uint32_t *len);
static void iosram_print_cback();
static void iosram_print_state(int);
static void iosram_print_flags();
#endif
/*
* cb_ops
*/
static struct cb_ops iosram_cb_ops = {
iosram_open, /* cb_open */
iosram_close, /* cb_close */
nodev, /* cb_strategy */
nodev, /* cb_print */
nodev, /* cb_dump */
nodev, /* cb_read */
nodev, /* cb_write */
iosram_ioctl, /* cb_ioctl */
nodev, /* cb_devmap */
nodev, /* cb_mmap */
nodev, /* cb_segmap */
nochpoll, /* cb_chpoll */
ddi_prop_op, /* cb_prop_op */
NULL, /* cb_stream */
(int)(D_NEW | D_MP | D_HOTPLUG) /* cb_flag */
};
/*
* Declare ops vectors for auto configuration.
*/
struct dev_ops iosram_ops = {
DEVO_REV, /* devo_rev */
0, /* devo_refcnt */
iosram_getinfo, /* devo_getinfo */
nulldev, /* devo_identify */
nulldev, /* devo_probe */
iosram_attach, /* devo_attach */
iosram_detach, /* devo_detach */
nodev, /* devo_reset */
&iosram_cb_ops, /* devo_cb_ops */
(struct bus_ops *)NULL, /* devo_bus_ops */
nulldev, /* devo_power */
ddi_quiesce_not_supported, /* devo_quiesce */
};
/*
* Loadable module support.
*/
extern struct mod_ops mod_driverops;
static struct modldrv iosrammodldrv = {
&mod_driverops, /* type of module - driver */
"IOSRAM Leaf driver",
&iosram_ops,
};
static struct modlinkage iosrammodlinkage = {
MODREV_1,
&iosrammodldrv,
NULL
};
int
_init(void)
{
int error;
int i;
mutex_init(&iosram_mutex, NULL, MUTEX_DRIVER, (void *)NULL);
cv_init(&iosram_tswitch_wait, NULL, CV_DRIVER, NULL);
cv_init(&iosram_rw_wait, NULL, CV_DRIVER, NULL);
#if defined(IOSRAM_LOG)
mutex_init(&iosram_log_mutex, NULL, MUTEX_DRIVER, (void *)NULL);
#endif
DPRINTF(1, ("_init:IOSRAM\n"));
for (i = 0; i < IOSRAM_HASHSZ; i++) {
iosram_hashtab[i] = NULL;
}
if ((error = ddi_soft_state_init(&iosramsoft_statep,
sizeof (struct iosramsoft), 1)) != 0) {
goto failed;
}
if ((error = mod_install(&iosrammodlinkage)) != 0) {
ddi_soft_state_fini(&iosramsoft_statep);
goto failed;
}
IOSRAMLOG(0, "_init:IOSRAM ... error:%d statep:%p\n",
error, iosramsoft_statep, NULL, NULL);
return (error);
failed:
cv_destroy(&iosram_tswitch_wait);
cv_destroy(&iosram_rw_wait);
mutex_destroy(&iosram_mutex);
#if defined(IOSRAM_LOG)
mutex_destroy(&iosram_log_mutex);
#endif
IOSRAMLOG(0, "_init:IOSRAM ... error:%d statep:%p\n",
error, iosramsoft_statep, NULL, NULL);
return (error);
}
int
_fini(void)
{
#ifndef DEBUG
return (EBUSY);
#else /* !DEBUG */
int error;
if ((error = mod_remove(&iosrammodlinkage)) == 0) {
ddi_soft_state_fini(&iosramsoft_statep);
cv_destroy(&iosram_tswitch_wait);
cv_destroy(&iosram_rw_wait);
mutex_destroy(&iosram_mutex);
#if defined(IOSRAM_LOG)
mutex_destroy(&iosram_log_mutex);
#endif
}
DPRINTF(1, ("_fini:IOSRAM error:%d\n", error));
return (error);
#endif /* !DEBUG */
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&iosrammodlinkage, modinfop));
}
static int
iosram_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
{
int instance;
int propval;
int length;
char name[32];
struct iosramsoft *softp;
instance = ddi_get_instance(dip);
DPRINTF(1, ("iosram(%d): attach dip:%p\n", instance));
IOSRAMLOG(1, "ATTACH: dip:%p instance %d ... start\n",
dip, instance, NULL, NULL);
switch (cmd) {
case DDI_ATTACH:
break;
case DDI_RESUME:
if (!(softp = ddi_get_soft_state(iosramsoft_statep,
instance))) {
return (DDI_FAILURE);
}
mutex_enter(&iosram_mutex);
mutex_enter(&softp->intr_mutex);
if (!softp->suspended) {
mutex_exit(&softp->intr_mutex);
mutex_exit(&iosram_mutex);
return (DDI_FAILURE);
}
softp->suspended = 0;
/*
* enable SBBC interrupts if SBBC is mapped in
* restore the value saved during detach
*/
if (softp->sbbc_region) {
ddi_put32(softp->sbbc_handle,
&(softp->sbbc_region->int_enable.reg),
softp->int_enable_sav);
}
/*
* Trigger soft interrupt handler to process any pending
* interrupts.
*/
if (softp->intr_pending && !softp->intr_busy &&
(softp->softintr_id != NULL)) {
ddi_trigger_softintr(softp->softintr_id);
}
mutex_exit(&softp->intr_mutex);
mutex_exit(&iosram_mutex);
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
if (ddi_soft_state_zalloc(iosramsoft_statep, instance) != 0) {
return (DDI_FAILURE);
}
if ((softp = ddi_get_soft_state(iosramsoft_statep, instance)) == NULL) {
return (DDI_FAILURE);
}
softp->dip = dip;
softp->instance = instance;
softp->sbbc_region = NULL;
/*
* If this instance is not tunnel capable, we don't attach it.
*/
if (iosram_tunnel_capable(softp) == 0) {
DPRINTF(1, ("iosram(%d): not tunnel_capable\n", instance));
IOSRAMLOG(1, "ATTACH(%d): not tunnel_capable\n", instance, NULL,
NULL, NULL);
goto attach_fail;
}
/*
* Need to create an "interrupt-priorities" property to define the PIL
* to be used with the interrupt service routine.
*/
if (ddi_getproplen(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
"interrupt-priorities", &length) == DDI_PROP_NOT_FOUND) {
DPRINTF(1, ("iosram(%d): creating interrupt priority property",
instance));
propval = IOSRAM_PIL;
if (ddi_prop_create(DDI_DEV_T_NONE, dip, 0,
"interrupt-priorities", (caddr_t)&propval, sizeof (propval))
!= DDI_PROP_SUCCESS) {
cmn_err(CE_WARN,
"iosram_attach: failed to create property");
goto attach_fail;
}
}
/*
* Get interrupts cookies and initialize per-instance mutexes
*/
if (ddi_get_iblock_cookie(softp->dip, 0, &softp->real_iblk)
!= DDI_SUCCESS) {
IOSRAMLOG(1, "ATTACH(%d): cannot get soft intr cookie\n",
instance, NULL, NULL, NULL);
goto attach_fail;
}
mutex_init(&softp->intr_mutex, NULL, MUTEX_DRIVER,
(void *)softp->real_iblk);
/*
* Add this instance to the iosram_instances list so that it can be used
* for tunnel in future.
*/
mutex_enter(&iosram_mutex);
softp->state = IOSRAM_STATE_INIT;
iosram_add_instance(softp);
/*
* If this is the chosen IOSRAM and there is no master IOSRAM yet, then
* let's set this instance as the master.
*/
if (iosram_master == NULL && iosram_is_chosen(softp)) {
iosram_switch_tunnel(softp);
/*
* XXX Do we need to panic if unable to setup master IOSRAM?
*/
if (iosram_master == NULL) {
cmn_err(CE_WARN,
"iosram(%d): can't setup master tunnel\n",
instance);
softp->state = 0;
iosram_remove_instance(softp->instance);
mutex_exit(&iosram_mutex);
mutex_destroy(&softp->intr_mutex);
goto attach_fail;
}
}
mutex_exit(&iosram_mutex);
/*
* Create minor node
*/
(void) sprintf(name, "iosram%d", instance);
if (ddi_create_minor_node(dip, name, S_IFCHR, instance, NULL, NULL) ==
DDI_FAILURE) {
/*
* Minor node seems to be needed only for debugging purposes.
* Therefore, there is no need to fail this attach request.
* Simply print a message out.
*/
cmn_err(CE_NOTE, "!iosram(%d): can't create minor node\n",
instance);
}
ddi_report_dev(dip);
DPRINTF(1, ("iosram_attach(%d): success.\n", instance));
IOSRAMLOG(1, "ATTACH: dip:%p instance:%d ... success softp:%p\n",
dip, instance, softp, NULL);
return (DDI_SUCCESS);
attach_fail:
DPRINTF(1, ("iosram_attach(%d):failed.\n", instance));
IOSRAMLOG(1, "ATTACH: dip:%p instance:%d ... failed.\n",
dip, instance, NULL, NULL);
ddi_soft_state_free(iosramsoft_statep, instance);
return (DDI_FAILURE);
}
static int
iosram_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
{
int instance;
struct iosramsoft *softp;
instance = ddi_get_instance(dip);
if (!(softp = ddi_get_soft_state(iosramsoft_statep, instance))) {
return (DDI_FAILURE);
}
IOSRAMLOG(1, "DETACH: dip:%p instance %d softp:%p\n",
dip, instance, softp, NULL);
switch (cmd) {
case DDI_DETACH:
break;
case DDI_SUSPEND:
mutex_enter(&iosram_mutex);
mutex_enter(&softp->intr_mutex);
if (softp->suspended) {
mutex_exit(&softp->intr_mutex);
mutex_exit(&iosram_mutex);
return (DDI_FAILURE);
}
softp->suspended = 1;
/*
* Disable SBBC interrupts if SBBC is mapped in
*/
if (softp->sbbc_region) {
/* save current interrupt enable register */
softp->int_enable_sav = ddi_get32(softp->sbbc_handle,
&(softp->sbbc_region->int_enable.reg));
ddi_put32(softp->sbbc_handle,
&(softp->sbbc_region->int_enable.reg), 0x0);
}
mutex_exit(&softp->intr_mutex);
mutex_exit(&iosram_mutex);
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
/*
* Indicate that this instance is being detached so that this instance
* does not become a target for tunnel switch in future.
*/
mutex_enter(&iosram_mutex);
softp->state |= IOSRAM_STATE_DETACH;
/*
* If this instance is currently the master or the target of the tunnel
* switch, then we need to wait and switch tunnel, if necessary.
*/
if (iosram_master == softp || (softp->state & IOSRAM_STATE_TSWITCH)) {
mutex_exit(&iosram_mutex);
iosram_switchfrom(instance);
mutex_enter(&iosram_mutex);
}
/*
* If the tunnel switch is in progress and we are the master or target
* of tunnel relocation, then we can't detach this instance right now.
*/
if (softp->state & IOSRAM_STATE_TSWITCH) {
softp->state &= ~IOSRAM_STATE_DETACH;
mutex_exit(&iosram_mutex);
return (DDI_FAILURE);
}
/*
* We can't allow master IOSRAM to be detached as we won't be able to
* communicate otherwise.
*/
if (iosram_master == softp) {
softp->state &= ~IOSRAM_STATE_DETACH;
mutex_exit(&iosram_mutex);
return (DDI_FAILURE);
}
/*
* Now remove our instance from the iosram_instances list.
*/
iosram_remove_instance(instance);
mutex_exit(&iosram_mutex);
/*
* Instances should only ever be mapped if they are the master and/or
* participating in a tunnel switch. Neither should be the case here.
*/
ASSERT((softp->state & IOSRAM_STATE_MAPPED) == 0);
/*
* Destroy per-instance mutexes
*/
mutex_destroy(&softp->intr_mutex);
ddi_remove_minor_node(dip, NULL);
/*
* Finally remove our soft state structure
*/
ddi_soft_state_free(iosramsoft_statep, instance);
return (DDI_SUCCESS);
}
/* ARGSUSED0 */
static int
iosram_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg,
void **result)
{
dev_t dev = (dev_t)arg;
struct iosramsoft *softp;
int instance, ret;
instance = getminor(dev);
IOSRAMLOG(2, "GETINFO: dip:%x instance %d dev:%x infocmd:%x\n",
dip, instance, dev, infocmd);
switch (infocmd) {
case DDI_INFO_DEVT2DEVINFO:
softp = ddi_get_soft_state(iosramsoft_statep, instance);
if (softp == NULL) {
*result = NULL;
ret = DDI_FAILURE;
} else {
*result = softp->dip;
ret = DDI_SUCCESS;
}
break;
case DDI_INFO_DEVT2INSTANCE:
*result = (void *)(uintptr_t)instance;
ret = DDI_SUCCESS;
break;
default:
ret = DDI_FAILURE;
break;
}
return (ret);
}
/*ARGSUSED1*/
static int
iosram_open(dev_t *dev, int flag, int otype, cred_t *credp)
{
struct iosramsoft *softp;
int instance;
instance = getminor(*dev);
softp = ddi_get_soft_state(iosramsoft_statep, instance);
if (softp == NULL) {
return (ENXIO);
}
IOSRAMLOG(1, "OPEN: dev:%p otype:%x ... instance:%d softp:%p\n",
*dev, otype, softp->instance, softp);
return (0);
}
/*ARGSUSED1*/
static int
iosram_close(dev_t dev, int flag, int otype, cred_t *credp)
{
struct iosramsoft *softp;
int instance;
instance = getminor(dev);
softp = ddi_get_soft_state(iosramsoft_statep, instance);
if (softp == NULL) {
return (ENXIO);
}
IOSRAMLOG(1, "CLOSE: dev:%p otype:%x ... instance:%d softp:%p\n",
dev, otype, softp->instance, softp);
return (0);
}
int
iosram_rd(uint32_t key, uint32_t off, uint32_t len, caddr_t dptr)
{
iosram_chunk_t *chunkp;
uint32_t chunk_len;
uint8_t *iosramp;
ddi_acc_handle_t handle;
int boff;
union {
uchar_t cbuf[UINT32SZ];
uint32_t data;
} word;
int error = 0;
uint8_t *buf = (uint8_t *)dptr;
/*
* We try to read from the IOSRAM using double word or word access
* provided both "off" and "buf" are (or can be) double word or word
* aligned. Othewise, we try to align the "off" to a word boundary and
* then try to read data from the IOSRAM using word access, but store it
* into buf buffer using byte access.
*
* If the leading/trailing portion of the IOSRAM data is not word
* aligned, it will always be copied using byte access.
*/
IOSRAMLOG(1, "RD: key: 0x%x off:%x len:%x buf:%p\n",
key, off, len, buf);
/*
* Acquire lock and look for the requested chunk. If it exists, make
* sure the requested read is within the chunk's bounds and no tunnel
* switch is active.
*/
mutex_enter(&iosram_mutex);
chunkp = iosram_find_chunk(key);
chunk_len = (chunkp != NULL) ? chunkp->toc_data.len : 0;
if (iosram_master == NULL) {
error = EIO;
} else if (chunkp == NULL) {
error = EINVAL;
} else if ((off >= chunk_len) || (len > chunk_len) ||
((off + len) > chunk_len)) {
error = EMSGSIZE;
} else if (iosram_tswitch_active) {
error = EAGAIN;
}
if (error) {
mutex_exit(&iosram_mutex);
return (error);
}
/*
* Bump reference count to indicate #thread accessing IOSRAM and release
* the lock.
*/
iosram_rw_active++;
#if defined(DEBUG)
if (iosram_rw_active > iosram_rw_active_max) {
iosram_rw_active_max = iosram_rw_active;
}
#endif
mutex_exit(&iosram_mutex);
IOSRAM_STAT(read);
IOSRAM_STAT_ADD(bread, len);
/* Get starting address and map handle */
iosramp = chunkp->basep + off;
handle = iosram_handle;
/*
* Align the off to word boundary and then try reading/writing data
* using double word or word access.
*/
if ((boff = ((uintptr_t)iosramp & (UINT32SZ - 1))) != 0) {
int cnt = UINT32SZ - boff;
if (cnt > len) {
cnt = len;
}
IOSRAMLOG(2,
"RD: align rep_get8(buf:%p sramp:%p cnt:%x) len:%x\n",
buf, iosramp, cnt, len);
ddi_rep_get8(handle, buf, iosramp, cnt, DDI_DEV_AUTOINCR);
buf += cnt;
iosramp += cnt;
len -= cnt;
}
if ((len >= UINT64SZ) &&
((((uintptr_t)iosramp | (uintptr_t)buf) & (UINT64SZ - 1)) == 0)) {
/*
* Both source and destination are double word aligned
*/
int cnt = len/UINT64SZ;
IOSRAMLOG(2,
"RD: rep_get64(buf:%p sramp:%p cnt:%x) len:%x\n",
buf, iosramp, cnt, len);
ddi_rep_get64(handle, (uint64_t *)buf, (uint64_t *)iosramp,
cnt, DDI_DEV_AUTOINCR);
iosramp += cnt * UINT64SZ;
buf += cnt * UINT64SZ;
len -= cnt * UINT64SZ;
/*
* read remaining data using word and byte access
*/
if (len >= UINT32SZ) {
IOSRAMLOG(2,
"RD: get32(buf:%p sramp:%p) len:%x\n",
buf, iosramp, len, NULL);
*(uint32_t *)buf = ddi_get32(handle,
(uint32_t *)iosramp);
iosramp += UINT32SZ;
buf += UINT32SZ;
len -= UINT32SZ;
}
if (len != 0) {
ddi_rep_get8(handle, buf, iosramp, len,
DDI_DEV_AUTOINCR);
}
} else if ((len >= UINT32SZ) &&
((((uintptr_t)iosramp | (uintptr_t)buf) & (UINT32SZ - 1)) == 0)) {
/*
* Both source and destination are word aligned
*/
int cnt = len/UINT32SZ;
IOSRAMLOG(2,
"RD: rep_get32(buf:%p sramp:%p cnt:%x) len:%x\n",
buf, iosramp, cnt, len);
ddi_rep_get32(handle, (uint32_t *)buf, (uint32_t *)iosramp,
cnt, DDI_DEV_AUTOINCR);
iosramp += cnt * UINT32SZ;
buf += cnt * UINT32SZ;
len -= cnt * UINT32SZ;
/*
* copy the remainder using byte access
*/
if (len != 0) {
ddi_rep_get8(handle, buf, iosramp, len,
DDI_DEV_AUTOINCR);
}
} else if (len != 0) {
/*
* We know that the "off" (i.e. iosramp) is at least word
* aligned. We need to read IOSRAM word at a time and copy it
* byte at a time.
*/
ASSERT(((uintptr_t)iosramp & (UINT32SZ - 1)) == 0);
IOSRAMLOG(2,
"RD: unaligned get32(buf:%p sramp:%p) len:%x\n",
buf, iosramp, len, NULL);
for (; len >= UINT32SZ; len -= UINT32SZ, iosramp += UINT32SZ) {
word.data = ddi_get32(handle, (uint32_t *)iosramp);
*buf++ = word.cbuf[0];
*buf++ = word.cbuf[1];
*buf++ = word.cbuf[2];
*buf++ = word.cbuf[3];
}
/*
* copy the remaining data using byte access
*/
if (len != 0) {
ddi_rep_get8(handle, buf, iosramp, len,
DDI_DEV_AUTOINCR);
}
}
/*
* Reacquire mutex lock, decrement refcnt and if refcnt is 0 and any
* threads are waiting for r/w activity to complete, wake them up.
*/
mutex_enter(&iosram_mutex);
ASSERT(iosram_rw_active > 0);
if ((--iosram_rw_active == 0) && iosram_rw_wakeup) {
iosram_rw_wakeup = 0;
cv_broadcast(&iosram_rw_wait);
}
mutex_exit(&iosram_mutex);
return (error);
}
/*
* _iosram_write(key, off, len, dptr, force)
* Internal common routine to write to the IOSRAM.
*/
static int
_iosram_write(uint32_t key, uint32_t off, uint32_t len, caddr_t dptr, int force)
{
iosram_chunk_t *chunkp;
uint32_t chunk_len;
uint8_t *iosramp;
ddi_acc_handle_t handle;
int boff;
union {
uint8_t cbuf[UINT32SZ];
uint32_t data;
} word;
int error = 0;
uint8_t *buf = (uint8_t *)dptr;
/*
* We try to write to the IOSRAM using double word or word access
* provided both "off" and "buf" are (or can be) double word or word
* aligned. Othewise, we try to align the "off" to a word boundary and
* then try to write data to the IOSRAM using word access, but read data
* from the buf buffer using byte access.
*
* If the leading/trailing portion of the IOSRAM data is not word
* aligned, it will always be written using byte access.
*/
IOSRAMLOG(1, "WR: key: 0x%x off:%x len:%x buf:%p\n",
key, off, len, buf);
/*
* Acquire lock and look for the requested chunk. If it exists, make
* sure the requested write is within the chunk's bounds and no tunnel
* switch is active.
*/
mutex_enter(&iosram_mutex);
chunkp = iosram_find_chunk(key);
chunk_len = (chunkp != NULL) ? chunkp->toc_data.len : 0;
if (iosram_master == NULL) {
error = EIO;
} else if (chunkp == NULL) {
error = EINVAL;
} else if ((off >= chunk_len) || (len > chunk_len) ||
((off+len) > chunk_len)) {
error = EMSGSIZE;
} else if (iosram_tswitch_active && !force) {
error = EAGAIN;
}
if (error) {
mutex_exit(&iosram_mutex);
return (error);
}
/*
* If this is a forced write and there's a tunnel switch in progress,
* abort the switch.
*/
if (iosram_tswitch_active && force) {
cmn_err(CE_NOTE, "!iosram: Aborting tswitch on force_write");
iosram_abort_tswitch();
}
/*
* Bump reference count to indicate #thread accessing IOSRAM
* and release the lock.
*/
iosram_rw_active++;
#if defined(DEBUG)
if (iosram_rw_active > iosram_rw_active_max) {
iosram_rw_active_max = iosram_rw_active;
}
#endif
mutex_exit(&iosram_mutex);
IOSRAM_STAT(write);
IOSRAM_STAT_ADD(bwrite, len);
/* Get starting address and map handle */
iosramp = chunkp->basep + off;
handle = iosram_handle;
/*
* Align the off to word boundary and then try reading/writing
* data using double word or word access.
*/
if ((boff = ((uintptr_t)iosramp & (UINT32SZ - 1))) != 0) {
int cnt = UINT32SZ - boff;
if (cnt > len) {
cnt = len;
}
IOSRAMLOG(2,
"WR: align rep_put8(buf:%p sramp:%p cnt:%x) len:%x\n",
buf, iosramp, cnt, len);
ddi_rep_put8(handle, buf, iosramp, cnt, DDI_DEV_AUTOINCR);
buf += cnt;
iosramp += cnt;
len -= cnt;
}
if ((len >= UINT64SZ) &&
((((uintptr_t)iosramp | (uintptr_t)buf) & (UINT64SZ - 1)) == 0)) {
/*
* Both source and destination are double word aligned
*/
int cnt = len/UINT64SZ;
IOSRAMLOG(2,
"WR: rep_put64(buf:%p sramp:%p cnt:%x) len:%x\n",
buf, iosramp, cnt, len);
ddi_rep_put64(handle, (uint64_t *)buf, (uint64_t *)iosramp,
cnt, DDI_DEV_AUTOINCR);
iosramp += cnt * UINT64SZ;
buf += cnt * UINT64SZ;
len -= cnt * UINT64SZ;
/*
* Copy the remaining data using word & byte access
*/
if (len >= UINT32SZ) {
IOSRAMLOG(2,
"WR: put32(buf:%p sramp:%p) len:%x\n", buf, iosramp,
len, NULL);
ddi_put32(handle, (uint32_t *)iosramp,
*(uint32_t *)buf);
iosramp += UINT32SZ;
buf += UINT32SZ;
len -= UINT32SZ;
}
if (len != 0) {
ddi_rep_put8(handle, buf, iosramp, len,
DDI_DEV_AUTOINCR);
}
} else if ((len >= UINT32SZ) &&
((((uintptr_t)iosramp | (uintptr_t)buf) & (UINT32SZ - 1)) == 0)) {
/*
* Both source and destination are word aligned
*/
int cnt = len/UINT32SZ;
IOSRAMLOG(2,
"WR: rep_put32(buf:%p sramp:%p cnt:%x) len:%x\n",
buf, iosramp, cnt, len);
ddi_rep_put32(handle, (uint32_t *)buf, (uint32_t *)iosramp,
cnt, DDI_DEV_AUTOINCR);
iosramp += cnt * UINT32SZ;
buf += cnt * UINT32SZ;
len -= cnt * UINT32SZ;
/*
* copy the remainder using byte access
*/
if (len != 0) {
ddi_rep_put8(handle, buf, iosramp, len,
DDI_DEV_AUTOINCR);
}
} else if (len != 0) {
/*
* We know that the "off" is at least word aligned. We
* need to read data from buf buffer byte at a time, and
* write it to the IOSRAM word at a time.
*/
ASSERT(((uintptr_t)iosramp & (UINT32SZ - 1)) == 0);
IOSRAMLOG(2,
"WR: unaligned put32(buf:%p sramp:%p) len:%x\n",
buf, iosramp, len, NULL);
for (; len >= UINT32SZ; len -= UINT32SZ, iosramp += UINT32SZ) {
word.cbuf[0] = *buf++;
word.cbuf[1] = *buf++;
word.cbuf[2] = *buf++;
word.cbuf[3] = *buf++;
ddi_put32(handle, (uint32_t *)iosramp, word.data);
}
/*
* copy the remaining data using byte access
*/
if (len != 0) {
ddi_rep_put8(handle, buf, iosramp,
len, DDI_DEV_AUTOINCR);
}
}
/*
* Reacquire mutex lock, decrement refcnt and if refcnt is 0 and
* any threads are waiting for r/w activity to complete, wake them up.
*/
mutex_enter(&iosram_mutex);
ASSERT(iosram_rw_active > 0);
if ((--iosram_rw_active == 0) && iosram_rw_wakeup) {
iosram_rw_wakeup = 0;
cv_broadcast(&iosram_rw_wait);
}
mutex_exit(&iosram_mutex);
return (error);
}
int
iosram_force_write(uint32_t key, uint32_t off, uint32_t len, caddr_t dptr)
{
return (_iosram_write(key, off, len, dptr, 1 /* force */));
}
int
iosram_wr(uint32_t key, uint32_t off, uint32_t len, caddr_t dptr)
{
return (_iosram_write(key, off, len, dptr, 0));
}
/*
* iosram_register(key, handler, arg)
* Register a handler and an arg for the specified chunk. This handler
* will be invoked when an interrupt is received from the other side and
* the int_pending flag for the corresponding key is marked
* IOSRAM_INT_TO_DOM.
*/
/* ARGSUSED */
int
iosram_register(uint32_t key, void (*handler)(), void *arg)
{
struct iosram_chunk *chunkp;
int error = 0;
/*
* Acquire lock and look for the requested chunk. If it exists, and no
* other callback is registered, proceed with the registration.
*/
mutex_enter(&iosram_mutex);
chunkp = iosram_find_chunk(key);
if (iosram_master == NULL) {
error = EIO;
} else if (chunkp == NULL) {
error = EINVAL;
} else if (chunkp->cback.handler != NULL) {
error = EBUSY;
} else {
chunkp->cback.busy = 0;
chunkp->cback.unregister = 0;
chunkp->cback.handler = handler;
chunkp->cback.arg = arg;
}
mutex_exit(&iosram_mutex);
IOSRAMLOG(1, "REG: key: 0x%x hdlr:%p arg:%p error:%d\n",
key, handler, arg, error);
return (error);
}
/*
* iosram_unregister()
* Unregister handler associated with the specified chunk.
*/
int
iosram_unregister(uint32_t key)
{
struct iosram_chunk *chunkp;
int error = 0;
/*
* Acquire lock and look for the requested chunk. If it exists and has
* a callback registered, unregister it.
*/
mutex_enter(&iosram_mutex);
chunkp = iosram_find_chunk(key);
if (iosram_master == NULL) {
error = EIO;
} else if (chunkp == NULL) {
error = EINVAL;
} else if (chunkp->cback.busy) {
/*
* If the handler is already busy (being invoked), then we flag
* it so it will be unregistered after the invocation completes.
*/
DPRINTF(1, ("IOSRAM(%d): unregister: delaying unreg k:0x%08x\n",
iosram_master->instance, key));
chunkp->cback.unregister = 1;
} else if (chunkp->cback.handler != NULL) {
chunkp->cback.handler = NULL;
chunkp->cback.arg = NULL;
}
mutex_exit(&iosram_mutex);
IOSRAMLOG(1, "UNREG: key:%x error:%d\n", key, error, NULL, NULL);
return (error);
}
/*
* iosram_get_flag():
* Get data_valid and/or int_pending flags associated with the
* specified key.
*/
int
iosram_get_flag(uint32_t key, uint8_t *data_valid, uint8_t *int_pending)
{
iosram_chunk_t *chunkp;
iosram_flags_t flags;
int error = 0;
/*
* Acquire lock and look for the requested chunk. If it exists, and no
* tunnel switch is in progress, read the chunk's flags.
*/
mutex_enter(&iosram_mutex);
chunkp = iosram_find_chunk(key);
if (iosram_master == NULL) {
error = EIO;
} else if (chunkp == NULL) {
error = EINVAL;
} else if (iosram_tswitch_active) {
error = EAGAIN;
} else {
IOSRAM_STAT(getflag);
/*
* Read the flags
*/
ddi_rep_get8(iosram_handle, (uint8_t *)&flags,
(uint8_t *)(chunkp->flagsp), sizeof (iosram_flags_t),
DDI_DEV_AUTOINCR);
/*
* Get each flag value that the caller is interested in.
*/
if (data_valid != NULL) {
*data_valid = flags.data_valid;
}
if (int_pending != NULL) {
*int_pending = flags.int_pending;
}
}
mutex_exit(&iosram_mutex);
IOSRAMLOG(1, "GetFlag key:%x data_valid:%x int_pending:%x error:%d\n",
key, flags.data_valid, flags.int_pending, error);
return (error);
}
/*
* iosram_set_flag():
* Set data_valid and int_pending flags associated with the specified key.
*/
int
iosram_set_flag(uint32_t key, uint8_t data_valid, uint8_t int_pending)
{
iosram_chunk_t *chunkp;
iosram_flags_t flags;
int error = 0;
/*
* Acquire lock and look for the requested chunk. If it exists, and no
* tunnel switch is in progress, write the chunk's flags.
*/
mutex_enter(&iosram_mutex);
chunkp = iosram_find_chunk(key);
if (iosram_master == NULL) {
error = EIO;
} else if ((chunkp == NULL) ||
((data_valid != IOSRAM_DATA_INVALID) &&
(data_valid != IOSRAM_DATA_VALID)) ||
((int_pending != IOSRAM_INT_NONE) &&
(int_pending != IOSRAM_INT_TO_SSC) &&
(int_pending != IOSRAM_INT_TO_DOM))) {
error = EINVAL;
} else if (iosram_tswitch_active) {
error = EAGAIN;
} else {
IOSRAM_STAT(setflag);
flags.data_valid = data_valid;
flags.int_pending = int_pending;
ddi_rep_put8(iosram_handle, (uint8_t *)&flags,
(uint8_t *)(chunkp->flagsp), sizeof (iosram_flags_t),
DDI_DEV_AUTOINCR);
}
mutex_exit(&iosram_mutex);
IOSRAMLOG(1, "SetFlag key:%x data_valid:%x int_pending:%x error:%d\n",
key, flags.data_valid, flags.int_pending, error);
return (error);
}
/*
* iosram_ctrl()
* This function provides access to a variety of services not available
* through the basic API.
*/
int
iosram_ctrl(uint32_t key, uint32_t cmd, void *arg)
{
struct iosram_chunk *chunkp;
int error = 0;
/*
* Acquire lock and do some argument sanity checking.
*/
mutex_enter(&iosram_mutex);
chunkp = iosram_find_chunk(key);
if (iosram_master == NULL) {
error = EIO;
} else if (chunkp == NULL) {
error = EINVAL;
}
if (error != 0) {
mutex_exit(&iosram_mutex);
return (error);
}
/*
* Arguments seem okay so far, so process the command.
*/
switch (cmd) {
case IOSRAM_CMD_CHUNKLEN:
/*
* Return the length of the chunk indicated by the key.
*/
if (arg == NULL) {
error = EINVAL;
break;
}
*(uint32_t *)arg = chunkp->toc_data.len;
break;
default:
error = ENOTSUP;
break;
}
mutex_exit(&iosram_mutex);
return (error);
}
/*
* iosram_hdr_ctrl()
* This function provides an interface for the Mailbox Protocol
* implementation to use when interacting with the IOSRAM header.
*/
int
iosram_hdr_ctrl(uint32_t cmd, void *arg)
{
int error = 0;
/*
* Acquire lock and do some argument sanity checking.
*/
mutex_enter(&iosram_mutex);
if (iosram_master == NULL) {
error = EIO;
}
if (error != 0) {
mutex_exit(&iosram_mutex);
return (error);
}
switch (cmd) {
case IOSRAM_HDRCMD_GET_SMS_MBOX_VER:
/*
* Return the value of the sms_mbox_version field.
*/
if (arg == NULL) {
error = EINVAL;
break;
}
*(uint32_t *)arg = IOSRAM_GET_HDRFIELD32(iosram_master,
sms_mbox_version);
break;
case IOSRAM_HDRCMD_SET_OS_MBOX_VER:
/*
* Set the value of the os_mbox_version field.
*/
IOSRAM_SET_HDRFIELD32(iosram_master, os_mbox_version,
(uint32_t)(uintptr_t)arg);
IOSRAM_SET_HDRFIELD32(iosram_master, os_change_mask,
IOSRAM_HDRFIELD_OS_MBOX_VER);
iosram_send_intr();
break;
case IOSRAM_HDRCMD_REG_CALLBACK:
iosram_hdrchange_handler = (void (*)())arg;
break;
default:
error = ENOTSUP;
break;
}
mutex_exit(&iosram_mutex);
return (error);
}
/*
* iosram_softintr()
* IOSRAM soft interrupt handler
*/
static uint_t
iosram_softintr(caddr_t arg)
{
uint32_t hdr_changes;
iosramsoft_t *softp = (iosramsoft_t *)arg;
iosram_chunk_t *chunkp;
void (*handler)();
int i;
uint8_t flag;
DPRINTF(1, ("iosram(%d): in iosram_softintr\n", softp->instance));
IOSRAMLOG(2, "SINTR arg/softp:%p pending:%d busy:%d\n",
arg, softp->intr_pending, softp->intr_busy, NULL);
mutex_enter(&iosram_mutex);
mutex_enter(&softp->intr_mutex);
/*
* Do not process interrupt if interrupt handler is already running or
* no interrupts are pending.
*/
if (softp->intr_busy || !softp->intr_pending) {
mutex_exit(&softp->intr_mutex);
mutex_exit(&iosram_mutex);
DPRINTF(1, ("IOSRAM(%d): softintr: busy=%d pending=%d\n",
softp->instance, softp->intr_busy, softp->intr_pending));
return (softp->intr_pending ? DDI_INTR_CLAIMED :
DDI_INTR_UNCLAIMED);
}
/*
* It's possible for the SC to send an interrupt on the new master
* before we are able to set our internal state. If so, we'll retrigger
* soft interrupt right after tunnel switch completion.
*/
if (softp->state & IOSRAM_STATE_TSWITCH) {
mutex_exit(&softp->intr_mutex);
mutex_exit(&iosram_mutex);
DPRINTF(1, ("IOSRAM(%d): softintr: doing switch "
"state=0x%x\n", softp->instance, softp->state));
return (DDI_INTR_CLAIMED);
}
/*
* Do not process interrupt if we are not the master.
*/
if (!(softp->state & IOSRAM_STATE_MASTER)) {
mutex_exit(&softp->intr_mutex);
mutex_exit(&iosram_mutex);
DPRINTF(1, ("IOSRAM(%d): softintr: no master state=0x%x\n ",
softp->instance, softp->state));
return (DDI_INTR_CLAIMED);
}
IOSRAM_STAT(sintr_recv);
/*
* If the driver is suspended, then we should not process any
* interrupts. Instead, we trigger a soft interrupt when the driver
* resumes.
*/
if (softp->suspended) {
mutex_exit(&softp->intr_mutex);
mutex_exit(&iosram_mutex);
DPRINTF(1, ("IOSRAM(%d): softintr: suspended\n",
softp->instance));
return (DDI_INTR_CLAIMED);
}
/*
* Indicate that the IOSRAM interrupt handler is busy. Note that this
* includes incrementing the reader/writer count, since we don't want
* any tunnel switches to start up while we're processing callbacks.
*/
softp->intr_busy = 1;
iosram_rw_active++;
#if defined(DEBUG)
if (iosram_rw_active > iosram_rw_active_max) {
iosram_rw_active_max = iosram_rw_active;
}
#endif
do {
DPRINTF(1, ("IOSRAM(%d): softintr: processing interrupt\n",
softp->instance));
softp->intr_pending = 0;
mutex_exit(&softp->intr_mutex);
/*
* Process changes to the IOSRAM header.
*/
hdr_changes = IOSRAM_GET_HDRFIELD32(iosram_master,
sms_change_mask);
if (hdr_changes != 0) {
int error;
IOSRAM_SET_HDRFIELD32(iosram_master, sms_change_mask,
0);
if (hdr_changes & IOSRAM_HDRFIELD_TOC_INDEX) {
/*
* XXX is it safe to temporarily release the
* iosram_mutex here?
*/
mutex_exit(&iosram_mutex);
error = iosram_read_toc(iosram_master);
mutex_enter(&iosram_mutex);
if (error) {
cmn_err(CE_WARN, "iosram_read_toc: new"
" TOC invalid; using old TOC.");
}
iosram_update_addrs(iosram_master);
}
if (iosram_hdrchange_handler != NULL) {
mutex_exit(&iosram_mutex);
iosram_hdrchange_handler();
mutex_enter(&iosram_mutex);
}
}
/*
* Get data_valid/int_pending flags and generate a callback if
* applicable. For now, we read only those flags for which a
* callback has been registered. We can optimize reading of
* flags by reading them all at once and then process them
* later.
*/
for (i = 0, chunkp = chunks; i < nchunks; i++,
chunkp++) {
#if DEBUG
flag = ddi_get8(iosram_handle,
&(chunkp->flagsp->int_pending));
DPRINTF(1, ("IOSRAM(%d): softintr chunk #%d "
"flag=0x%x handler=%p\n",
softp->instance, i, (int)flag,
chunkp->cback.handler));
#endif
if ((handler = chunkp->cback.handler) == NULL) {
continue;
}
flag = ddi_get8(iosram_handle,
&(chunkp->flagsp->int_pending));
if (flag == IOSRAM_INT_TO_DOM) {
DPRINTF(1,
("IOSRAM(%d): softintr: invoking handler\n",
softp->instance));
IOSRAMLOG(1,
"SINTR invoking hdlr:%p arg:%p index:%d\n",
handler, chunkp->cback.arg, i, NULL);
IOSRAM_STAT(callbacks);
ddi_put8(iosram_handle,
&(chunkp->flagsp->int_pending),
IOSRAM_INT_NONE);
chunkp->cback.busy = 1;
mutex_exit(&iosram_mutex);
(*handler)(chunkp->cback.arg);
mutex_enter(&iosram_mutex);
chunkp->cback.busy = 0;
/*
* If iosram_unregister was called while the
* callback was being invoked, complete the
* unregistration here.
*/
if (chunkp->cback.unregister) {
DPRINTF(1, ("IOSRAM(%d): softintr: "
"delayed unreg k:0x%08x\n",
softp->instance,
chunkp->toc_data.key));
chunkp->cback.handler = NULL;
chunkp->cback.arg = NULL;
chunkp->cback.unregister = 0;
}
}
/*
* If there's a tunnel switch waiting to run, give it
* higher priority than these callbacks by bailing out.
* They'll still be invoked on the new master iosram
* when the tunnel switch is done.
*/
if (iosram_tswitch_active) {
break;
}
}
mutex_enter(&softp->intr_mutex);
} while (softp->intr_pending && !softp->suspended &&
!iosram_tswitch_active);
/*
* Indicate IOSRAM interrupt handler is not BUSY any more
*/
softp->intr_busy = 0;
ASSERT(iosram_rw_active > 0);
if ((--iosram_rw_active == 0) && iosram_rw_wakeup) {
iosram_rw_wakeup = 0;
cv_broadcast(&iosram_rw_wait);
}
mutex_exit(&softp->intr_mutex);
mutex_exit(&iosram_mutex);
DPRINTF(1, ("iosram(%d): softintr exit\n", softp->instance));
return (DDI_INTR_CLAIMED);
}
/*
* iosram_intr()
* IOSRAM real interrupt handler
*/
static uint_t
iosram_intr(caddr_t arg)
{
iosramsoft_t *softp = (iosramsoft_t *)arg;
int result = DDI_INTR_UNCLAIMED;
uint32_t int_status;
DPRINTF(2, ("iosram(%d): in iosram_intr\n", softp->instance));
mutex_enter(&softp->intr_mutex);
if (softp->sbbc_handle == NULL) {
/*
* The SBBC registers region is not mapped in.
* Set the interrupt pending flag here, and process the
* interrupt after the tunnel switch.
*/
DPRINTF(1, ("IOSRAM(%d): iosram_intr: SBBC not mapped\n",
softp->instance));
softp->intr_pending = 1;
mutex_exit(&softp->intr_mutex);
return (DDI_INTR_UNCLAIMED);
}
int_status = ddi_get32(softp->sbbc_handle,
&(softp->sbbc_region->int_status.reg));
DPRINTF(1, ("iosram_intr: int_status = 0x%08x\n", int_status));
if (int_status & IOSRAM_SBBC_INT0) {
result = DDI_INTR_CLAIMED;
DPRINTF(1, ("iosram_intr: int0 detected!\n"));
}
if (int_status & IOSRAM_SBBC_INT1) {
result = DDI_INTR_CLAIMED;
DPRINTF(1, ("iosram_intr: int1 detected!\n"));
}
if (result == DDI_INTR_CLAIMED) {
ddi_put32(softp->sbbc_handle,
&(softp->sbbc_region->int_status.reg), int_status);
int_status = ddi_get32(softp->sbbc_handle,
&(softp->sbbc_region->int_status.reg));
DPRINTF(1, ("iosram_intr: int_status = 0x%08x\n",
int_status));
softp->intr_pending = 1;
/*
* Trigger soft interrupt if not executing and
* not suspended.
*/
if (!softp->intr_busy && !softp->suspended &&
(softp->softintr_id != NULL)) {
DPRINTF(1, ("iosram(%d): trigger softint\n",
softp->instance));
ddi_trigger_softintr(softp->softintr_id);
}
}
IOSRAM_STAT(intr_recv);
mutex_exit(&softp->intr_mutex);
IOSRAMLOG(2, "INTR arg/softp:%p pending:%d busy:%d\n",
arg, softp->intr_pending, softp->intr_busy, NULL);
DPRINTF(1, ("iosram(%d): iosram_intr exit\n", softp->instance));
return (result);
}
/*
* iosram_send_intr()
* Send an interrupt to the SSP side via AXQ driver
*/
int
iosram_send_intr()
{
IOSRAMLOG(1, "SendIntr called\n", NULL, NULL, NULL, NULL);
IOSRAM_STAT(intr_send);
DPRINTF(1, ("iosram iosram_send_intr invoked\n"));
return (axq_cpu2ssc_intr(0));
}
#if defined(DEBUG)
static void
iosram_dummy_cback(void *arg)
{
DPRINTF(1, ("iosram_dummy_cback invoked arg:%p\n", arg));
}
#endif /* DEBUG */
/*ARGSUSED1*/
static int
iosram_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
int *rvalp)
{
struct iosramsoft *softp;
int error = DDI_SUCCESS;
softp = ddi_get_soft_state(iosramsoft_statep, getminor(dev));
if (softp == NULL) {
return (ENXIO);
}
IOSRAMLOG(1, "IOCTL: dev:%p cmd:%x arg:%p ... instance %d\n",
dev, cmd, arg, softp->instance);
switch (cmd) {
#if defined(DEBUG)
case IOSRAM_GET_FLAG:
{
iosram_io_t req;
uint8_t data_valid, int_pending;
if (ddi_copyin((void *)arg, &req, sizeof (req), mode)) {
return (EFAULT);
}
DPRINTF(2, ("IOSRAM_GET_FLAG(key:%x\n", req.key));
req.retval = iosram_get_flag(req.key, &data_valid,
&int_pending);
req.data_valid = (uint32_t)data_valid;
req.int_pending = (uint32_t)int_pending;
if (ddi_copyout(&req, (void *)arg, sizeof (req), mode)) {
DPRINTF(1,
("IOSRAM_GET_FLAG: can't copyout req.retval (%x)",
req.retval));
error = EFAULT;
}
return (error);
}
case IOSRAM_SET_FLAG:
{
iosram_io_t req;
if (ddi_copyin((void *)arg, &req, sizeof (req), mode)) {
return (EFAULT);
}
DPRINTF(2, ("IOSRAM_SET_FLAG(key:%x data_valid:%x "
"int_pending:%x\n", req.key, req.data_valid,
req.int_pending));
req.retval = iosram_set_flag(req.key, req.data_valid,
req.int_pending);
if (ddi_copyout(&req, (void *)arg, sizeof (req), mode)) {
DPRINTF(1, ("IOSRAM_SET_FLAG: can't copyout req.retval"
" (%x)\n", req.retval));
error = EFAULT;
}
return (error);
}
case IOSRAM_RD:
{
caddr_t bufp;
int len;
iosram_io_t req;
if (ddi_copyin((void *)arg, &req, sizeof (req), mode)) {
return (EFAULT);
}
DPRINTF(2, ("IOSRAM_RD(k:%x o:%x len:%x bufp:%p\n", req.key,
req.off, req.len, (void *)(uintptr_t)req.bufp));
len = req.len;
bufp = kmem_alloc(len, KM_SLEEP);
req.retval = iosram_rd(req.key, req.off, req.len, bufp);
if (ddi_copyout(bufp, (void *)(uintptr_t)req.bufp, len, mode)) {
DPRINTF(1, ("IOSRAM_RD: copyout(%p, %p,%x,%x) failed\n",
bufp, (void *)(uintptr_t)req.bufp, len, mode));
error = EFAULT;
} else if (ddi_copyout(&req, (void *)arg, sizeof (req), mode)) {
DPRINTF(1, ("IOSRAM_RD: can't copyout retval (%x)\n",
req.retval));
error = EFAULT;
}
kmem_free(bufp, len);
return (error);
}
case IOSRAM_WR:
{
caddr_t bufp;
iosram_io_t req;
int len;
if (ddi_copyin((void *)arg, &req, sizeof (req), mode)) {
return (EFAULT);
}
DPRINTF(2, ("IOSRAM_WR(k:%x o:%x len:%x bufp:%p\n",
req.key, req.off, req.len, req.bufp));
len = req.len;
bufp = kmem_alloc(len, KM_SLEEP);
if (ddi_copyin((void *)(uintptr_t)req.bufp, bufp, len, mode)) {
error = EFAULT;
} else {
req.retval = iosram_wr(req.key, req.off, req.len,
bufp);
if (ddi_copyout(&req, (void *)arg, sizeof (req),
mode)) {
error = EFAULT;
}
}
kmem_free(bufp, len);
return (error);
}
case IOSRAM_TOC:
{
caddr_t bufp;
int len;
iosram_io_t req;
if (ddi_copyin((void *)arg, &req, sizeof (req), mode)) {
return (EFAULT);
}
DPRINTF(2, ("IOSRAM_TOC (req.bufp:%x req.len:%x) \n",
req.bufp, req.len));
len = req.len;
bufp = kmem_alloc(len, KM_SLEEP);
req.retval = iosram_get_keys((iosram_toc_entry_t *)bufp,
&req.len);
if (ddi_copyout(bufp, (void *)(uintptr_t)req.bufp, req.len,
mode)) {
DPRINTF(1,
("IOSRAM_TOC: copyout(%p, %p,%x,%x) failed\n",
bufp, (void *)(uintptr_t)req.bufp, req.len, mode));
error = EFAULT;
} else if (ddi_copyout(&req, (void *)arg, sizeof (req), mode)) {
DPRINTF(1, ("IOSRAM_TOC: can't copyout retval (%x)\n",
req.retval));
error = EFAULT;
}
kmem_free(bufp, len);
return (error);
}
case IOSRAM_SEND_INTR:
{
DPRINTF(2, ("IOSRAM_SEND_INTR\n"));
switch ((int)arg) {
case 0x11:
case 0x22:
case 0x44:
case 0x88:
ddi_put32(softp->sbbc_handle,
&(softp->sbbc_region->int_enable.reg), (int)arg);
DPRINTF(1, ("Wrote 0x%x to int_enable.reg\n",
(int)arg));
break;
case 0xBB:
ddi_put32(softp->sbbc_handle,
&(softp->sbbc_region->p0_int_gen.reg), 1);
DPRINTF(1, ("Wrote 1 to p0_int_gen.reg\n"));
break;
default:
error = iosram_send_intr();
}
return (error);
}
case IOSRAM_PRINT_CBACK:
iosram_print_cback();
break;
case IOSRAM_PRINT_STATE:
iosram_print_state((int)arg);
break;
#if IOSRAM_STATS
case IOSRAM_PRINT_STATS:
iosram_print_stats();
break;
#endif
#if IOSRAM_LOG
case IOSRAM_PRINT_LOG:
iosram_print_log((int)arg);
break;
#endif
case IOSRAM_TUNNEL_SWITCH:
error = iosram_switchfrom((int)arg);
break;
case IOSRAM_PRINT_FLAGS:
iosram_print_flags();
break;
case IOSRAM_REG_CBACK:
{
iosram_io_t req;
if (ddi_copyin((void *)arg, &req, sizeof (req), mode)) {
return (EFAULT);
}
DPRINTF(2, ("IOSRAM_REG_CBACK(k:%x)\n", req.key));
req.retval = iosram_register(req.key, iosram_dummy_cback,
(void *)(uintptr_t)req.key);
if (ddi_copyout(&req, (void *)arg, sizeof (req), mode)) {
error = EFAULT;
}
return (error);
}
case IOSRAM_UNREG_CBACK:
{
iosram_io_t req;
if (ddi_copyin((void *)arg, &req, sizeof (req), mode)) {
return (EFAULT);
}
DPRINTF(2, ("IOSRAM_REG_CBACK(k:%x)\n", req.key));
req.retval = iosram_unregister(req.key);
if (ddi_copyout(&req, (void *)arg, sizeof (req), mode)) {
error = EFAULT;
}
return (error);
}
case IOSRAM_SEMA_ACQUIRE:
{
DPRINTF(1, ("IOSRAM_SEMA_ACQUIRE\n"));
error = iosram_sema_acquire(NULL);
return (error);
}
case IOSRAM_SEMA_RELEASE:
{
DPRINTF(1, ("IOSRAM_SEMA_RELEASE\n"));
error = iosram_sema_release();
return (error);
}
#endif /* DEBUG */
default:
DPRINTF(1, ("iosram_ioctl: Illegal command %x\n", cmd));
error = ENOTTY;
}
return (error);
}
/*
* iosram_switch_tunnel(softp)
* Switch master tunnel to the specified instance
* Must be called while holding iosram_mutex
*/
/*ARGSUSED*/
static int
iosram_switch_tunnel(iosramsoft_t *softp)
{
#ifdef DEBUG
int instance = softp->instance;
#endif
int error = 0;
iosramsoft_t *prev_master;
ASSERT(mutex_owned(&iosram_mutex));
DPRINTF(1, ("tunnel switch new master:%p (%d) current master:%p (%d)\n",
softp, instance, iosram_master,
((iosram_master) ? iosram_master->instance : -1)));
IOSRAMLOG(1, "TSWTCH: new_master:%p (%p) iosram_master:%p (%d)\n",
softp, instance, iosram_master,
((iosram_master) ? iosram_master->instance : -1));
if (softp == NULL || (softp->state & IOSRAM_STATE_DETACH)) {
return (ENXIO);
}
if (iosram_master == softp) {
return (0);
}
/*
* We protect against the softp structure being deallocated by setting
* the IOSRAM_STATE_TSWITCH state flag. The detach routine will check
* for this flag and if set, it will wait for this flag to be reset or
* refuse the detach operation.
*/
iosram_new_master = softp;
softp->state |= IOSRAM_STATE_TSWITCH;
prev_master = iosram_master;
if (prev_master) {
prev_master->state |= IOSRAM_STATE_TSWITCH;
}
mutex_exit(&iosram_mutex);
/*
* Map the target IOSRAM, read the TOC, and register interrupts if not
* already done.
*/
DPRINTF(1, ("iosram(%d): mapping IOSRAM and SBBC\n",
softp->instance));
IOSRAMLOG(1, "TSWTCH: mapping instance:%d softp:%p\n",
instance, softp, NULL, NULL);
if (iosram_setup_map(softp) != DDI_SUCCESS) {
error = ENXIO;
} else if ((chunks == NULL) && (iosram_read_toc(softp) != 0)) {
iosram_remove_map(softp);
error = EINVAL;
} else if (iosram_add_intr(softp) != DDI_SUCCESS) {
/*
* If there was no previous master, purge the TOC data that
* iosram_read_toc() created.
*/
if ((prev_master == NULL) && (chunks != NULL)) {
kmem_free(chunks, nchunks * sizeof (iosram_chunk_t));
chunks = NULL;
nchunks = 0;
iosram_init_hashtab();
}
iosram_remove_map(softp);
error = ENXIO;
}
/*
* If we are asked to abort tunnel switch, do so now, before invoking
* the OBP callback.
*/
if (iosram_tswitch_aborted) {
/*
* Once the tunnel switch is aborted, this thread should not
* resume. If it does, we simply log a message. We can't unmap
* the new master IOSRAM as it may be accessed in
* iosram_abort_tswitch(). It will be unmapped when it is
* detached.
*/
IOSRAMLOG(1,
"TSWTCH: aborted (pre OBP cback). Thread resumed.\n",
NULL, NULL, NULL, NULL);
error = EIO;
}
if (error) {
IOSRAMLOG(1,
"TSWTCH: map failed instance:%d softp:%p error:%x\n",
instance, softp, error, NULL);
goto done;
}
if (prev_master != NULL) {
int result;
/*
* Now invoke the OBP interface to do the tunnel switch.
*/
result = prom_starcat_switch_tunnel(softp->portid,
OBP_TSWITCH_REQREPLY);
if (result != 0) {
error = EIO;
}
IOSRAMLOG(1,
"TSWTCH: OBP tswitch portid:%x result:%x error:%x\n",
softp->portid, result, error, NULL);
IOSRAM_STAT(tswitch);
iosram_tswitch_tstamp = ddi_get_lbolt();
}
mutex_enter(&iosram_mutex);
if (iosram_tswitch_aborted) {
/*
* Tunnel switch aborted. This thread should not resume.
* For now, we simply log a message, but don't unmap any
* IOSRAM at this stage as it may be accessed within the
* isoram_abort_tswitch(). The IOSRAM will be unmapped
* when that instance is detached.
*/
if (iosram_tswitch_aborted) {
IOSRAMLOG(1,
"TSWTCH: aborted (post OBP cback). Thread"
" resumed.\n", NULL, NULL, NULL, NULL);
error = EIO;
mutex_exit(&iosram_mutex);
}
} else if (error) {
/*
* Tunnel switch failed. Continue using previous tunnel.
* However, unmap new (target) IOSRAM.
*/
iosram_new_master = NULL;
mutex_exit(&iosram_mutex);
iosram_remove_intr(softp);
iosram_remove_map(softp);
} else {
/*
* Tunnel switch was successful. Set the new master.
* Also unmap old master IOSRAM and remove any interrupts
* associated with that.
*
* Note that a call to iosram_force_write() allows access
* to the IOSRAM while tunnel switch is in progress. That
* means we need to set the new master before unmapping
* the old master.
*/
iosram_set_master(softp);
iosram_new_master = NULL;
mutex_exit(&iosram_mutex);
if (prev_master) {
IOSRAMLOG(1, "TSWTCH: unmapping prev_master:%p (%d)\n",
prev_master, prev_master->instance, NULL, NULL);
iosram_remove_intr(prev_master);
iosram_remove_map(prev_master);
}
}
done:
mutex_enter(&iosram_mutex);
/*
* Clear the tunnel switch flag on the source and destination
* instances.
*/
if (prev_master) {
prev_master->state &= ~IOSRAM_STATE_TSWITCH;
}
softp->state &= ~IOSRAM_STATE_TSWITCH;
/*
* Since incoming interrupts could get lost during a tunnel switch,
* trigger a soft interrupt just in case. No harm other than a bit
* of wasted effort will be caused if no interrupts were dropped.
*/
mutex_enter(&softp->intr_mutex);
iosram_master->intr_pending = 1;
if ((iosram_master->softintr_id != NULL) &&
(iosram_master->intr_busy == 0)) {
ddi_trigger_softintr(iosram_master->softintr_id);
}
mutex_exit(&softp->intr_mutex);
IOSRAMLOG(1, "TSWTCH: done error:%d iosram_master:%p instance:%d\n",
error, iosram_master,
(iosram_master) ? iosram_master->instance : -1, NULL);
return (error);
}
/*
* iosram_abort_tswitch()
* Must be called while holding iosram_mutex.
*/
static void
iosram_abort_tswitch()
{
uint32_t master_valid, new_master_valid;
ASSERT(mutex_owned(&iosram_mutex));
if ((!iosram_tswitch_active) || iosram_tswitch_aborted) {
return;
}
ASSERT(iosram_master != NULL);
IOSRAMLOG(1, "ABORT: iosram_master:%p (%d) iosram_new_master:%p (%d)\n",
iosram_master, iosram_master->instance, iosram_new_master,
(iosram_new_master == NULL) ? -1 : iosram_new_master->instance);
/*
* The first call to iosram_force_write() in the middle of tunnel switch
* will get here. We lookup IOSRAM VALID location and setup appropriate
* master, if one is still valid. We also set iosram_tswitch_aborted to
* prevent reentering this code and to catch if the OBP callback thread
* somehow resumes.
*/
iosram_tswitch_aborted = 1;
if ((iosram_new_master == NULL) ||
(iosram_new_master = iosram_master)) {
/*
* New master hasn't been selected yet, or OBP callback
* succeeded and we already selected new IOSRAM as master, but
* system crashed in the middle of unmapping previous master or
* cleaning up state. Use the existing master.
*/
ASSERT(iosram_master->iosramp != NULL);
ASSERT(IOSRAM_GET_HDRFIELD32(iosram_master, status) ==
IOSRAM_VALID);
IOSRAMLOG(1, "ABORT: master (%d) already determined.\n",
iosram_master->instance, NULL, NULL, NULL);
return;
}
/*
* System crashed in the middle of tunnel switch and we know that the
* new target has not been marked master yet. That means, the old
* master should still be mapped. We need to abort the tunnel switch
* and setup a valid master, if possible, so that we can write to the
* IOSRAM.
*
* We select a new master based upon the IOSRAM header status fields in
* the previous master IOSRAM and the target IOSRAM as follows:
*
* iosram_master iosram-tswitch
* (Prev Master) (New Target) Decision
* --------------- --------------- -----------
* VALID don't care prev master
* INTRANSIT INVALID prev master
* INTRANSIT INTRANSIT prev master
* INTRANSIT VALID new target
* INVALID INVALID shouldn't ever happen
* INVALID INTRANSIT shouldn't ever happen
* INVALID VALID new target
*/
master_valid = (iosram_master->iosramp != NULL) ?
IOSRAM_GET_HDRFIELD32(iosram_master, status) : IOSRAM_INVALID;
new_master_valid = (iosram_new_master->iosramp != NULL) ?
IOSRAM_GET_HDRFIELD32(iosram_new_master, status) : IOSRAM_INVALID;
if (master_valid == IOSRAM_VALID) {
/* EMPTY */
/*
* OBP hasn't been called yet or, if it has, it hasn't started
* copying yet. Use the existing master. Note that the new
* master may not be mapped yet.
*/
IOSRAMLOG(1, "ABORT: prev master(%d) is VALID\n",
iosram_master->instance, NULL, NULL, NULL);
} else if (master_valid == IOSRAM_INTRANSIT) {
/*
* The system crashed after OBP started processing the tunnel
* switch but before the iosram driver determined that it was
* complete. Use the new master if it has been marked valid,
* meaning that OBP finished copying data to it, or the old
* master otherwise.
*/
IOSRAMLOG(1, "ABORT: prev master(%d) is INTRANSIT\n",
iosram_master->instance, NULL, NULL, NULL);
if (new_master_valid == IOSRAM_VALID) {
iosram_set_master(iosram_new_master);
IOSRAMLOG(1, "ABORT: new master(%d) is VALID\n",
iosram_new_master->instance, NULL, NULL,
NULL);
} else {
prom_starcat_switch_tunnel(iosram_master->portid,
OBP_TSWITCH_NOREPLY);
IOSRAMLOG(1, "ABORT: new master(%d) is INVALID\n",
iosram_new_master->instance, NULL, NULL,
NULL);
}
} else {
/*
* The system crashed after OBP marked the old master INVALID,
* which means the new master is the way to go.
*/
IOSRAMLOG(1, "ABORT: prev master(%d) is INVALID\n",
iosram_master->instance, NULL, NULL, NULL);
ASSERT(new_master_valid == IOSRAM_VALID);
iosram_set_master(iosram_new_master);
}
IOSRAMLOG(1, "ABORT: Instance %d selected as master\n",
iosram_master->instance, NULL, NULL, NULL);
}
/*
* iosram_switchfrom(instance)
* Switch master tunnel away from the specified instance
*/
/*ARGSUSED*/
int
iosram_switchfrom(int instance)
{
struct iosramsoft *softp;
int error = 0;
int count;
clock_t current_tstamp;
clock_t tstamp_interval;
struct iosramsoft *last_master = NULL;
static int last_master_instance = -1;
IOSRAMLOG(1, "SwtchFrom: instance:%d iosram_master:%p (%d)\n",
instance, iosram_master,
((iosram_master) ? iosram_master->instance : -1), NULL);
mutex_enter(&iosram_mutex);
/*
* Wait if another tunnel switch is in progress
*/
for (count = 0; iosram_tswitch_active && count < IOSRAM_TSWITCH_RETRY;
count++) {
iosram_tswitch_wakeup = 1;
cv_wait(&iosram_tswitch_wait, &iosram_mutex);
}
if (iosram_tswitch_active) {
mutex_exit(&iosram_mutex);
return (EAGAIN);
}
/*
* Check if the specified instance holds the tunnel. If not,
* then we are done.
*/
if ((iosram_master == NULL) || (iosram_master->instance != instance)) {
mutex_exit(&iosram_mutex);
return (0);
}
/*
* Before beginning the tunnel switch process, wait for any outstanding
* read/write activity to complete.
*/
iosram_tswitch_active = 1;
while (iosram_rw_active) {
iosram_rw_wakeup = 1;
cv_wait(&iosram_rw_wait, &iosram_mutex);
}
/*
* If a previous tunnel switch just completed, we have to make sure
* HWAD has enough time to find the new tunnel before we switch
* away from it. Otherwise, OBP's mailbox message to OSD will never
* get through. Just to be paranoid about synchronization of lbolt
* across different CPUs, make sure the current attempt isn't noted
* as starting _before_ the last tunnel switch completed.
*/
current_tstamp = ddi_get_lbolt();
if (current_tstamp > iosram_tswitch_tstamp) {
tstamp_interval = current_tstamp - iosram_tswitch_tstamp;
} else {
tstamp_interval = 0;
}
if (drv_hztousec(tstamp_interval) < IOSRAM_TSWITCH_DELAY_US) {
mutex_exit(&iosram_mutex);
delay(drv_usectohz(IOSRAM_TSWITCH_DELAY_US) - tstamp_interval);
mutex_enter(&iosram_mutex);
}
/*
* The specified instance holds the tunnel. We need to move it to some
* other IOSRAM. Try out all possible IOSRAMs listed in
* iosram_instances. For now, we always search from the first entry.
* In future, it may be desirable to start where we left off.
*/
for (softp = iosram_instances; softp != NULL; softp = softp->next) {
if (iosram_tswitch_aborted) {
break;
}
/* we can't switch _to_ the instance we're switching _from_ */
if (softp->instance == instance) {
continue;
}
/* skip over instances being detached */
if (softp->state & IOSRAM_STATE_DETACH) {
continue;
}
/*
* Try to avoid reverting to the last instance we switched away
* from, as we expect that one to be detached eventually. Keep
* track of it, though, so we can go ahead and try switching to
* it if no other viable candidates are found.
*/
if (softp->instance == last_master_instance) {
last_master = softp;
continue;
}
/*
* Do the tunnel switch. If successful, record the instance of
* the master we just left behind so we can try to avoid
* reverting to it next time.
*/
if (iosram_switch_tunnel(softp) == 0) {
last_master_instance = instance;
break;
}
}
/*
* If we failed to switch the tunnel, but we skipped over an instance
* that had previously been switched out of because we expected it to be
* detached, go ahead and try it anyway (unless the tswitch was aborted
* or the instance we skipped is finally being detached).
*/
if ((softp == NULL) && (last_master != NULL) &&
!iosram_tswitch_aborted &&
!(last_master->state & IOSRAM_STATE_DETACH)) {
if (iosram_switch_tunnel(last_master) == 0) {
softp = last_master;
last_master_instance = instance;
}
}
if ((softp == NULL) || (iosram_tswitch_aborted)) {
error = EIO;
}
/*
* If there are additional tunnel switches queued up waiting for this
* one to complete, wake them up.
*/
if (iosram_tswitch_wakeup) {
iosram_tswitch_wakeup = 0;
cv_broadcast(&iosram_tswitch_wait);
}
iosram_tswitch_active = 0;
mutex_exit(&iosram_mutex);
return (error);
}
/*
* iosram_tunnel_capable(softp)
* Check if this IOSRAM instance is tunnel-capable by looing at
* "tunnel-capable" property.
*/
static int
iosram_tunnel_capable(struct iosramsoft *softp)
{
int proplen;
int tunnel_capable;
/*
* Look up IOSRAM_TUNNELOK_PROP property, if any.
*/
proplen = sizeof (tunnel_capable);
if (ddi_getlongprop_buf(DDI_DEV_T_ANY, softp->dip,
DDI_PROP_DONTPASS, IOSRAM_TUNNELOK_PROP, (caddr_t)&tunnel_capable,
&proplen) != DDI_PROP_SUCCESS) {
tunnel_capable = 0;
}
return (tunnel_capable);
}
static int
iosram_sbbc_setup_map(struct iosramsoft *softp)
{
int rv;
struct ddi_device_acc_attr attr;
dev_info_t *dip = softp->dip;
uint32_t sema_val;
attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
attr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
mutex_enter(&iosram_mutex);
mutex_enter(&softp->intr_mutex);
/*
* Map SBBC region in
*/
if ((rv = ddi_regs_map_setup(dip, IOSRAM_SBBC_MAP_INDEX,
(caddr_t *)&softp->sbbc_region,
IOSRAM_SBBC_MAP_OFFSET, sizeof (iosram_sbbc_region_t),
&attr, &softp->sbbc_handle)) != DDI_SUCCESS) {
DPRINTF(1, ("Failed to map SBBC region.\n"));
mutex_exit(&softp->intr_mutex);
mutex_exit(&iosram_mutex);
return (rv);
}
/*
* Disable SBBC interrupts. SBBC interrupts are enabled
* once the interrupt handler is registered.
*/
ddi_put32(softp->sbbc_handle,
&(softp->sbbc_region->int_enable.reg), 0x0);
/*
* Clear hardware semaphore value if appropriate.
* When the first SBBC is mapped in by the IOSRAM driver,
* the value of the semaphore should be initialized only
* if it is not held by SMS. For subsequent SBBC's, the
* semaphore will be always initialized.
*/
sema_val = IOSRAM_SEMA_RD(softp);
if (!iosram_master) {
/* the first SBBC is being mapped in */
if (!(IOSRAM_SEMA_IS_HELD(sema_val) &&
IOSRAM_SEMA_GET_IDX(sema_val) == IOSRAM_SEMA_SMS_IDX)) {
/* not held by SMS, we clear the semaphore */
IOSRAM_SEMA_WR(softp, 0);
}
} else {
/* not the first SBBC, we clear the semaphore */
IOSRAM_SEMA_WR(softp, 0);
}
mutex_exit(&softp->intr_mutex);
mutex_exit(&iosram_mutex);
return (0);
}
static int
iosram_setup_map(struct iosramsoft *softp)
{
int instance = softp->instance;
dev_info_t *dip = softp->dip;
int portid;
int proplen;
caddr_t propvalue;
struct ddi_device_acc_attr attr;
attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
attr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
/*
* Lookup IOSRAM_REG_PROP property to find out our IOSRAM length
*/
if (ddi_getlongprop(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, IOSRAM_REG_PROP, (caddr_t)&propvalue,
&proplen) != DDI_PROP_SUCCESS) {
cmn_err(CE_WARN, "iosram(%d): can't find register property.\n",
instance);
return (DDI_FAILURE);
} else {
iosram_reg_t *regprop = (iosram_reg_t *)propvalue;
DPRINTF(1, ("SetupMap(%d): Got reg prop: %x %x %x\n",
instance, regprop->addr_hi,
regprop->addr_lo, regprop->size));
softp->iosramlen = regprop->size;
kmem_free(propvalue, proplen);
}
DPRINTF(1, ("SetupMap(%d): IOSRAM length: 0x%x\n", instance,
softp->iosramlen));
softp->handle = NULL;
/*
* To minimize boot time, we map the entire IOSRAM as opposed to
* mapping individual chunk via ddi_regs_map_setup() call.
*/
if (ddi_regs_map_setup(dip, 0, (caddr_t *)&softp->iosramp,
0x0, softp->iosramlen, &attr, &softp->handle) != DDI_SUCCESS) {
cmn_err(CE_WARN, "iosram(%d): failed to map IOSRAM len:%x\n",
instance, softp->iosramlen);
iosram_remove_map(softp);
return (DDI_FAILURE);
}
/*
* Lookup PORTID property on my parent hierarchy
*/
proplen = sizeof (portid);
if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip,
0, IOSRAM_PORTID_PROP, (caddr_t)&portid,
&proplen) != DDI_PROP_SUCCESS) {
cmn_err(CE_WARN, "iosram(%d): can't find portid property.\n",
instance);
iosram_remove_map(softp);
return (DDI_FAILURE);
}
softp->portid = portid;
if (iosram_sbbc_setup_map(softp) != DDI_SUCCESS) {
cmn_err(CE_WARN, "iosram(%d): can't map SBBC region.\n",
instance);
iosram_remove_map(softp);
return (DDI_FAILURE);
}
mutex_enter(&iosram_mutex);
softp->state |= IOSRAM_STATE_MAPPED;
mutex_exit(&iosram_mutex);
return (DDI_SUCCESS);
}
static void
iosram_remove_map(struct iosramsoft *softp)
{
mutex_enter(&iosram_mutex);
ASSERT((softp->state & IOSRAM_STATE_MASTER) == 0);
if (softp->handle) {
ddi_regs_map_free(&softp->handle);
softp->handle = NULL;
}
softp->iosramp = NULL;
/*
* Umap SBBC registers region. Shared with handler for SBBC
* interrupts, take intr_mutex.
*/
mutex_enter(&softp->intr_mutex);
if (softp->sbbc_region) {
ddi_regs_map_free(&softp->sbbc_handle);
softp->sbbc_region = NULL;
}
mutex_exit(&softp->intr_mutex);
softp->state &= ~IOSRAM_STATE_MAPPED;
mutex_exit(&iosram_mutex);
}
/*
* iosram_is_chosen(struct iosramsoft *softp)
*
* Looks up "chosen" node property to
* determine if it is the chosen IOSRAM.
*/
static int
iosram_is_chosen(struct iosramsoft *softp)
{
char chosen_iosram[MAXNAMELEN];
char pn[MAXNAMELEN];
int nodeid;
int chosen;
pnode_t dnode;
/*
* Get /chosen node info. prom interface will handle errors.
*/
dnode = prom_chosennode();
/*
* Look for the "iosram" property on the chosen node with a prom
* interface as ddi_find_devinfo() couldn't be used (calls
* ddi_walk_devs() that creates one extra lock on the device tree).
*/
if (prom_getprop(dnode, IOSRAM_CHOSEN_PROP, (caddr_t)&nodeid) <= 0) {
/*
* Can't find IOSRAM_CHOSEN_PROP property under chosen node
*/
cmn_err(CE_WARN,
"iosram(%d): can't find chosen iosram property\n",
softp->instance);
return (0);
}
DPRINTF(1, ("iosram(%d): Got '%x' for chosen '%s' property\n",
softp->instance, nodeid, IOSRAM_CHOSEN_PROP));
/*
* get the full OBP pathname of this node
*/
if (prom_phandle_to_path((phandle_t)nodeid, chosen_iosram,
sizeof (chosen_iosram)) < 0) {
cmn_err(CE_NOTE, "prom_phandle_to_path(%x) failed\n", nodeid);
return (0);
}
DPRINTF(1, ("iosram(%d): prom_phandle_to_path(%x) is '%s'\n",
softp->instance, nodeid, chosen_iosram));
(void) ddi_pathname(softp->dip, pn);
DPRINTF(1, ("iosram(%d): ddi_pathname(%p) is '%s'\n",
softp->instance, softp->dip, pn));
chosen = (strcmp(chosen_iosram, pn) == 0) ? 1 : 0;
DPRINTF(1, ("iosram(%d): ... %s\n", softp->instance,
chosen ? "MASTER" : "SLAVE"));
IOSRAMLOG(1, "iosram(%d): ... %s\n", softp->instance,
(chosen ? "MASTER" : "SLAVE"), NULL, NULL);
return (chosen);
}
/*
* iosram_set_master(struct iosramsoft *softp)
*
* Set master tunnel to the specified IOSRAM
* Must be called while holding iosram_mutex.
*/
static void
iosram_set_master(struct iosramsoft *softp)
{
ASSERT(mutex_owned(&iosram_mutex));
ASSERT(softp != NULL);
ASSERT(softp->state & IOSRAM_STATE_MAPPED);
ASSERT(IOSRAM_GET_HDRFIELD32(softp, status) == IOSRAM_VALID);
/*
* Clear MASTER flag on any previous IOSRAM master, if any
*/
if (iosram_master && (iosram_master != softp)) {
iosram_master->state &= ~IOSRAM_STATE_MASTER;
}
/*
* Setup new IOSRAM master
*/
iosram_update_addrs(softp);
iosram_handle = softp->handle;
softp->state |= IOSRAM_STATE_MASTER;
softp->tswitch_ok++;
iosram_master = softp;
IOSRAMLOG(1, "SETMASTER: softp:%p instance:%d\n", softp,
softp->instance, NULL, NULL);
}
/*
* iosram_read_toc()
*
* Read the TOC from an IOSRAM instance that has been mapped in.
* If the TOC is flawed or the IOSRAM isn't valid, return an error.
*/
static int
iosram_read_toc(struct iosramsoft *softp)
{
int i;
int instance = softp->instance;
uint8_t *toc_entryp;
iosram_flags_t *flagsp = NULL;
int new_nchunks;
iosram_chunk_t *new_chunks;
iosram_chunk_t *chunkp;
iosram_chunk_t *old_chunkp;
iosram_toc_entry_t index;
/*
* Never try to read the TOC out of an unmapped IOSRAM.
*/
ASSERT(softp->state & IOSRAM_STATE_MAPPED);
mutex_enter(&iosram_mutex);
/*
* Check to make sure this IOSRAM is marked valid. Return
* an error if it isn't.
*/
if (IOSRAM_GET_HDRFIELD32(softp, status) != IOSRAM_VALID) {
DPRINTF(1, ("iosram_read_toc(%d): IOSRAM not flagged valid\n",
instance));
mutex_exit(&iosram_mutex);
return (EINVAL);
}
/*
* Get the location of the TOC.
*/
toc_entryp = softp->iosramp + IOSRAM_GET_HDRFIELD32(softp, toc_offset);
/*
* Read the index entry from the TOC and make sure it looks correct.
*/
ddi_rep_get8(softp->handle, (uint8_t *)&index, toc_entryp,
sizeof (iosram_toc_entry_t), DDI_DEV_AUTOINCR);
if ((index.key != IOSRAM_INDEX_KEY) ||
(index.off != IOSRAM_INDEX_OFF)) {
cmn_err(CE_WARN, "iosram(%d): invalid TOC index.\n", instance);
mutex_exit(&iosram_mutex);
return (EINVAL);
}
/*
* Allocate storage for the new chunks array and initialize it with data
* from the TOC and callback data from the corresponding old chunk, if
* it exists.
*/
new_nchunks = index.len - 1;
new_chunks = (iosram_chunk_t *)kmem_zalloc(new_nchunks *
sizeof (iosram_chunk_t), KM_SLEEP);
for (i = 0, chunkp = new_chunks; i < new_nchunks; i++, chunkp++) {
toc_entryp += sizeof (iosram_toc_entry_t);
ddi_rep_get8(softp->handle, (uint8_t *)&(chunkp->toc_data),
toc_entryp, sizeof (iosram_toc_entry_t), DDI_DEV_AUTOINCR);
chunkp->hash = NULL;
if ((chunkp->toc_data.off < softp->iosramlen) &&
(chunkp->toc_data.len <= softp->iosramlen) &&
((chunkp->toc_data.off + chunkp->toc_data.len) <=
softp->iosramlen)) {
chunkp->basep = softp->iosramp + chunkp->toc_data.off;
DPRINTF(1,
("iosram_read_toc(%d): k:%x o:%x l:%x p:%x\n",
instance, chunkp->toc_data.key,
chunkp->toc_data.off, chunkp->toc_data.len,
chunkp->basep));
} else {
cmn_err(CE_WARN, "iosram(%d): TOC entry %d"
"out of range... off:%x len:%x\n",
instance, i + 1, chunkp->toc_data.off,
chunkp->toc_data.len);
kmem_free(new_chunks, new_nchunks *
sizeof (iosram_chunk_t));
mutex_exit(&iosram_mutex);
return (EINVAL);
}
/*
* Note the existence of the flags chunk, which is required in
* a correct TOC.
*/
if (chunkp->toc_data.key == IOSRAM_FLAGS_KEY) {
flagsp = (iosram_flags_t *)chunkp->basep;
}
/*
* If there was an entry for this chunk in the old list, copy
* the callback data from old to new storage.
*/
if ((nchunks > 0) &&
((old_chunkp = iosram_find_chunk(chunkp->toc_data.key)) !=
NULL)) {
bcopy(&(old_chunkp->cback), &(chunkp->cback),
sizeof (iosram_cback_t));
}
}
/*
* The TOC is malformed if there is no entry for the flags chunk.
*/
if (flagsp == NULL) {
kmem_free(new_chunks, new_nchunks * sizeof (iosram_chunk_t));
mutex_exit(&iosram_mutex);
return (EINVAL);
}
/*
* Free any memory that is no longer needed and install the new data
* as current data.
*/
if (chunks != NULL) {
kmem_free(chunks, nchunks * sizeof (iosram_chunk_t));
}
chunks = new_chunks;
nchunks = new_nchunks;
iosram_init_hashtab();
mutex_exit(&iosram_mutex);
return (0);
}
/*
* iosram_init_hashtab()
*
* Initialize the hash table and populate it with the IOSRAM
* chunks previously read from the TOC. The caller must hold the
* ioram_mutex lock.
*/
static void
iosram_init_hashtab(void)
{
int i, bucket;
iosram_chunk_t *chunkp;
ASSERT(mutex_owned(&iosram_mutex));
for (i = 0; i < IOSRAM_HASHSZ; i++) {
iosram_hashtab[i] = NULL;
}
if (chunks) {
for (i = 0, chunkp = chunks; i < nchunks; i++, chunkp++) {
/*
* Hide the flags chunk by leaving it out of the hash
* table.
*/
if (chunkp->toc_data.key == IOSRAM_FLAGS_KEY) {
continue;
}
/*
* Add the current chunk to the hash table.
*/
bucket = IOSRAM_HASH(chunkp->toc_data.key);
chunkp->hash = iosram_hashtab[bucket];
iosram_hashtab[bucket] = chunkp;
}
}
}
/*
* iosram_update_addrs()
*
* Process the chunk list, updating each chunk's basep, which is a pointer
* to the beginning of the chunk's memory in kvaddr space. Record the
* basep value of the flags chunk to speed up flag access. The caller
* must hold the iosram_mutex lock.
*/
static void
iosram_update_addrs(struct iosramsoft *softp)
{
int i;
iosram_flags_t *flagsp;
iosram_chunk_t *chunkp;
ASSERT(mutex_owned(&iosram_mutex));
/*
* First go through all of the chunks updating their base pointers and
* looking for the flags chunk.
*/
for (i = 0, chunkp = chunks; i < nchunks; i++, chunkp++) {
chunkp->basep = softp->iosramp + chunkp->toc_data.off;
if (chunkp->toc_data.key == IOSRAM_FLAGS_KEY) {
flagsp = (iosram_flags_t *)(chunkp->basep);
DPRINTF(1,
("iosram_update_addrs flags: o:0x%08x p:%p",
chunkp->toc_data.off, flagsp));
}
}
/*
* Now, go through and update each chunk's flags pointer. This can't be
* done in the first loop because we don't have the address of the flags
* chunk yet.
*/
for (i = 0, chunkp = chunks; i < nchunks; i++, chunkp++) {
chunkp->flagsp = flagsp++;
DPRINTF(1, ("iosram_update_addrs: k:0x%x f:%p\n",
chunkp->toc_data.key, chunkp->flagsp));
}
}
/*
* iosram_find_chunk(key)
*
* Return a pointer to iosram_chunk structure corresponding to the
* "key" IOSRAM chunk. The caller must hold the iosram_mutex lock.
*/
static iosram_chunk_t *
iosram_find_chunk(uint32_t key)
{
iosram_chunk_t *chunkp;
int index = IOSRAM_HASH(key);
ASSERT(mutex_owned(&iosram_mutex));
for (chunkp = iosram_hashtab[index]; chunkp; chunkp = chunkp->hash) {
if (chunkp->toc_data.key == key) {
break;
}
}
return (chunkp);
}
/*
* iosram_add_intr(iosramsoft_t *)
*/
static int
iosram_add_intr(iosramsoft_t *softp)
{
IOSRAMLOG(2, "ADDINTR: softp:%p instance:%d\n",
softp, softp->instance, NULL, NULL);
if (ddi_add_softintr(softp->dip, DDI_SOFTINT_MED,
&softp->softintr_id, &softp->soft_iblk, NULL,
iosram_softintr, (caddr_t)softp) != DDI_SUCCESS) {
cmn_err(CE_WARN,
"iosram(%d): Can't register softintr.\n",
softp->instance);
return (DDI_FAILURE);
}
if (ddi_add_intr(softp->dip, 0, &softp->real_iblk, NULL,
iosram_intr, (caddr_t)softp) != DDI_SUCCESS) {
cmn_err(CE_WARN,
"iosram(%d): Can't register intr"
" handler.\n", softp->instance);
ddi_remove_softintr(softp->softintr_id);
return (DDI_FAILURE);
}
/*
* Enable SBBC interrupts
*/
ddi_put32(softp->sbbc_handle, &(softp->sbbc_region->int_enable.reg),
IOSRAM_SBBC_INT0|IOSRAM_SBBC_INT1);
return (DDI_SUCCESS);
}
/*
* iosram_remove_intr(iosramsoft_t *)
*/
static int
iosram_remove_intr(iosramsoft_t *softp)
{
IOSRAMLOG(2, "REMINTR: softp:%p instance:%d\n",
softp, softp->instance, NULL, NULL);
/*
* Disable SBBC interrupts if SBBC is mapped in
*/
if (softp->sbbc_region) {
ddi_put32(softp->sbbc_handle,
&(softp->sbbc_region->int_enable.reg), 0);
}
/*
* Remove SBBC interrupt handler
*/
ddi_remove_intr(softp->dip, 0, softp->real_iblk);
/*
* Remove soft interrupt handler
*/
mutex_enter(&iosram_mutex);
if (softp->softintr_id != NULL) {
ddi_remove_softintr(softp->softintr_id);
softp->softintr_id = NULL;
}
mutex_exit(&iosram_mutex);
return (0);
}
/*
* iosram_add_instance(iosramsoft_t *)
* Must be called while holding iosram_mutex
*/
static void
iosram_add_instance(iosramsoft_t *new_softp)
{
#ifdef DEBUG
int instance = new_softp->instance;
iosramsoft_t *softp;
#endif
ASSERT(mutex_owned(&iosram_mutex));
#if defined(DEBUG)
/* Verify that this instance is not in the list */
for (softp = iosram_instances; softp != NULL; softp = softp->next) {
ASSERT(softp->instance != instance);
}
#endif
/*
* Add this instance to the list
*/
if (iosram_instances != NULL) {
iosram_instances->prev = new_softp;
}
new_softp->next = iosram_instances;
new_softp->prev = NULL;
iosram_instances = new_softp;
}
/*
* iosram_remove_instance(int instance)
* Must be called while holding iosram_mutex
*/
static void
iosram_remove_instance(int instance)
{
iosramsoft_t *softp;
/*
* Remove specified instance from the iosram_instances list so that
* it can't be chosen for tunnel in future.
*/
ASSERT(mutex_owned(&iosram_mutex));
for (softp = iosram_instances; softp != NULL; softp = softp->next) {
if (softp->instance == instance) {
if (softp->next != NULL) {
softp->next->prev = softp->prev;
}
if (softp->prev != NULL) {
softp->prev->next = softp->next;
}
if (iosram_instances == softp) {
iosram_instances = softp->next;
}
return;
}
}
}
/*
* iosram_sema_acquire: Acquire hardware semaphore.
* Return 0 if the semaphore could be acquired, or one of the following
* possible values:
* EAGAIN: there is a tunnel switch in progress
* EBUSY: the semaphore was already "held"
* ENXIO: an IO error occured (e.g. SBBC not mapped)
* If old_value is not NULL, the location it points to will be updated
* with the semaphore value read when attempting to acquire it.
*/
int
iosram_sema_acquire(uint32_t *old_value)
{
struct iosramsoft *softp;
int rv;
uint32_t sema_val;
DPRINTF(2, ("IOSRAM: in iosram_sema_acquire\n"));
mutex_enter(&iosram_mutex);
/*
* Disallow access if there is a tunnel switch in progress.
*/
if (iosram_tswitch_active) {
mutex_exit(&iosram_mutex);
return (EAGAIN);
}
/*
* Use current master IOSRAM for operation, fail if none is
* currently active.
*/
if ((softp = iosram_master) == NULL) {
mutex_exit(&iosram_mutex);
DPRINTF(1, ("IOSRAM: iosram_sema_acquire: no master\n"));
return (ENXIO);
}
mutex_enter(&softp->intr_mutex);
/*
* Fail if SBBC region has not been mapped. This shouldn't
* happen if we have a master IOSRAM, but we double-check.
*/
if (softp->sbbc_region == NULL) {
mutex_exit(&softp->intr_mutex);
mutex_exit(&iosram_mutex);
DPRINTF(1, ("IOSRAM(%d): iosram_sema_acquire: "
"SBBC not mapped\n", softp->instance));
return (ENXIO);
}
/* read semaphore value */
sema_val = IOSRAM_SEMA_RD(softp);
if (old_value != NULL)
*old_value = sema_val;
if (IOSRAM_SEMA_IS_HELD(sema_val)) {
/* semaphore was held by someone else */
rv = EBUSY;
} else {
/* semaphore was not held, we just acquired it */
rv = 0;
}
mutex_exit(&softp->intr_mutex);
mutex_exit(&iosram_mutex);
DPRINTF(1, ("IOSRAM(%d): iosram_sema_acquire: "
"old value=0x%x rv=%d\n", softp->instance, sema_val, rv));
return (rv);
}
/*
* iosram_sema_release: Release hardware semaphore.
* This function will "release" the hardware semaphore, and return 0 on
* success. If an error occured, one of the following values will be
* returned:
* EAGAIN: there is a tunnel switch in progress
* ENXIO: an IO error occured (e.g. SBBC not mapped)
*/
int
iosram_sema_release(void)
{
struct iosramsoft *softp;
DPRINTF(2, ("IOSRAM: in iosram_sema_release\n"));
mutex_enter(&iosram_mutex);
/*
* Disallow access if there is a tunnel switch in progress.
*/
if (iosram_tswitch_active) {
mutex_exit(&iosram_mutex);
return (EAGAIN);
}
/*
* Use current master IOSRAM for operation, fail if none is
* currently active.
*/
if ((softp = iosram_master) == NULL) {
mutex_exit(&iosram_mutex);
DPRINTF(1, ("IOSRAM: iosram_sema_release: no master\n"));
return (ENXIO);
}
mutex_enter(&softp->intr_mutex);
/*
* Fail if SBBC region has not been mapped in. This shouldn't
* happen if we have a master IOSRAM, but we double-check.
*/
if (softp->sbbc_region == NULL) {
mutex_exit(&softp->intr_mutex);
mutex_exit(&iosram_mutex);
DPRINTF(1, ("IOSRAM(%d): iosram_sema_release: "
"SBBC not mapped\n", softp->instance));
return (ENXIO);
}
/* Release semaphore by clearing our semaphore register */
IOSRAM_SEMA_WR(softp, 0);
mutex_exit(&softp->intr_mutex);
mutex_exit(&iosram_mutex);
DPRINTF(1, ("IOSRAM(%d): iosram_sema_release: success\n",
softp->instance));
return (0);
}
#if defined(IOSRAM_LOG)
void
iosram_log(caddr_t fmt, intptr_t a1, intptr_t a2, intptr_t a3, intptr_t a4)
{
uint32_t seq;
iosram_log_t *logp;
mutex_enter(&iosram_log_mutex);
seq = iosram_logseq++;
logp = &iosram_logbuf[seq % IOSRAM_MAXLOG];
logp->seq = seq;
logp->tstamp = ddi_get_lbolt();
logp->fmt = fmt;
logp->arg1 = a1;
logp->arg2 = a2;
logp->arg3 = a3;
logp->arg4 = a4;
mutex_exit(&iosram_log_mutex);
if (iosram_log_print) {
cmn_err(CE_CONT, "#%x @%lx ", logp->seq, logp->tstamp);
if (logp->fmt) {
cmn_err(CE_CONT, logp->fmt, logp->arg1, logp->arg2,
logp->arg3, logp->arg4);
if (logp->fmt[strlen(logp->fmt)-1] != '\n') {
cmn_err(CE_CONT, "\n");
}
} else {
cmn_err(CE_CONT, "fmt:%p args: %lx %lx %lx %lx\n",
logp->fmt, logp->arg1, logp->arg2, logp->arg3,
logp->arg4);
}
}
}
#endif /* IOSRAM_LOG */
#if defined(DEBUG)
/*
* iosram_get_keys(buf, len)
* Return IOSRAM TOC in the specified buffer
*/
static int
iosram_get_keys(iosram_toc_entry_t *bufp, uint32_t *len)
{
struct iosram_chunk *chunkp;
int error = 0;
int i;
int cnt = (*len) / sizeof (iosram_toc_entry_t);
IOSRAMLOG(2, "iosram_get_keys(bufp:%p *len:%x)\n", bufp, *len, NULL,
NULL);
/*
* Copy data while holding the lock to prevent any data
* corruption or invalid pointer dereferencing.
*/
mutex_enter(&iosram_mutex);
if (iosram_master == NULL) {
error = EIO;
} else {
for (i = 0, chunkp = chunks; i < nchunks && i < cnt;
i++, chunkp++) {
bufp[i].key = chunkp->toc_data.key;
bufp[i].off = chunkp->toc_data.off;
bufp[i].len = chunkp->toc_data.len;
bufp[i].unused = chunkp->toc_data.unused;
}
*len = i * sizeof (iosram_toc_entry_t);
}
mutex_exit(&iosram_mutex);
return (error);
}
/*
* iosram_print_state(instance)
*/
static void
iosram_print_state(int instance)
{
struct iosramsoft *softp;
char pn[MAXNAMELEN];
if (instance < 0) {
softp = iosram_master;
} else {
softp = ddi_get_soft_state(iosramsoft_statep, instance);
}
if (softp == NULL) {
cmn_err(CE_CONT, "iosram_print_state: Can't find instance %d\n",
instance);
return;
}
instance = softp->instance;
mutex_enter(&iosram_mutex);
mutex_enter(&softp->intr_mutex);
cmn_err(CE_CONT, "iosram_print_state(%d): ... %s\n", instance,
((softp == iosram_master) ? "MASTER" : "SLAVE"));
(void) ddi_pathname(softp->dip, pn);
cmn_err(CE_CONT, " pathname:%s\n", pn);
cmn_err(CE_CONT, " instance:%d portid:%d iosramlen:0x%x\n",
softp->instance, softp->portid, softp->iosramlen);
cmn_err(CE_CONT, " softp:%p handle:%p iosramp:%p\n", softp,
softp->handle, softp->iosramp);
cmn_err(CE_CONT, " state:0x%x tswitch_ok:%x tswitch_fail:%x\n",
softp->state, softp->tswitch_ok, softp->tswitch_fail);
cmn_err(CE_CONT, " softintr_id:%p intr_busy:%x intr_pending:%x\n",
softp->softintr_id, softp->intr_busy, softp->intr_pending);
mutex_exit(&softp->intr_mutex);
mutex_exit(&iosram_mutex);
}
/*
* iosram_print_stats()
*/
static void
iosram_print_stats()
{
uint32_t calls;
cmn_err(CE_CONT, "iosram_stats:\n");
calls = iosram_stats.read;
cmn_err(CE_CONT, " read ... calls:%x bytes:%lx avg_sz:%x\n",
calls, iosram_stats.bread,
(uint32_t)((calls != 0) ? (iosram_stats.bread/calls) : 0));
calls = iosram_stats.write;
cmn_err(CE_CONT, " write ... calls:%x bytes:%lx avg_sz:%x\n",
calls, iosram_stats.bwrite,
(uint32_t)((calls != 0) ? (iosram_stats.bwrite/calls) : 0));
cmn_err(CE_CONT, " intr recv (real:%x soft:%x) sent:%x cback:%x\n",
iosram_stats.intr_recv, iosram_stats.sintr_recv,
iosram_stats.intr_send, iosram_stats.callbacks);
cmn_err(CE_CONT, " tswitch: %x getflag:%x setflag:%x\n",
iosram_stats.tswitch, iosram_stats.getflag,
iosram_stats.setflag);
cmn_err(CE_CONT, " iosram_rw_active_max: %x\n", iosram_rw_active_max);
}
static void
iosram_print_cback()
{
iosram_chunk_t *chunkp;
int i;
/*
* Print callback handlers
*/
mutex_enter(&iosram_mutex);
cmn_err(CE_CONT, "IOSRAM callbacks:\n");
for (i = 0, chunkp = chunks; i < nchunks; i++, chunkp++) {
if (chunkp->cback.handler) {
cmn_err(CE_CONT, " %2d: key:0x%x hdlr:%p arg:%p "
"busy:%d unreg:%d\n", i, chunkp->toc_data.key,
chunkp->cback.handler, chunkp->cback.arg,
chunkp->cback.busy, chunkp->cback.unregister);
}
}
mutex_exit(&iosram_mutex);
}
static void
iosram_print_flags()
{
int i;
uint32_t *keys;
iosram_flags_t *flags;
mutex_enter(&iosram_mutex);
if (iosram_master == NULL) {
mutex_exit(&iosram_mutex);
cmn_err(CE_CONT, "IOSRAM Flags: not accessible\n");
return;
}
keys = kmem_alloc(nchunks * sizeof (uint32_t), KM_SLEEP);
flags = kmem_alloc(nchunks * sizeof (iosram_flags_t), KM_SLEEP);
for (i = 0; i < nchunks; i++) {
keys[i] = chunks[i].toc_data.key;
ddi_rep_get8(iosram_handle, (uint8_t *)&(flags[i]),
(uint8_t *)(chunks[i].flagsp), sizeof (iosram_flags_t),
DDI_DEV_AUTOINCR);
}
mutex_exit(&iosram_mutex);
cmn_err(CE_CONT, "IOSRAM Flags:\n");
for (i = 0; i < nchunks; i++) {
cmn_err(CE_CONT,
" %2d: key: 0x%x data_valid:%x int_pending:%x\n",
i, keys[i], flags[i].data_valid, flags[i].int_pending);
}
kmem_free(keys, nchunks * sizeof (uint32_t));
kmem_free(flags, nchunks * sizeof (iosram_flags_t));
}
/*PRINTFLIKE1*/
static void
iosram_dprintf(const char *fmt, ...)
{
char msg_buf[256];
va_list adx;
va_start(adx, fmt);
vsprintf(msg_buf, fmt, adx);
va_end(adx);
cmn_err(CE_CONT, "%s", msg_buf);
}
#endif /* DEBUG */
#if IOSRAM_LOG
/*
* iosram_print_log(int cnt)
* Print last few entries of the IOSRAM log in reverse order
*/
static void
iosram_print_log(int cnt)
{
int i;
if (cnt <= 0) {
cnt = 20;
} else if (cnt > IOSRAM_MAXLOG) {
cnt = IOSRAM_MAXLOG;
}
cmn_err(CE_CONT,
"\niosram_logseq: 0x%x lbolt: %lx iosram_log_level:%x\n",
iosram_logseq, ddi_get_lbolt(), iosram_log_level);
cmn_err(CE_CONT, "iosram_logbuf: %p max entries:0x%x\n",
iosram_logbuf, IOSRAM_MAXLOG);
for (i = iosram_logseq; --i >= 0 && --cnt >= 0; ) {
iosram_log_t *logp;
mutex_enter(&iosram_log_mutex);
logp = &iosram_logbuf[i %IOSRAM_MAXLOG];
cmn_err(CE_CONT, "#%x @%lx ", logp->seq, logp->tstamp);
if (logp->fmt) {
cmn_err(CE_CONT, logp->fmt, logp->arg1, logp->arg2,
logp->arg3, logp->arg4);
if (logp->fmt[strlen(logp->fmt)-1] != '\n') {
cmn_err(CE_CONT, "\n");
}
} else {
cmn_err(CE_CONT, "fmt:%p args: %lx %lx %lx %lx\n",
logp->fmt, logp->arg1, logp->arg2,
logp->arg3, logp->arg4);
}
mutex_exit(&iosram_log_mutex);
}
}
#endif /* IOSRAM_LOG */