drmach.c revision 1e2e7a75ddb1eedcefa449ce98fd5862749b72ee
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/note.h>
#include <sys/debug.h>
#include <sys/types.h>
#include <sys/varargs.h>
#include <sys/errno.h>
#include <sys/cred.h>
#include <sys/dditypes.h>
#include <sys/devops.h>
#include <sys/modctl.h>
#include <sys/poll.h>
#include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/sunndi.h>
#include <sys/ndi_impldefs.h>
#include <sys/stat.h>
#include <sys/kmem.h>
#include <sys/vmem.h>
#include <sys/disp.h>
#include <sys/processor.h>
#include <sys/cheetahregs.h>
#include <sys/cpuvar.h>
#include <sys/mem_config.h>
#include <sys/ddi_impldefs.h>
#include <sys/systm.h>
#include <sys/machsystm.h>
#include <sys/autoconf.h>
#include <sys/cmn_err.h>
#include <sys/sysmacros.h>
#include <sys/x_call.h>
#include <sys/promif.h>
#include <sys/prom_plat.h>
#include <sys/membar.h>
#include <vm/seg_kmem.h>
#include <sys/mem_cage.h>
#include <sys/stack.h>
#include <sys/archsystm.h>
#include <vm/hat_sfmmu.h>
#include <sys/pte.h>
#include <sys/mmu.h>
#include <sys/cpu_module.h>
#include <sys/obpdefs.h>
#include <sys/mboxsc.h>
#include <sys/plat_ecc_dimm.h>
#include <sys/hotplug/hpctrl.h> /* XXX should be included by schpc.h */
#include <sys/schpc.h>
#include <sys/pci.h>
#include <sys/starcat.h>
#include <sys/cpu_sgnblk_defs.h>
#include <sys/drmach.h>
#include <sys/dr_util.h>
#include <sys/dr_mbx.h>
#include <sys/sc_gptwocfg.h>
#include <sys/iosramreg.h>
#include <sys/iosramio.h>
#include <sys/iosramvar.h>
#include <sys/axq.h>
#include <sys/post/scat_dcd.h>
#include <sys/kobj.h>
#include <sys/taskq.h>
#include <sys/cmp.h>
#include <sys/sbd_ioctl.h>
#include <sys/sysevent.h>
#include <sys/sysevent/dr.h>
#include <sys/sysevent/eventdefs.h>
#include <sys/pci/pcisch.h>
#include <sys/pci/pci_regs.h>
#include <sys/ontrap.h>
/* defined in ../ml/drmach.il.cpp */
extern void bcopy32_il(uint64_t, uint64_t);
extern void flush_ecache_il(int64_t physaddr, int size, int linesz);
extern void flush_dcache_il(void);
extern void flush_icache_il(void);
extern void flush_pcache_il(void);
/* defined in ../ml/drmach_asm.s */
extern uint64_t lddmcdecode(uint64_t physaddr);
extern uint64_t lddsafconfig(void);
/* XXX here until provided by sys/dman.h */
extern int man_dr_attach(dev_info_t *);
extern int man_dr_detach(dev_info_t *);
#define DRMACH_BNUM2EXP(bnum) ((bnum) >> 1)
#define DRMACH_BNUM2SLOT(bnum) ((bnum) & 1)
#define DRMACH_EXPSLOT2BNUM(exp, slot) (((exp) << 1) + (slot))
#define DRMACH_SLICE_MASK 0x1Full
#define DRMACH_SLICE_TO_PA(s) (((s) & DRMACH_SLICE_MASK) << 37)
#define DRMACH_PA_TO_SLICE(a) (((a) >> 37) & DRMACH_SLICE_MASK)
/*
* DRMACH_MEM_SLICE_SIZE and DRMACH_MEM_USABLE_SLICE_SIZE define the
* available address space and the usable address space for every slice.
* There must be a distinction between the available and usable do to a
* restriction imposed by CDC memory size.
*/
#define DRMACH_MEM_SLICE_SIZE (1ull << 37) /* 128GB */
#define DRMACH_MEM_USABLE_SLICE_SIZE (1ull << 36) /* 64GB */
#define DRMACH_MC_NBANKS 4
#define DRMACH_MC_ADDR(mp, bank) ((mp)->madr_pa + 16 + 8 * (bank))
#define DRMACH_MC_ASI_ADDR(mp, bank) (DRMACH_MC_ADDR(mp, bank) & 0xFF)
#define DRMACH_EMU_ACT_STATUS_OFFSET 0x50
#define DRMACH_EMU_ACT_STATUS_ADDR(mp) \
((mp)->madr_pa + DRMACH_EMU_ACT_STATUS_OFFSET)
/*
* The Cheetah's Safari Configuration Register and the Schizo's
* Safari Control/Status Register place the LPA base and bound fields in
* same bit locations with in their register word. This source code takes
* advantage of this by defining only one set of LPA encoding/decoding macros
* which are shared by various Cheetah and Schizo drmach routines.
*/
#define DRMACH_LPA_BASE_MASK (0x3Full << 3)
#define DRMACH_LPA_BND_MASK (0x3Full << 9)
#define DRMACH_LPA_BASE_TO_PA(scr) (((scr) & DRMACH_LPA_BASE_MASK) << 34)
#define DRMACH_LPA_BND_TO_PA(scr) (((scr) & DRMACH_LPA_BND_MASK) << 28)
#define DRMACH_PA_TO_LPA_BASE(pa) (((pa) >> 34) & DRMACH_LPA_BASE_MASK)
#define DRMACH_PA_TO_LPA_BND(pa) (((pa) >> 28) & DRMACH_LPA_BND_MASK)
#define DRMACH_L1_SET_LPA(b) \
(((b)->flags & DRMACH_NULL_PROC_LPA) == 0)
#define DRMACH_CPU_SRAM_ADDR 0x7fff0900000ull
#define DRMACH_CPU_SRAM_SIZE 0x20000ull
/*
* Name properties for frequently accessed device nodes.
*/
#define DRMACH_CPU_NAMEPROP "cpu"
#define DRMACH_CMP_NAMEPROP "cmp"
#define DRMACH_AXQ_NAMEPROP "address-extender-queue"
#define DRMACH_PCI_NAMEPROP "pci"
/*
* Maximum value of processor Safari Timeout Log (TOL) field of
* Safari Config reg (7 secs).
*/
#define DRMACH_SAF_TOL_MAX 7 * 1000000
/*
* drmach_board_t flag definitions
*/
#define DRMACH_NULL_PROC_LPA 0x1
typedef struct {
uint32_t reg_addr_hi;
uint32_t reg_addr_lo;
uint32_t reg_size_hi;
uint32_t reg_size_lo;
} drmach_reg_t;
typedef struct {
struct drmach_node *node;
void *data;
} drmach_node_walk_args_t;
typedef struct drmach_node {
void *here;
pnode_t (*get_dnode)(struct drmach_node *node);
int (*walk)(struct drmach_node *node, void *data,
int (*cb)(drmach_node_walk_args_t *args));
dev_info_t *(*n_getdip)(struct drmach_node *node);
int (*n_getproplen)(struct drmach_node *node, char *name,
int *len);
int (*n_getprop)(struct drmach_node *node, char *name,
void *buf, int len);
int (*get_parent)(struct drmach_node *node,
struct drmach_node *pnode);
} drmach_node_t;
typedef struct {
int min_index;
int max_index;
int arr_sz;
drmachid_t *arr;
} drmach_array_t;
typedef struct {
void *isa;
void (*dispose)(drmachid_t);
sbd_error_t *(*release)(drmachid_t);
sbd_error_t *(*status)(drmachid_t, drmach_status_t *);
char name[MAXNAMELEN];
} drmach_common_t;
struct drmach_board;
typedef struct drmach_board drmach_board_t;
typedef struct {
drmach_common_t cm;
const char *type;
drmach_board_t *bp;
drmach_node_t *node;
int portid;
int unum;
int busy;
int powered;
} drmach_device_t;
typedef struct drmach_cpu {
drmach_device_t dev;
uint64_t scr_pa;
processorid_t cpuid;
int coreid;
} drmach_cpu_t;
typedef struct drmach_mem {
drmach_device_t dev;
struct drmach_mem *next;
uint64_t nbytes;
uint64_t madr_pa;
} drmach_mem_t;
typedef struct drmach_io {
drmach_device_t dev;
uint64_t scsr_pa; /* PA of Schizo Control/Status Register */
} drmach_io_t;
struct drmach_board {
drmach_common_t cm;
int bnum;
int assigned;
int powered;
int connected;
int empty;
int cond;
uint_t cpu_impl;
uint_t flags;
drmach_node_t *tree;
drmach_array_t *devices;
drmach_mem_t *mem;
uint64_t stardrb_offset;
char type[BD_TYPELEN];
};
typedef struct {
int flags;
drmach_device_t *dp;
sbd_error_t *err;
dev_info_t *fdip;
} drmach_config_args_t;
typedef struct {
drmach_board_t *obj;
int ndevs;
void *a;
sbd_error_t *(*found)(void *a, const char *, int, drmachid_t);
sbd_error_t *err;
} drmach_board_cb_data_t;
typedef struct drmach_casmslot {
int valid;
int slice;
} drmach_casmslot_t;
typedef enum {
DRMACH_CR_OK,
DRMACH_CR_MC_IDLE_ERR,
DRMACH_CR_IOPAUSE_ERR,
DRMACH_CR_ONTRAP_ERR
} drmach_cr_err_t;
typedef struct {
void *isa;
caddr_t data;
drmach_mem_t *s_mp;
drmach_mem_t *t_mp;
struct memlist *c_ml;
uint64_t s_copybasepa;
uint64_t t_copybasepa;
drmach_cr_err_t ecode;
void *earg;
} drmach_copy_rename_t;
/*
* The following global is read as a boolean value, non-zero is true.
* If zero, DR copy-rename and cpu poweron will not set the processor
* LPA settings (CBASE, CBND of Safari config register) to correspond
* to the current memory slice map. LPAs of processors present at boot
* will remain as programmed by POST. LPAs of processors on boards added
* by DR will remain NULL, as programmed by POST. This can be used to
* to override the per-board L1SSFLG_THIS_L1_NULL_PROC_LPA flag set by
* POST in the LDCD (and copied to the GDCD by SMS).
*
* drmach_reprogram_lpa and L1SSFLG_THIS_L1_NULL_PROC_LPA do not apply
* to Schizo device LPAs. These are always set by DR.
*/
static int drmach_reprogram_lpa = 1;
/*
* There is a known HW bug where a Jaguar CPU in Safari port 0 (SBX/P0)
* can fail to receive an XIR. To workaround this issue until a hardware
* fix is implemented, we will exclude the selection of these CPUs.
* Setting this to 0 will allow their selection again.
*/
static int drmach_iocage_exclude_jaguar_port_zero = 1;
static int drmach_initialized;
static drmach_array_t *drmach_boards;
static int drmach_cpu_delay = 1000;
static int drmach_cpu_ntries = 50000;
static uint32_t drmach_slice_table[AXQ_MAX_EXP];
static kmutex_t drmach_slice_table_lock;
tte_t drmach_cpu_sram_tte[NCPU];
caddr_t drmach_cpu_sram_va;
/*
* Setting to non-zero will enable delay before all disconnect ops.
*/
static int drmach_unclaim_delay_all;
/*
* Default delay is slightly greater than the max processor Safari timeout.
* This delay is intended to ensure the outstanding Safari activity has
* retired on this board prior to a board disconnect.
*/
static clock_t drmach_unclaim_usec_delay = DRMACH_SAF_TOL_MAX + 10;
/*
* By default, DR of non-Panther procs is not allowed into a Panther
* domain with large page sizes enabled. Setting this to 0 will remove
* the restriction.
*/
static int drmach_large_page_restriction = 1;
/*
* Used to pass updated LPA values to procs.
* Protocol is to clear the array before use.
*/
volatile uchar_t *drmach_xt_mb;
volatile uint64_t drmach_xt_ready;
static kmutex_t drmach_xt_mb_lock;
static int drmach_xt_mb_size;
uint64_t drmach_bus_sync_list[18 * 4 * 4 + 1];
static kmutex_t drmach_bus_sync_lock;
static sbd_error_t *drmach_device_new(drmach_node_t *,
drmach_board_t *, int, drmachid_t *);
static sbd_error_t *drmach_cpu_new(drmach_device_t *, drmachid_t *);
static sbd_error_t *drmach_mem_new(drmach_device_t *, drmachid_t *);
static sbd_error_t *drmach_pci_new(drmach_device_t *, drmachid_t *);
static sbd_error_t *drmach_io_new(drmach_device_t *, drmachid_t *);
static dev_info_t *drmach_node_ddi_get_dip(drmach_node_t *np);
static int drmach_node_ddi_get_prop(drmach_node_t *np,
char *name, void *buf, int len);
static int drmach_node_ddi_get_proplen(drmach_node_t *np,
char *name, int *len);
static dev_info_t *drmach_node_obp_get_dip(drmach_node_t *np);
static int drmach_node_obp_get_prop(drmach_node_t *np,
char *name, void *buf, int len);
static int drmach_node_obp_get_proplen(drmach_node_t *np,
char *name, int *len);
static sbd_error_t *drmach_mbox_trans(uint8_t msgtype, int bnum,
caddr_t obufp, int olen,
caddr_t ibufp, int ilen);
sbd_error_t *drmach_io_post_attach(drmachid_t id);
sbd_error_t *drmach_io_post_release(drmachid_t id);
static sbd_error_t *drmach_iocage_setup(dr_testboard_req_t *,
drmach_device_t **dpp, cpu_flag_t *oflags);
static int drmach_iocage_cpu_return(drmach_device_t *dp,
cpu_flag_t oflags);
static sbd_error_t *drmach_iocage_mem_return(dr_testboard_reply_t *tbr);
void drmach_iocage_mem_scrub(uint64_t nbytes);
static sbd_error_t *drmach_i_status(drmachid_t id, drmach_status_t *stat);
static void drmach_slot1_lpa_set(drmach_board_t *bp);
static void drmach_cpu_read(uint64_t arg1, uint64_t arg2);
static int drmach_cpu_read_scr(drmach_cpu_t *cp, uint64_t *scr);
static void drmach_bus_sync_list_update(void);
static void drmach_slice_table_update(drmach_board_t *, int);
static int drmach_portid2bnum(int);
static void drmach_msg_memslice_init(dr_memslice_t slice_arr[]);
static void drmach_msg_memregs_init(dr_memregs_t regs_arr[]);
static int drmach_panther_boards(void);
static int drmach_name2type_idx(char *);
#ifdef DEBUG
#define DRMACH_PR if (drmach_debug) printf
#define DRMACH_MEMLIST_DUMP if (drmach_debug) MEMLIST_DUMP
int drmach_debug = 0; /* set to non-zero to enable debug messages */
#else
#define DRMACH_PR _NOTE(CONSTANTCONDITION) if (0) printf
#define DRMACH_MEMLIST_DUMP _NOTE(CONSTANTCONDITION) if (0) MEMLIST_DUMP
#endif /* DEBUG */
#define DRMACH_OBJ(id) ((drmach_common_t *)id)
#define DRMACH_IS_BOARD_ID(id) \
((id != 0) && \
(DRMACH_OBJ(id)->isa == (void *)drmach_board_new))
#define DRMACH_IS_CPU_ID(id) \
((id != 0) && \
(DRMACH_OBJ(id)->isa == (void *)drmach_cpu_new))
#define DRMACH_IS_MEM_ID(id) \
((id != 0) && \
(DRMACH_OBJ(id)->isa == (void *)drmach_mem_new))
#define DRMACH_IS_IO_ID(id) \
((id != 0) && \
(DRMACH_OBJ(id)->isa == (void *)drmach_io_new))
#define DRMACH_IS_DEVICE_ID(id) \
((id != 0) && \
(DRMACH_OBJ(id)->isa == (void *)drmach_cpu_new || \
DRMACH_OBJ(id)->isa == (void *)drmach_mem_new || \
DRMACH_OBJ(id)->isa == (void *)drmach_io_new))
#define DRMACH_IS_ID(id) \
((id != 0) && \
(DRMACH_OBJ(id)->isa == (void *)drmach_board_new || \
DRMACH_OBJ(id)->isa == (void *)drmach_cpu_new || \
DRMACH_OBJ(id)->isa == (void *)drmach_mem_new || \
DRMACH_OBJ(id)->isa == (void *)drmach_io_new))
#define DRMACH_INTERNAL_ERROR() \
drerr_new(1, ESTC_INTERNAL, drmach_ie_fmt, __LINE__)
static char *drmach_ie_fmt = "drmach.c %d";
static struct {
const char *name;
const char *type;
sbd_error_t *(*new)(drmach_device_t *, drmachid_t *);
} drmach_name2type[] = {
{"cmp", DRMACH_DEVTYPE_CMP, NULL },
{"cpu", DRMACH_DEVTYPE_CPU, drmach_cpu_new },
{"SUNW,UltraSPARC-III", DRMACH_DEVTYPE_CPU, drmach_cpu_new },
{"SUNW,UltraSPARC-III+", DRMACH_DEVTYPE_CPU, drmach_cpu_new },
{"memory-controller", DRMACH_DEVTYPE_MEM, drmach_mem_new },
{"pci", DRMACH_DEVTYPE_PCI, drmach_pci_new },
{"SUNW,wci", DRMACH_DEVTYPE_WCI, drmach_io_new },
};
/*
* drmach autoconfiguration data structures and interfaces
*/
extern struct mod_ops mod_miscops;
static struct modlmisc modlmisc = {
&mod_miscops,
"Sun Fire 15000 DR %I%"
};
static struct modlinkage modlinkage = {
MODREV_1,
(void *)&modlmisc,
NULL
};
/*
* drmach_boards_rwlock is used to synchronize read/write
* access to drmach_boards array between status and board lookup
* as READERS, and assign, and unassign threads as WRITERS.
*/
static krwlock_t drmach_boards_rwlock;
static kmutex_t drmach_i_lock;
static kmutex_t drmach_iocage_lock;
static kcondvar_t drmach_iocage_cv;
static int drmach_iocage_is_busy = 0;
uint64_t drmach_iocage_paddr;
static caddr_t drmach_iocage_vaddr;
static int drmach_iocage_size = 0;
static int drmach_is_cheetah = -1;
int
_init(void)
{
int err;
mutex_init(&drmach_i_lock, NULL, MUTEX_DRIVER, NULL);
rw_init(&drmach_boards_rwlock, NULL, RW_DEFAULT, NULL);
drmach_xt_mb_size = NCPU * sizeof (uchar_t);
drmach_xt_mb = (uchar_t *)vmem_alloc(static_alloc_arena,
drmach_xt_mb_size, VM_SLEEP);
bzero((void *)drmach_xt_mb, drmach_xt_mb_size);
if ((err = mod_install(&modlinkage)) != 0) {
mutex_destroy(&drmach_i_lock);
rw_destroy(&drmach_boards_rwlock);
vmem_free(static_alloc_arena, (void *)drmach_xt_mb,
drmach_xt_mb_size);
}
return (err);
}
int
_fini(void)
{
static void drmach_fini(void);
int err;
if ((err = mod_remove(&modlinkage)) == 0)
drmach_fini();
return (err);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
/*
* drmach_node_* routines serve the purpose of separating the
* rest of the code from the device tree and OBP. This is necessary
* because of In-Kernel-Probing. Devices probed after stod, are probed
* by the in-kernel-prober, not OBP. These devices, therefore, do not
* have dnode ids.
*/
static int
drmach_node_obp_get_parent(drmach_node_t *np, drmach_node_t *pp)
{
pnode_t nodeid;
static char *fn = "drmach_node_obp_get_parent";
nodeid = np->get_dnode(np);
if (nodeid == OBP_NONODE) {
cmn_err(CE_WARN, "%s: invalid dnode", fn);
return (-1);
}
bcopy(np, pp, sizeof (drmach_node_t));
pp->here = (void *)(uintptr_t)prom_parentnode(nodeid);
if (pp->here == OBP_NONODE) {
cmn_err(CE_WARN, "%s: invalid parent dnode", fn);
return (-1);
}
return (0);
}
static pnode_t
drmach_node_obp_get_dnode(drmach_node_t *np)
{
return ((pnode_t)(uintptr_t)np->here);
}
typedef struct {
drmach_node_walk_args_t *nwargs;
int (*cb)(drmach_node_walk_args_t *args);
int err;
} drmach_node_ddi_walk_args_t;
int
drmach_node_ddi_walk_cb(dev_info_t *dip, void *arg)
{
drmach_node_ddi_walk_args_t *nargs;
nargs = (drmach_node_ddi_walk_args_t *)arg;
/*
* dip doesn't have to be held here as we are called
* from ddi_walk_devs() which holds the dip.
*/
nargs->nwargs->node->here = (void *)dip;
nargs->err = nargs->cb(nargs->nwargs);
/*
* Set "here" to NULL so that unheld dip is not accessible
* outside ddi_walk_devs()
*/
nargs->nwargs->node->here = NULL;
if (nargs->err)
return (DDI_WALK_TERMINATE);
else
return (DDI_WALK_CONTINUE);
}
static int
drmach_node_ddi_walk(drmach_node_t *np, void *data,
int (*cb)(drmach_node_walk_args_t *args))
{
drmach_node_walk_args_t args;
drmach_node_ddi_walk_args_t nargs;
/* initialized args structure for callback */
args.node = np;
args.data = data;
nargs.nwargs = &args;
nargs.cb = cb;
nargs.err = 0;
/*
* Root node doesn't have to be held in any way.
*/
ddi_walk_devs(ddi_root_node(), drmach_node_ddi_walk_cb,
(void *)&nargs);
return (nargs.err);
}
static int
drmach_node_obp_walk(drmach_node_t *np, void *data,
int (*cb)(drmach_node_walk_args_t *args))
{
pnode_t nodeid;
int rv;
drmach_node_walk_args_t args;
/* initialized args structure for callback */
args.node = np;
args.data = data;
nodeid = prom_childnode(prom_rootnode());
/* save our new position within the tree */
np->here = (void *)(uintptr_t)nodeid;
rv = 0;
while (nodeid != OBP_NONODE) {
pnode_t child;
rv = (*cb)(&args);
if (rv)
break;
child = prom_childnode(nodeid);
np->here = (void *)(uintptr_t)child;
while (child != OBP_NONODE) {
rv = (*cb)(&args);
if (rv)
break;
child = prom_nextnode(child);
np->here = (void *)(uintptr_t)child;
}
nodeid = prom_nextnode(nodeid);
/* save our new position within the tree */
np->here = (void *)(uintptr_t)nodeid;
}
return (rv);
}
static int
drmach_node_ddi_get_parent(drmach_node_t *np, drmach_node_t *pp)
{
dev_info_t *ndip;
static char *fn = "drmach_node_ddi_get_parent";
ndip = np->n_getdip(np);
if (ndip == NULL) {
cmn_err(CE_WARN, "%s: NULL dip", fn);
return (-1);
}
bcopy(np, pp, sizeof (drmach_node_t));
pp->here = (void *)ddi_get_parent(ndip);
if (pp->here == NULL) {
cmn_err(CE_WARN, "%s: NULL parent dip", fn);
return (-1);
}
return (0);
}
/*ARGSUSED*/
static pnode_t
drmach_node_ddi_get_dnode(drmach_node_t *np)
{
return ((pnode_t)NULL);
}
static drmach_node_t *
drmach_node_new(void)
{
drmach_node_t *np;
np = kmem_zalloc(sizeof (drmach_node_t), KM_SLEEP);
if (drmach_initialized) {
np->get_dnode = drmach_node_ddi_get_dnode;
np->walk = drmach_node_ddi_walk;
np->n_getdip = drmach_node_ddi_get_dip;
np->n_getproplen = drmach_node_ddi_get_proplen;
np->n_getprop = drmach_node_ddi_get_prop;
np->get_parent = drmach_node_ddi_get_parent;
} else {
np->get_dnode = drmach_node_obp_get_dnode;
np->walk = drmach_node_obp_walk;
np->n_getdip = drmach_node_obp_get_dip;
np->n_getproplen = drmach_node_obp_get_proplen;
np->n_getprop = drmach_node_obp_get_prop;
np->get_parent = drmach_node_obp_get_parent;
}
return (np);
}
static void
drmach_node_dispose(drmach_node_t *np)
{
kmem_free(np, sizeof (*np));
}
/*
* Check if a CPU node is part of a CMP.
*/
static int
drmach_is_cmp_child(dev_info_t *dip)
{
dev_info_t *pdip;
if (strcmp(ddi_node_name(dip), DRMACH_CPU_NAMEPROP) != 0) {
return (0);
}
pdip = ddi_get_parent(dip);
ASSERT(pdip);
if (strcmp(ddi_node_name(pdip), DRMACH_CMP_NAMEPROP) == 0) {
return (1);
}
return (0);
}
static dev_info_t *
drmach_node_obp_get_dip(drmach_node_t *np)
{
pnode_t nodeid;
dev_info_t *dip;
nodeid = np->get_dnode(np);
if (nodeid == OBP_NONODE)
return (NULL);
dip = e_ddi_nodeid_to_dip(nodeid);
if (dip) {
/*
* The branch rooted at dip will have been previously
* held, or it will be the child of a CMP. In either
* case, the hold acquired in e_ddi_nodeid_to_dip()
* is not needed.
*/
ddi_release_devi(dip);
ASSERT(drmach_is_cmp_child(dip) || e_ddi_branch_held(dip));
}
return (dip);
}
static dev_info_t *
drmach_node_ddi_get_dip(drmach_node_t *np)
{
return ((dev_info_t *)np->here);
}
static int
drmach_node_walk(drmach_node_t *np, void *param,
int (*cb)(drmach_node_walk_args_t *args))
{
return (np->walk(np, param, cb));
}
static int
drmach_node_ddi_get_prop(drmach_node_t *np, char *name, void *buf, int len)
{
int rv = 0;
dev_info_t *ndip;
static char *fn = "drmach_node_ddi_get_prop";
ndip = np->n_getdip(np);
if (ndip == NULL) {
cmn_err(CE_WARN, "%s: NULL dip", fn);
rv = -1;
} else if (ddi_getlongprop_buf(DDI_DEV_T_ANY, ndip,
DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, name,
(caddr_t)buf, &len) != DDI_PROP_SUCCESS) {
rv = -1;
}
return (rv);
}
/* ARGSUSED */
static int
drmach_node_obp_get_prop(drmach_node_t *np, char *name, void *buf, int len)
{
int rv = 0;
pnode_t nodeid;
static char *fn = "drmach_node_obp_get_prop";
nodeid = np->get_dnode(np);
if (nodeid == OBP_NONODE) {
cmn_err(CE_WARN, "%s: invalid dnode", fn);
rv = -1;
} else if (prom_getproplen(nodeid, (caddr_t)name) < 0) {
rv = -1;
} else {
(void) prom_getprop(nodeid, (caddr_t)name, (caddr_t)buf);
}
return (rv);
}
static int
drmach_node_ddi_get_proplen(drmach_node_t *np, char *name, int *len)
{
int rv = 0;
dev_info_t *ndip;
ndip = np->n_getdip(np);
if (ndip == NULL) {
rv = -1;
} else if (ddi_getproplen(DDI_DEV_T_ANY, ndip, DDI_PROP_DONTPASS,
name, len) != DDI_PROP_SUCCESS) {
rv = -1;
}
return (rv);
}
static int
drmach_node_obp_get_proplen(drmach_node_t *np, char *name, int *len)
{
pnode_t nodeid;
int rv;
nodeid = np->get_dnode(np);
if (nodeid == OBP_NONODE)
rv = -1;
else {
*len = prom_getproplen(nodeid, (caddr_t)name);
rv = (*len < 0 ? -1 : 0);
}
return (rv);
}
static drmachid_t
drmach_node_dup(drmach_node_t *np)
{
drmach_node_t *dup;
dup = drmach_node_new();
dup->here = np->here;
dup->get_dnode = np->get_dnode;
dup->walk = np->walk;
dup->n_getdip = np->n_getdip;
dup->n_getproplen = np->n_getproplen;
dup->n_getprop = np->n_getprop;
dup->get_parent = np->get_parent;
return (dup);
}
/*
* drmach_array provides convenient array construction, access,
* bounds checking and array destruction logic.
*/
static drmach_array_t *
drmach_array_new(int min_index, int max_index)
{
drmach_array_t *arr;
arr = kmem_zalloc(sizeof (drmach_array_t), KM_SLEEP);
arr->arr_sz = (max_index - min_index + 1) * sizeof (void *);
if (arr->arr_sz > 0) {
arr->min_index = min_index;
arr->max_index = max_index;
arr->arr = kmem_zalloc(arr->arr_sz, KM_SLEEP);
return (arr);
} else {
kmem_free(arr, sizeof (*arr));
return (0);
}
}
static int
drmach_array_set(drmach_array_t *arr, int idx, drmachid_t val)
{
if (idx < arr->min_index || idx > arr->max_index)
return (-1);
else {
arr->arr[idx - arr->min_index] = val;
return (0);
}
/*NOTREACHED*/
}
static int
drmach_array_get(drmach_array_t *arr, int idx, drmachid_t *val)
{
if (idx < arr->min_index || idx > arr->max_index)
return (-1);
else {
*val = arr->arr[idx - arr->min_index];
return (0);
}
/*NOTREACHED*/
}
static int
drmach_array_first(drmach_array_t *arr, int *idx, drmachid_t *val)
{
int rv;
*idx = arr->min_index;
while ((rv = drmach_array_get(arr, *idx, val)) == 0 && *val == NULL)
*idx += 1;
return (rv);
}
static int
drmach_array_next(drmach_array_t *arr, int *idx, drmachid_t *val)
{
int rv;
*idx += 1;
while ((rv = drmach_array_get(arr, *idx, val)) == 0 && *val == NULL)
*idx += 1;
return (rv);
}
static void
drmach_array_dispose(drmach_array_t *arr, void (*disposer)(drmachid_t))
{
drmachid_t val;
int idx;
int rv;
rv = drmach_array_first(arr, &idx, &val);
while (rv == 0) {
(*disposer)(val);
/* clear the array entry */
rv = drmach_array_set(arr, idx, NULL);
ASSERT(rv == 0);
rv = drmach_array_next(arr, &idx, &val);
}
kmem_free(arr->arr, arr->arr_sz);
kmem_free(arr, sizeof (*arr));
}
static gdcd_t *
drmach_gdcd_new()
{
gdcd_t *gdcd;
gdcd = kmem_zalloc(sizeof (gdcd_t), KM_SLEEP);
/* read the gdcd, bail if magic or ver #s are not what is expected */
if (iosram_rd(GDCD_MAGIC, 0, sizeof (gdcd_t), (caddr_t)gdcd)) {
bail:
kmem_free(gdcd, sizeof (gdcd_t));
return (NULL);
} else if (gdcd->h.dcd_magic != GDCD_MAGIC) {
goto bail;
} else if (gdcd->h.dcd_version != DCD_VERSION) {
goto bail;
}
return (gdcd);
}
static void
drmach_gdcd_dispose(gdcd_t *gdcd)
{
kmem_free(gdcd, sizeof (gdcd_t));
}
/*ARGSUSED*/
sbd_error_t *
drmach_configure(drmachid_t id, int flags)
{
drmach_device_t *dp;
dev_info_t *rdip;
sbd_error_t *err = NULL;
/*
* On Starcat, there is no CPU driver, so it is
* not necessary to configure any CPU nodes.
*/
if (DRMACH_IS_CPU_ID(id)) {
return (NULL);
}
for (; id; ) {
dev_info_t *fdip = NULL;
if (!DRMACH_IS_DEVICE_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
dp = id;
rdip = dp->node->n_getdip(dp->node);
/*
* We held this branch earlier, so at a minimum its
* root should still be present in the device tree.
*/
ASSERT(rdip);
DRMACH_PR("drmach_configure: configuring DDI branch");
ASSERT(e_ddi_branch_held(rdip));
if (e_ddi_branch_configure(rdip, &fdip, 0) != 0) {
if (err == NULL) {
/*
* Record first failure but don't stop
*/
char *path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
dev_info_t *dip = (fdip != NULL) ? fdip : rdip;
(void) ddi_pathname(dip, path);
err = drerr_new(1, ESTC_DRVFAIL, path);
kmem_free(path, MAXPATHLEN);
}
/*
* If non-NULL, fdip is returned held and must be
* released.
*/
if (fdip != NULL) {
ddi_release_devi(fdip);
}
}
if (DRMACH_IS_MEM_ID(id)) {
drmach_mem_t *mp = id;
id = mp->next;
} else {
id = NULL;
}
}
return (err);
}
static sbd_error_t *
drmach_device_new(drmach_node_t *node,
drmach_board_t *bp, int portid, drmachid_t *idp)
{
int i, rv, device_id, unum;
char name[OBP_MAXDRVNAME];
drmach_device_t proto;
rv = node->n_getprop(node, "name", name, OBP_MAXDRVNAME);
if (rv) {
sbd_error_t *err;
/* every node is expected to have a name */
err = drerr_new(1, ESTC_GETPROP,
"dip: 0x%p: property %s",
node->n_getdip(node), OBP_NAME);
return (err);
}
i = drmach_name2type_idx(name);
if (i < 0 || strcmp(name, "cmp") == 0) {
/*
* Not a node of interest to dr - including "cmp",
* but it is in drmach_name2type[], which lets gptwocfg
* driver to check if node is OBP created.
*/
*idp = (drmachid_t)0;
return (NULL);
}
/*
* Derive a best-guess unit number from the portid value.
* Some drmach_*_new constructors (drmach_pci_new, for example)
* will overwrite the prototype unum value with one that is more
* appropriate for the device.
*/
device_id = portid & 0x1f;
if (device_id < 4)
unum = device_id;
else if (device_id == 8) {
unum = 0;
} else if (device_id == 9) {
unum = 1;
} else if (device_id == 0x1c) {
unum = 0;
} else if (device_id == 0x1d) {
unum = 1;
} else {
return (DRMACH_INTERNAL_ERROR());
}
bzero(&proto, sizeof (proto));
proto.type = drmach_name2type[i].type;
proto.bp = bp;
proto.node = node;
proto.portid = portid;
proto.unum = unum;
return (drmach_name2type[i].new(&proto, idp));
}
static void
drmach_device_dispose(drmachid_t id)
{
drmach_device_t *self = id;
self->cm.dispose(id);
}
static drmach_board_t *
drmach_board_new(int bnum)
{
static sbd_error_t *drmach_board_release(drmachid_t);
static sbd_error_t *drmach_board_status(drmachid_t, drmach_status_t *);
drmach_board_t *bp;
bp = kmem_zalloc(sizeof (drmach_board_t), KM_SLEEP);
bp->cm.isa = (void *)drmach_board_new;
bp->cm.release = drmach_board_release;
bp->cm.status = drmach_board_status;
(void) drmach_board_name(bnum, bp->cm.name, sizeof (bp->cm.name));
bp->bnum = bnum;
bp->devices = NULL;
bp->tree = drmach_node_new();
drmach_array_set(drmach_boards, bnum, bp);
return (bp);
}
static void
drmach_board_dispose(drmachid_t id)
{
drmach_board_t *bp;
ASSERT(DRMACH_IS_BOARD_ID(id));
bp = id;
if (bp->tree)
drmach_node_dispose(bp->tree);
if (bp->devices)
drmach_array_dispose(bp->devices, drmach_device_dispose);
kmem_free(bp, sizeof (*bp));
}
static sbd_error_t *
drmach_board_status(drmachid_t id, drmach_status_t *stat)
{
sbd_error_t *err = NULL;
drmach_board_t *bp;
caddr_t obufp;
dr_showboard_t shb;
if (!DRMACH_IS_BOARD_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
bp = id;
/*
* we need to know if the board's connected before
* issuing a showboard message. If it's connected, we just
* reply with status composed of cached info
*/
if (!bp->connected) {
obufp = kmem_zalloc(sizeof (dr_proto_hdr_t), KM_SLEEP);
err = drmach_mbox_trans(DRMSG_SHOWBOARD, bp->bnum, obufp,
sizeof (dr_proto_hdr_t), (caddr_t)&shb,
sizeof (dr_showboard_t));
kmem_free(obufp, sizeof (dr_proto_hdr_t));
if (err)
return (err);
bp->connected = (shb.bd_assigned && shb.bd_active);
strncpy(bp->type, shb.board_type, sizeof (bp->type));
stat->assigned = bp->assigned = shb.bd_assigned;
stat->powered = bp->powered = shb.power_on;
stat->empty = bp->empty = shb.slot_empty;
switch (shb.test_status) {
case DR_TEST_STATUS_UNKNOWN:
case DR_TEST_STATUS_IPOST:
case DR_TEST_STATUS_ABORTED:
stat->cond = bp->cond = SBD_COND_UNKNOWN;
break;
case DR_TEST_STATUS_PASSED:
stat->cond = bp->cond = SBD_COND_OK;
break;
case DR_TEST_STATUS_FAILED:
stat->cond = bp->cond = SBD_COND_FAILED;
break;
default:
stat->cond = bp->cond = SBD_COND_UNKNOWN;
DRMACH_PR("Unknown test status=0x%x from SC\n",
shb.test_status);
break;
}
strncpy(stat->type, shb.board_type, sizeof (stat->type));
snprintf(stat->info, sizeof (stat->info), "Test Level=%d",
shb.test_level);
} else {
stat->assigned = bp->assigned;
stat->powered = bp->powered;
stat->empty = bp->empty;
stat->cond = bp->cond;
strncpy(stat->type, bp->type, sizeof (stat->type));
}
stat->busy = 0; /* assume not busy */
stat->configured = 0; /* assume not configured */
if (bp->devices) {
int rv;
int d_idx;
drmachid_t d_id;
rv = drmach_array_first(bp->devices, &d_idx, &d_id);
while (rv == 0) {
drmach_status_t d_stat;
err = drmach_i_status(d_id, &d_stat);
if (err)
break;
stat->busy |= d_stat.busy;
stat->configured |= d_stat.configured;
rv = drmach_array_next(bp->devices, &d_idx, &d_id);
}
}
return (err);
}
typedef struct drmach_msglist {
kcondvar_t s_cv; /* condvar for sending msg */
kmutex_t s_lock; /* mutex for sending */
kcondvar_t g_cv; /* condvar for getting reply */
kmutex_t g_lock; /* mutex for getting reply */
struct drmach_msglist *prev; /* link to previous entry */
struct drmach_msglist *next; /* link to next entry */
struct drmach_msglist *link; /* link to related entry */
caddr_t o_buf; /* address of output buffer */
caddr_t i_buf; /* address of input buffer */
uint32_t o_buflen; /* output buffer length */
uint32_t i_buflen; /* input buffer length */
uint32_t msgid; /* message identifier */
int o_nretry; /* number of sending retries */
int f_error; /* mailbox framework error */
uint8_t e_code; /* error code returned by SC */
uint8_t p_flag :1, /* successfully putmsg */
m_reply :1, /* msg reply received */
unused :6;
} drmach_msglist_t;
kmutex_t drmach_g_mbox_mutex; /* mutex for mailbox globals */
kmutex_t drmach_ri_mbox_mutex; /* mutex for mailbox reinit */
kmutex_t drmach_msglist_mutex; /* mutex for message list */
drmach_msglist_t *drmach_msglist_first; /* first entry in msg list */
drmach_msglist_t *drmach_msglist_last; /* last entry in msg list */
uint32_t drmach_msgid; /* current message id */
kthread_t *drmach_getmsg_thread; /* ptr to getmsg thread */
volatile int drmach_getmsg_thread_run; /* run flag for getmsg thr */
kmutex_t drmach_sendmsg_mutex; /* mutex for sendmsg cv */
kcondvar_t drmach_sendmsg_cv; /* signaled to send new msg */
kthread_t *drmach_sendmsg_thread; /* ptr to sendmsg thread */
volatile int drmach_sendmsg_thread_run; /* run flag for sendmsg */
int drmach_mbox_istate; /* mailbox init state */
int drmach_mbox_iflag; /* set if init'd with SC */
int drmach_mbox_ipending; /* set if reinit scheduled */
/*
* Timeout values (in seconds) used when waiting for replies (from the SC) to
* requests that we sent. Since we only receive boardevent messages, and they
* are events rather than replies, there is no boardevent timeout.
*/
int drmach_to_mbxinit = 60; /* 1 minute */
int drmach_to_assign = 60; /* 1 minute */
int drmach_to_unassign = 60; /* 1 minute */
int drmach_to_claim = 3600; /* 1 hour */
int drmach_to_unclaim = 3600; /* 1 hour */
int drmach_to_poweron = 480; /* 8 minutes */
int drmach_to_poweroff = 480; /* 8 minutes */
int drmach_to_testboard = 43200; /* 12 hours */
int drmach_to_aborttest = 180; /* 3 minutes */
int drmach_to_showboard = 180; /* 3 minutes */
int drmach_to_unconfig = 180; /* 3 minutes */
/*
* Delay (in seconds) used after receiving a non-transient error indication from
* an mboxsc_getmsg call in the thread that loops waiting for incoming messages.
*/
int drmach_mbxerr_delay = 15; /* 15 seconds */
/*
* Timeout values (in milliseconds) for mboxsc_putmsg and mboxsc_getmsg calls.
*/
clock_t drmach_to_putmsg; /* set in drmach_mbox_init */
clock_t drmach_to_getmsg = 31000; /* 31 seconds */
/*
* Normally, drmach_to_putmsg is set dynamically during initialization in
* drmach_mbox_init. This has the potentially undesirable side effect of
* clobbering any value that might have been set in /etc/system. To prevent
* dynamic setting of drmach_to_putmsg (thereby allowing it to be tuned in
* /etc/system), set drmach_use_tuned_putmsg_to to 1.
*/
int drmach_use_tuned_putmsg_to = 0;
/* maximum conceivable message size for future mailbox protocol versions */
#define DRMACH_MAX_MBOX_MSG_SIZE 4096
/*ARGSUSED*/
void
drmach_mbox_prmsg(dr_mbox_msg_t *mbp, int dir)
{
int i, j;
dr_memregs_t *memregs;
dr_proto_hdr_t *php = &mbp->p_hdr;
dr_msg_t *mp = &mbp->msgdata;
#ifdef DEBUG
switch (php->command) {
case DRMSG_BOARDEVENT:
if (dir) {
DRMACH_PR("ERROR!! outgoing BOARDEVENT\n");
} else {
DRMACH_PR("BOARDEVENT received:\n");
DRMACH_PR("init=%d ins=%d rem=%d asgn=%d\n",
mp->dm_be.initialized,
mp->dm_be.board_insertion,
mp->dm_be.board_removal,
mp->dm_be.slot_assign);
DRMACH_PR("unasgn=%d avail=%d unavail=%d\n",
mp->dm_be.slot_unassign,
mp->dm_be.slot_avail,
mp->dm_be.slot_unavail);
}
break;
case DRMSG_MBOX_INIT:
if (dir) {
DRMACH_PR("MBOX_INIT Request:\n");
} else {
DRMACH_PR("MBOX_INIT Reply:\n");
}
break;
case DRMSG_ASSIGN:
if (dir) {
DRMACH_PR("ASSIGN Request:\n");
} else {
DRMACH_PR("ASSIGN Reply:\n");
}
break;
case DRMSG_UNASSIGN:
if (dir) {
DRMACH_PR("UNASSIGN Request:\n");
} else {
DRMACH_PR("UNASSIGN Reply:\n");
}
break;
case DRMSG_CLAIM:
if (!dir) {
DRMACH_PR("CLAIM Reply:\n");
break;
}
DRMACH_PR("CLAIM Request:\n");
for (i = 0; i < 18; ++i) {
DRMACH_PR("exp%d: val=%d slice=0x%x\n", i,
mp->dm_cr.mem_slice[i].valid,
mp->dm_cr.mem_slice[i].slice);
memregs = &(mp->dm_cr.mem_regs[i]);
for (j = 0; j < S0_LPORT_COUNT; j++) {
DRMACH_PR(" MC %2d: "
"MADR[%d] = 0x%lx, "
"MADR[%d] = 0x%lx\n", j,
0, DRMACH_MCREG_TO_U64(
memregs->madr[j][0]),
1, DRMACH_MCREG_TO_U64(
memregs->madr[j][1]));
DRMACH_PR(" : "
"MADR[%d] = 0x%lx, "
"MADR[%d] = 0x%lx\n",
2, DRMACH_MCREG_TO_U64(
memregs->madr[j][2]),
3, DRMACH_MCREG_TO_U64(
memregs->madr[j][3]));
}
}
break;
case DRMSG_UNCLAIM:
if (!dir) {
DRMACH_PR("UNCLAIM Reply:\n");
break;
}
DRMACH_PR("UNCLAIM Request:\n");
for (i = 0; i < 18; ++i) {
DRMACH_PR("exp%d: val=%d slice=0x%x\n", i,
mp->dm_ur.mem_slice[i].valid,
mp->dm_ur.mem_slice[i].slice);
memregs = &(mp->dm_ur.mem_regs[i]);
for (j = 0; j < S0_LPORT_COUNT; j++) {
DRMACH_PR(" MC %2d: "
"MADR[%d] = 0x%lx, "
"MADR[%d] = 0x%lx\n", j,
0, DRMACH_MCREG_TO_U64(
memregs->madr[j][0]),
1, DRMACH_MCREG_TO_U64(
memregs->madr[j][1]));
DRMACH_PR(" : "
"MADR[%d] = 0x%lx, "
"MADR[%d] = 0x%lx\n",
2, DRMACH_MCREG_TO_U64(
memregs->madr[j][2]),
3, DRMACH_MCREG_TO_U64(
memregs->madr[j][3]));
}
}
DRMACH_PR(" mem_clear=%d\n", mp->dm_ur.mem_clear);
break;
case DRMSG_UNCONFIG:
if (!dir) {
DRMACH_PR("UNCONFIG Reply:\n");
break;
}
DRMACH_PR("UNCONFIG Request:\n");
for (i = 0; i < 18; ++i) {
DRMACH_PR("exp%d: val=%d slice=0x%x\n", i,
mp->dm_uc.mem_slice[i].valid,
mp->dm_uc.mem_slice[i].slice);
memregs = &(mp->dm_uc.mem_regs[i]);
for (j = 0; j < S0_LPORT_COUNT; j++) {
DRMACH_PR(" MC %2d: "
"MADR[%d] = 0x%lx, "
"MADR[%d] = 0x%lx\n", j,
0, DRMACH_MCREG_TO_U64(
memregs->madr[j][0]),
1, DRMACH_MCREG_TO_U64(
memregs->madr[j][1]));
DRMACH_PR(" : "
"MADR[%d] = 0x%lx, "
"MADR[%d] = 0x%lx\n",
2, DRMACH_MCREG_TO_U64(
memregs->madr[j][2]),
3, DRMACH_MCREG_TO_U64(
memregs->madr[j][3]));
}
}
break;
case DRMSG_POWERON:
if (dir) {
DRMACH_PR("POWERON Request:\n");
} else {
DRMACH_PR("POWERON Reply:\n");
}
break;
case DRMSG_POWEROFF:
if (dir) {
DRMACH_PR("POWEROFF Request:\n");
} else {
DRMACH_PR("POWEROFF Reply:\n");
}
break;
case DRMSG_TESTBOARD:
if (dir) {
DRMACH_PR("TESTBOARD Request:\n");
DRMACH_PR("\tmemaddrhi=0x%x memaddrlo=0x%x ",
mp->dm_tb.memaddrhi,
mp->dm_tb.memaddrlo);
DRMACH_PR("memlen=0x%x cpu_portid=0x%x\n",
mp->dm_tb.memlen, mp->dm_tb.cpu_portid);
DRMACH_PR("\tforce=0x%x imm=0x%x\n",
mp->dm_tb.force, mp->dm_tb.immediate);
} else {
DRMACH_PR("TESTBOARD Reply:\n");
DRMACH_PR("\tmemaddrhi=0x%x memaddrlo=0x%x ",
mp->dm_tr.memaddrhi,
mp->dm_tr.memaddrlo);
DRMACH_PR("memlen=0x%x cpu_portid=0x%x\n",
mp->dm_tr.memlen, mp->dm_tr.cpu_portid);
DRMACH_PR("\trecovered=0x%x test status=0x%x\n",
mp->dm_tr.cpu_recovered,
mp->dm_tr.test_status);
}
break;
case DRMSG_ABORT_TEST:
if (dir) {
DRMACH_PR("ABORT_TEST Request:\n");
} else {
DRMACH_PR("ABORT_TEST Reply:\n");
}
DRMACH_PR("\tmemaddrhi=0x%x memaddrlo=0x%x ",
mp->dm_ta.memaddrhi,
mp->dm_ta.memaddrlo);
DRMACH_PR("memlen=0x%x cpu_portid=0x%x\n",
mp->dm_ta.memlen, mp->dm_ta.cpu_portid);
break;
case DRMSG_SHOWBOARD:
if (dir) {
DRMACH_PR("SHOWBOARD Request:\n");
} else {
DRMACH_PR("SHOWBOARD Reply:\n");
DRMACH_PR(": empty=%d power=%d assigned=%d",
mp->dm_sb.slot_empty,
mp->dm_sb.power_on,
mp->dm_sb.bd_assigned);
DRMACH_PR(": active=%d t_status=%d t_level=%d ",
mp->dm_sb.bd_active,
mp->dm_sb.test_status,
mp->dm_sb.test_level);
DRMACH_PR(": type=%s ", mp->dm_sb.board_type);
}
break;
default:
DRMACH_PR("Unknown message type\n");
break;
}
DRMACH_PR("dr hdr:\n\tid=0x%x vers=0x%x cmd=0x%x exp=0x%x slot=0x%x\n",
php->message_id, php->drproto_version, php->command,
php->expbrd, php->slot);
#endif
DRMACH_PR("\treply_status=0x%x error_code=0x%x\n", php->reply_status,
php->error_code);
}
/*
* Callback function passed to taskq_dispatch when a mailbox reinitialization
* handshake needs to be scheduled. The handshake can't be performed by the
* thread that determines it is needed, in most cases, so this function is
* dispatched on the system-wide taskq pool of threads. Failure is reported but
* otherwise ignored, since any situation that requires a mailbox initialization
* handshake will continue to request the handshake until it succeeds.
*/
static void
drmach_mbox_reinit(void *unused)
{
_NOTE(ARGUNUSED(unused))
caddr_t obufp = NULL;
sbd_error_t *serr = NULL;
DRMACH_PR("scheduled mailbox reinit running\n");
mutex_enter(&drmach_ri_mbox_mutex);
mutex_enter(&drmach_g_mbox_mutex);
if (drmach_mbox_iflag == 0) {
/* need to initialize the mailbox */
mutex_exit(&drmach_g_mbox_mutex);
cmn_err(CE_NOTE, "!reinitializing DR mailbox");
obufp = kmem_zalloc(sizeof (dr_proto_hdr_t), KM_SLEEP);
serr = drmach_mbox_trans(DRMSG_MBOX_INIT, 0, obufp,
sizeof (dr_proto_hdr_t), (caddr_t)NULL, 0);
kmem_free(obufp, sizeof (dr_proto_hdr_t));
if (serr) {
cmn_err(CE_WARN,
"mbox_init: MBOX_INIT failed ecode=0x%x",
serr->e_code);
sbd_err_clear(&serr);
}
mutex_enter(&drmach_g_mbox_mutex);
if (!serr) {
drmach_mbox_iflag = 1;
}
}
drmach_mbox_ipending = 0;
mutex_exit(&drmach_g_mbox_mutex);
mutex_exit(&drmach_ri_mbox_mutex);
}
/*
* To ensure sufficient compatibility with future versions of the DR mailbox
* protocol, we use a buffer that is large enough to receive the largest message
* that could possibly be sent to us. However, since that ends up being fairly
* large, allocating it on the stack is a bad idea. Fortunately, this function
* does not need to be MT-safe since it is only invoked by the mailbox
* framework, which will never invoke it multiple times concurrently. Since
* that is the case, we can use a static buffer.
*/
void
drmach_mbox_event(void)
{
static uint8_t buf[DRMACH_MAX_MBOX_MSG_SIZE];
dr_mbox_msg_t *msg = (dr_mbox_msg_t *)buf;
int err;
uint32_t type = MBOXSC_MSG_EVENT;
uint32_t command = DRMSG_BOARDEVENT;
uint64_t transid = 0;
uint32_t length = DRMACH_MAX_MBOX_MSG_SIZE;
char *hint = "";
int logsys = 0;
do {
err = mboxsc_getmsg(KEY_SCDR, &type, &command,
&transid, &length, (void *)msg, 0);
} while (err == EAGAIN);
/* don't try to interpret anything with the wrong version number */
if ((err == 0) && (msg->p_hdr.drproto_version != DRMBX_VERSION)) {
cmn_err(CE_WARN, "mailbox version mismatch 0x%x vs 0x%x",
msg->p_hdr.drproto_version, DRMBX_VERSION);
mutex_enter(&drmach_g_mbox_mutex);
drmach_mbox_iflag = 0;
/* schedule a reinit handshake if one isn't pending */
if (!drmach_mbox_ipending) {
if (taskq_dispatch(system_taskq, drmach_mbox_reinit,
NULL, TQ_NOSLEEP) != NULL) {
drmach_mbox_ipending = 1;
} else {
cmn_err(CE_WARN,
"failed to schedule mailbox reinit");
}
}
mutex_exit(&drmach_g_mbox_mutex);
return;
}
if ((err != 0) || (msg->p_hdr.reply_status != DRMSG_REPLY_OK)) {
cmn_err(CE_WARN,
"Unsolicited mboxsc_getmsg failed: err=0x%x code=0x%x",
err, msg->p_hdr.error_code);
} else {
dr_boardevent_t *be;
be = (dr_boardevent_t *)&msg->msgdata;
/* check for initialization event */
if (be->initialized) {
mutex_enter(&drmach_g_mbox_mutex);
drmach_mbox_iflag = 0;
/* schedule a reinit handshake if one isn't pending */
if (!drmach_mbox_ipending) {
if (taskq_dispatch(system_taskq,
drmach_mbox_reinit, NULL, TQ_NOSLEEP)
!= NULL) {
drmach_mbox_ipending = 1;
} else {
cmn_err(CE_WARN,
"failed to schedule mailbox reinit");
}
}
mutex_exit(&drmach_g_mbox_mutex);
cmn_err(CE_NOTE, "!Mailbox Init event received");
}
/* anything else will be a log_sysevent call */
if (be->board_insertion) {
DRMACH_PR("Board Insertion event received");
hint = DR_HINT_INSERT;
logsys++;
}
if (be->board_removal) {
DRMACH_PR("Board Removal event received");
hint = DR_HINT_REMOVE;
logsys++;
}
if (be->slot_assign) {
DRMACH_PR("Slot Assign event received");
logsys++;
}
if (be->slot_unassign) {
DRMACH_PR("Slot Unassign event received");
logsys++;
}
if (be->slot_avail) {
DRMACH_PR("Slot Available event received");
logsys++;
}
if (be->slot_unavail) {
DRMACH_PR("Slot Unavailable event received");
logsys++;
}
if (be->power_on) {
DRMACH_PR("Power ON event received");
logsys++;
}
if (be->power_off) {
DRMACH_PR("Power OFF event received");
logsys++;
}
if (logsys)
drmach_log_sysevent(
DRMACH_EXPSLOT2BNUM(msg->p_hdr.expbrd,
msg->p_hdr.slot),
hint, SE_NOSLEEP, 1);
}
}
static uint32_t
drmach_get_msgid()
{
uint32_t rv;
mutex_enter(&drmach_msglist_mutex);
if (!(++drmach_msgid))
++drmach_msgid;
rv = drmach_msgid;
mutex_exit(&drmach_msglist_mutex);
return (rv);
}
/*
* unlink an entry from the message transaction list
*
* caller must hold drmach_msglist_mutex
*/
void
drmach_msglist_unlink(drmach_msglist_t *entry)
{
ASSERT(mutex_owned(&drmach_msglist_mutex));
if (entry->prev) {
entry->prev->next = entry->next;
if (entry->next)
entry->next->prev = entry->prev;
} else {
drmach_msglist_first = entry->next;
if (entry->next)
entry->next->prev = NULL;
}
if (entry == drmach_msglist_last) {
drmach_msglist_last = entry->prev;
}
}
void
drmach_msglist_link(drmach_msglist_t *entry)
{
mutex_enter(&drmach_msglist_mutex);
if (drmach_msglist_last) {
entry->prev = drmach_msglist_last;
drmach_msglist_last->next = entry;
drmach_msglist_last = entry;
} else {
drmach_msglist_last = drmach_msglist_first = entry;
}
mutex_exit(&drmach_msglist_mutex);
}
void
drmach_mbox_getmsg()
{
int err;
register int msgid;
static uint8_t buf[DRMACH_MAX_MBOX_MSG_SIZE];
dr_mbox_msg_t *msg = (dr_mbox_msg_t *)buf;
dr_proto_hdr_t *php;
drmach_msglist_t *found, *entry;
uint32_t type = MBOXSC_MSG_REPLY;
uint32_t command;
uint64_t transid;
uint32_t length;
php = &msg->p_hdr;
while (drmach_getmsg_thread_run != 0) {
/* get a reply message */
command = 0;
transid = 0;
length = DRMACH_MAX_MBOX_MSG_SIZE;
err = mboxsc_getmsg(KEY_SCDR, &type, &command,
&transid, &length, (void *)msg, drmach_to_getmsg);
if (err) {
/*
* If mboxsc_getmsg returns ETIMEDOUT or EAGAIN, then
* the "error" is really just a normal, transient
* condition and we can retry the operation right away.
* Any other error suggests a more serious problem,
* ranging from a message being too big for our buffer
* (EMSGSIZE) to total failure of the mailbox layer.
* This second class of errors is much less "transient",
* so rather than retrying over and over (and getting
* the same error over and over) as fast as we can,
* we'll sleep for a while before retrying.
*/
if ((err != ETIMEDOUT) && (err != EAGAIN)) {
cmn_err(CE_WARN,
"mboxsc_getmsg failed, err=0x%x", err);
delay(drmach_mbxerr_delay * hz);
}
continue;
}
drmach_mbox_prmsg(msg, 0);
if (php->drproto_version != DRMBX_VERSION) {
cmn_err(CE_WARN,
"mailbox version mismatch 0x%x vs 0x%x",
php->drproto_version, DRMBX_VERSION);
mutex_enter(&drmach_g_mbox_mutex);
drmach_mbox_iflag = 0;
/* schedule a reinit handshake if one isn't pending */
if (!drmach_mbox_ipending) {
if (taskq_dispatch(system_taskq,
drmach_mbox_reinit, NULL, TQ_NOSLEEP)
!= NULL) {
drmach_mbox_ipending = 1;
} else {
cmn_err(CE_WARN,
"failed to schedule mailbox reinit");
}
}
mutex_exit(&drmach_g_mbox_mutex);
continue;
}
msgid = php->message_id;
found = NULL;
mutex_enter(&drmach_msglist_mutex);
entry = drmach_msglist_first;
while (entry != NULL) {
if (entry->msgid == msgid) {
found = entry;
drmach_msglist_unlink(entry);
entry = NULL;
} else
entry = entry->next;
}
if (found) {
mutex_enter(&found->g_lock);
found->e_code = php->error_code;
if (found->i_buflen > 0)
bcopy((caddr_t)&msg->msgdata, found->i_buf,
found->i_buflen);
found->m_reply = 1;
cv_signal(&found->g_cv);
mutex_exit(&found->g_lock);
} else {
cmn_err(CE_WARN, "!mbox_getmsg: no match for id 0x%x",
msgid);
cmn_err(CE_WARN, "! cmd = 0x%x, exb = %d, slot = %d",
php->command, php->expbrd, php->slot);
}
mutex_exit(&drmach_msglist_mutex);
}
cmn_err(CE_WARN, "mbox_getmsg: exiting");
mutex_enter(&drmach_msglist_mutex);
entry = drmach_msglist_first;
while (entry != NULL) {
if (entry->p_flag == 1) {
entry->f_error = -1;
mutex_enter(&entry->g_lock);
cv_signal(&entry->g_cv);
mutex_exit(&entry->g_lock);
drmach_msglist_unlink(entry);
}
entry = entry->next;
}
mutex_exit(&drmach_msglist_mutex);
drmach_getmsg_thread_run = -1;
thread_exit();
}
void
drmach_mbox_sendmsg()
{
int err, retry;
drmach_msglist_t *entry;
dr_mbox_msg_t *mp;
dr_proto_hdr_t *php;
while (drmach_sendmsg_thread_run != 0) {
/*
* Search through the list to find entries awaiting
* transmission to the SC
*/
mutex_enter(&drmach_msglist_mutex);
entry = drmach_msglist_first;
retry = 0;
while (entry != NULL) {
if (entry->p_flag == 1) {
entry = entry->next;
continue;
}
mutex_exit(&drmach_msglist_mutex);
if (!retry)
mutex_enter(&entry->s_lock);
mp = (dr_mbox_msg_t *)entry->o_buf;
php = &mp->p_hdr;
drmach_mbox_prmsg(mp, 1);
err = mboxsc_putmsg(KEY_DRSC, MBOXSC_MSG_REQUEST,
php->command, NULL, entry->o_buflen, (void *)mp,
drmach_to_putmsg);
if (err) {
switch (err) {
case EAGAIN:
case EBUSY:
++retry;
mutex_enter(&drmach_msglist_mutex);
continue;
case ETIMEDOUT:
if (--entry->o_nretry <= 0) {
mutex_enter(
&drmach_msglist_mutex);
drmach_msglist_unlink(entry);
mutex_exit(
&drmach_msglist_mutex);
entry->f_error = err;
entry->p_flag = 1;
cv_signal(&entry->s_cv);
} else {
++retry;
mutex_enter(
&drmach_msglist_mutex);
continue;
}
break;
default:
mutex_enter(&drmach_msglist_mutex);
drmach_msglist_unlink(entry);
mutex_exit(&drmach_msglist_mutex);
entry->f_error = err;
entry->p_flag = 1;
cv_signal(&entry->s_cv);
break;
}
} else {
entry->p_flag = 1;
cv_signal(&entry->s_cv);
}
mutex_exit(&entry->s_lock);
retry = 0;
mutex_enter(&drmach_msglist_mutex);
entry = drmach_msglist_first;
}
mutex_exit(&drmach_msglist_mutex);
mutex_enter(&drmach_sendmsg_mutex);
(void) cv_timedwait(&drmach_sendmsg_cv,
&drmach_sendmsg_mutex, ddi_get_lbolt() + (5 * hz));
mutex_exit(&drmach_sendmsg_mutex);
}
cmn_err(CE_WARN, "mbox_sendmsg: exiting");
mutex_enter(&drmach_msglist_mutex);
entry = drmach_msglist_first;
while (entry != NULL) {
if (entry->p_flag == 0) {
entry->f_error = -1;
mutex_enter(&entry->s_lock);
cv_signal(&entry->s_cv);
mutex_exit(&entry->s_lock);
drmach_msglist_unlink(entry);
}
entry = entry->next;
}
mutex_exit(&drmach_msglist_mutex);
cv_destroy(&drmach_sendmsg_cv);
mutex_destroy(&drmach_sendmsg_mutex);
drmach_sendmsg_thread_run = -1;
thread_exit();
}
void
drmach_msglist_destroy(drmach_msglist_t *listp)
{
if (listp != NULL) {
drmach_msglist_t *entry;
mutex_enter(&drmach_msglist_mutex);
entry = drmach_msglist_first;
while (entry) {
if (listp == entry) {
drmach_msglist_unlink(listp);
entry = NULL;
} else
entry = entry->next;
}
mutex_destroy(&listp->s_lock);
cv_destroy(&listp->s_cv);
mutex_destroy(&listp->g_lock);
cv_destroy(&listp->g_cv);
kmem_free(listp, sizeof (drmach_msglist_t));
mutex_exit(&drmach_msglist_mutex);
}
}
static drmach_msglist_t *
drmach_msglist_new(caddr_t ibufp, uint32_t ilen, dr_proto_hdr_t *hdrp,
uint32_t olen, int nrtry)
{
drmach_msglist_t *listp;
listp = kmem_zalloc(sizeof (drmach_msglist_t), KM_SLEEP);
mutex_init(&listp->s_lock, NULL, MUTEX_DRIVER, NULL);
cv_init(&listp->s_cv, NULL, CV_DRIVER, NULL);
mutex_init(&listp->g_lock, NULL, MUTEX_DRIVER, NULL);
cv_init(&listp->g_cv, NULL, CV_DRIVER, NULL);
listp->o_buf = (caddr_t)hdrp;
listp->o_buflen = olen;
listp->i_buf = ibufp;
listp->i_buflen = ilen;
listp->o_nretry = nrtry;
listp->msgid = hdrp->message_id;
return (listp);
}
static drmach_msglist_t *
drmach_mbox_req_rply(dr_proto_hdr_t *hdrp, uint32_t olen, caddr_t ibufp,
uint32_t ilen, int timeout, int nrtry, int nosig,
drmach_msglist_t *link)
{
int crv;
drmach_msglist_t *listp;
clock_t to_val;
dr_proto_hdr_t *php;
/* setup transaction list entry */
listp = drmach_msglist_new(ibufp, ilen, hdrp, olen, nrtry);
/* send mailbox message, await reply */
mutex_enter(&listp->s_lock);
mutex_enter(&listp->g_lock);
listp->link = link;
drmach_msglist_link(listp);
mutex_enter(&drmach_sendmsg_mutex);
cv_signal(&drmach_sendmsg_cv);
mutex_exit(&drmach_sendmsg_mutex);
while (listp->p_flag == 0) {
cv_wait(&listp->s_cv, &listp->s_lock);
}
to_val = ddi_get_lbolt() + (timeout * hz);
if (listp->f_error) {
listp->p_flag = 0;
cmn_err(CE_WARN, "!mboxsc_putmsg failed: 0x%x",
listp->f_error);
php = (dr_proto_hdr_t *)listp->o_buf;
cmn_err(CE_WARN, "! cmd = 0x%x, exb = %d, slot = %d",
php->command, php->expbrd, php->slot);
} else {
while (listp->m_reply == 0 && listp->f_error == 0) {
if (nosig)
crv = cv_timedwait(&listp->g_cv, &listp->g_lock,
to_val);
else
crv = cv_timedwait_sig(&listp->g_cv,
&listp->g_lock, to_val);
switch (crv) {
case -1: /* timed out */
cmn_err(CE_WARN,
"!msgid=0x%x reply timed out",
hdrp->message_id);
php = (dr_proto_hdr_t *)listp->o_buf;
cmn_err(CE_WARN, "! cmd = 0x%x, "
"exb = %d, slot = %d", php->command,
php->expbrd, php->slot);
listp->f_error = ETIMEDOUT;
break;
case 0: /* signal received */
cmn_err(CE_WARN,
"operation interrupted by signal");
listp->f_error = EINTR;
break;
default:
break;
}
}
/*
* If link is set for this entry, check to see if
* the linked entry has been replied to. If not,
* wait for the response.
* Currently, this is only used for ABORT_TEST functionality,
* wherein a check is made for the TESTBOARD reply when
* the ABORT_TEST reply is received.
*/
if (link) {
mutex_enter(&link->g_lock);
/*
* If the reply to the linked entry hasn't been
* received, clear the existing link->f_error,
* and await the reply.
*/
if (link->m_reply == 0) {
link->f_error = 0;
}
to_val = ddi_get_lbolt() + (timeout * hz);
while (link->m_reply == 0 && link->f_error == 0) {
crv = cv_timedwait(&link->g_cv, &link->g_lock,
to_val);
switch (crv) {
case -1: /* timed out */
cmn_err(CE_NOTE,
"!link msgid=0x%x reply timed out",
link->msgid);
link->f_error = ETIMEDOUT;
break;
default:
break;
}
}
mutex_exit(&link->g_lock);
}
}
mutex_exit(&listp->g_lock);
mutex_exit(&listp->s_lock);
return (listp);
}
static sbd_error_t *
drmach_mbx2sbderr(drmach_msglist_t *mlp)
{
char a_pnt[MAXNAMELEN];
dr_proto_hdr_t *php;
int bnum;
if (mlp->f_error) {
/*
* If framework failure is due to signal, return "no error"
* error.
*/
if (mlp->f_error == EINTR)
return (drerr_new(0, ESTC_NONE, NULL));
mutex_enter(&drmach_g_mbox_mutex);
drmach_mbox_iflag = 0;
mutex_exit(&drmach_g_mbox_mutex);
if (!mlp->p_flag)
return (drerr_new(1, ESTC_MBXRQST, NULL));
else
return (drerr_new(1, ESTC_MBXRPLY, NULL));
}
php = (dr_proto_hdr_t *)mlp->o_buf;
bnum = 2 * php->expbrd + php->slot;
a_pnt[0] = '\0';
(void) drmach_board_name(bnum, a_pnt, MAXNAMELEN);
switch (mlp->e_code) {
case 0:
return (NULL);
case DRERR_NOACL:
return (drerr_new(0, ESTC_NOACL, "%s", a_pnt));
case DRERR_NOT_ASSIGNED:
return (drerr_new(0, ESTC_NOT_ASSIGNED, "%s", a_pnt));
case DRERR_NOT_ACTIVE:
return (drerr_new(0, ESTC_NOT_ACTIVE, "%s", a_pnt));
case DRERR_EMPTY_SLOT:
return (drerr_new(0, ESTC_EMPTY_SLOT, "%s", a_pnt));
case DRERR_POWER_OFF:
return (drerr_new(0, ESTC_POWER_OFF, "%s", a_pnt));
case DRERR_TEST_IN_PROGRESS:
return (drerr_new(0, ESTC_TEST_IN_PROGRESS,
"%s", a_pnt));
case DRERR_TESTING_BUSY:
return (drerr_new(0, ESTC_TESTING_BUSY, "%s", a_pnt));
case DRERR_TEST_REQUIRED:
return (drerr_new(0, ESTC_TEST_REQUIRED, "%s", a_pnt));
case DRERR_UNAVAILABLE:
return (drerr_new(0, ESTC_UNAVAILABLE, "%s", a_pnt));
case DRERR_RECOVERABLE:
return (drerr_new(0, ESTC_SMS_ERR_RECOVERABLE,
"%s", a_pnt));
case DRERR_UNRECOVERABLE:
return (drerr_new(1, ESTC_SMS_ERR_UNRECOVERABLE,
"%s", a_pnt));
default:
return (drerr_new(1, ESTC_MBOX_UNKNOWN, NULL));
}
}
static sbd_error_t *
drmach_mbox_trans(uint8_t msgtype, int bnum, caddr_t obufp, int olen,
caddr_t ibufp, int ilen)
{
int timeout = 0;
int ntries = 0;
int nosignals = 0;
dr_proto_hdr_t *hdrp;
drmach_msglist_t *mlp;
sbd_error_t *err = NULL;
if (msgtype != DRMSG_MBOX_INIT) {
mutex_enter(&drmach_ri_mbox_mutex);
mutex_enter(&drmach_g_mbox_mutex);
if (drmach_mbox_iflag == 0) {
/* need to initialize the mailbox */
dr_proto_hdr_t imsg;
mutex_exit(&drmach_g_mbox_mutex);
imsg.command = DRMSG_MBOX_INIT;
imsg.message_id = drmach_get_msgid();
imsg.drproto_version = DRMBX_VERSION;
imsg.expbrd = 0;
imsg.slot = 0;
cmn_err(CE_WARN,
"!reinitializing DR mailbox");
mlp = drmach_mbox_req_rply(&imsg, sizeof (imsg), 0, 0,
10, 5, 0, NULL);
err = drmach_mbx2sbderr(mlp);
/*
* If framework failure incoming is encountered on
* the MBOX_INIT [timeout on SMS reply], the error
* type must be changed before returning to caller.
* This is to prevent drmach_board_connect() and
* drmach_board_disconnect() from marking boards
* UNUSABLE based on MBOX_INIT failures.
*/
if ((err != NULL) && (err->e_code == ESTC_MBXRPLY)) {
cmn_err(CE_WARN,
"!Changed mbox incoming to outgoing"
" failure on reinit");
sbd_err_clear(&err);
err = drerr_new(0, ESTC_MBXRQST, NULL);
}
drmach_msglist_destroy(mlp);
if (err) {
mutex_exit(&drmach_ri_mbox_mutex);
return (err);
}
mutex_enter(&drmach_g_mbox_mutex);
drmach_mbox_iflag = 1;
}
mutex_exit(&drmach_g_mbox_mutex);
mutex_exit(&drmach_ri_mbox_mutex);
}
hdrp = (dr_proto_hdr_t *)obufp;
/* setup outgoing mailbox header */
hdrp->command = msgtype;
hdrp->message_id = drmach_get_msgid();
hdrp->drproto_version = DRMBX_VERSION;
hdrp->expbrd = DRMACH_BNUM2EXP(bnum);
hdrp->slot = DRMACH_BNUM2SLOT(bnum);
switch (msgtype) {
case DRMSG_MBOX_INIT:
timeout = drmach_to_mbxinit;
ntries = 1;
nosignals = 0;
break;
case DRMSG_ASSIGN:
timeout = drmach_to_assign;
ntries = 1;
nosignals = 0;
break;
case DRMSG_UNASSIGN:
timeout = drmach_to_unassign;
ntries = 1;
nosignals = 0;
break;
case DRMSG_POWERON:
timeout = drmach_to_poweron;
ntries = 1;
nosignals = 0;
break;
case DRMSG_POWEROFF:
timeout = drmach_to_poweroff;
ntries = 1;
nosignals = 0;
break;
case DRMSG_SHOWBOARD:
timeout = drmach_to_showboard;
ntries = 1;
nosignals = 0;
break;
case DRMSG_CLAIM:
timeout = drmach_to_claim;
ntries = 1;
nosignals = 1;
break;
case DRMSG_UNCLAIM:
timeout = drmach_to_unclaim;
ntries = 1;
nosignals = 1;
break;
case DRMSG_UNCONFIG:
timeout = drmach_to_unconfig;
ntries = 1;
nosignals = 0;
break;
case DRMSG_TESTBOARD:
timeout = drmach_to_testboard;
ntries = 1;
nosignals = 0;
break;
default:
cmn_err(CE_WARN,
"Unknown outgoing message type 0x%x", msgtype);
err = DRMACH_INTERNAL_ERROR();
break;
}
if (err == NULL) {
mlp = drmach_mbox_req_rply(hdrp, olen, ibufp, ilen,
timeout, ntries, nosignals, NULL);
err = drmach_mbx2sbderr(mlp);
/*
* For DRMSG_TESTBOARD attempts which have timed out, or
* been aborted due to a signal received after mboxsc_putmsg()
* has succeeded in sending the message, a DRMSG_ABORT_TEST
* must be sent.
*/
if ((msgtype == DRMSG_TESTBOARD) && (err != NULL) &&
((mlp->f_error == EINTR) || ((mlp->f_error == ETIMEDOUT) &&
(mlp->p_flag != 0)))) {
drmach_msglist_t *abmlp;
dr_abort_test_t abibuf;
hdrp->command = DRMSG_ABORT_TEST;
hdrp->message_id = drmach_get_msgid();
abmlp = drmach_mbox_req_rply(hdrp,
sizeof (dr_abort_test_t), (caddr_t)&abibuf,
sizeof (abibuf), drmach_to_aborttest, 5, 1, mlp);
cmn_err(CE_WARN, "test aborted");
drmach_msglist_destroy(abmlp);
}
drmach_msglist_destroy(mlp);
}
return (err);
}
static int
drmach_mbox_init()
{
int err;
caddr_t obufp;
sbd_error_t *serr = NULL;
mboxsc_timeout_range_t mbxtoz;
drmach_mbox_istate = 0;
/* register the outgoing mailbox */
if ((err = mboxsc_init(KEY_DRSC, MBOXSC_MBOX_OUT,
NULL)) != 0) {
cmn_err(CE_WARN, "DR - SC mboxsc_init failed: 0x%x", err);
return (-1);
}
drmach_mbox_istate = 1;
/* setup the mboxsc_putmsg timeout value */
if (drmach_use_tuned_putmsg_to) {
cmn_err(CE_NOTE, "!using tuned drmach_to_putmsg = 0x%lx\n",
drmach_to_putmsg);
} else {
if ((err = mboxsc_ctrl(KEY_DRSC,
MBOXSC_CMD_PUTMSG_TIMEOUT_RANGE, &mbxtoz)) != 0) {
cmn_err(CE_WARN, "mboxsc_ctrl failed: 0x%x", err);
drmach_to_putmsg = 60000;
} else {
drmach_to_putmsg = mboxsc_putmsg_def_timeout() * 6;
DRMACH_PR("putmsg range is 0x%lx - 0x%lx value"
" is 0x%lx\n", mbxtoz.min_timeout,
mbxtoz.max_timeout, drmach_to_putmsg);
}
}
/* register the incoming mailbox */
if ((err = mboxsc_init(KEY_SCDR, MBOXSC_MBOX_IN,
drmach_mbox_event)) != 0) {
cmn_err(CE_WARN, "SC - DR mboxsc_init failed: 0x%x", err);
return (-1);
}
drmach_mbox_istate = 2;
/* initialize mutex for mailbox globals */
mutex_init(&drmach_g_mbox_mutex, NULL, MUTEX_DRIVER, NULL);
/* initialize mutex for mailbox re-init */
mutex_init(&drmach_ri_mbox_mutex, NULL, MUTEX_DRIVER, NULL);
/* initialize mailbox message list elements */
drmach_msglist_first = drmach_msglist_last = NULL;
mutex_init(&drmach_msglist_mutex, NULL, MUTEX_DRIVER, NULL);
mutex_init(&drmach_sendmsg_mutex, NULL, MUTEX_DRIVER, NULL);
cv_init(&drmach_sendmsg_cv, NULL, CV_DRIVER, NULL);
drmach_mbox_istate = 3;
/* start mailbox sendmsg thread */
drmach_sendmsg_thread_run = 1;
if (drmach_sendmsg_thread == NULL)
drmach_sendmsg_thread = thread_create(NULL, 0,
(void (*)())drmach_mbox_sendmsg, NULL, 0, &p0,
TS_RUN, minclsyspri);
/* start mailbox getmsg thread */
drmach_getmsg_thread_run = 1;
if (drmach_getmsg_thread == NULL)
drmach_getmsg_thread = thread_create(NULL, 0,
(void (*)())drmach_mbox_getmsg, NULL, 0, &p0,
TS_RUN, minclsyspri);
obufp = kmem_zalloc(sizeof (dr_proto_hdr_t), KM_SLEEP);
serr = drmach_mbox_trans(DRMSG_MBOX_INIT, 0, obufp,
sizeof (dr_proto_hdr_t), (caddr_t)NULL, 0);
kmem_free(obufp, sizeof (dr_proto_hdr_t));
if (serr) {
cmn_err(CE_WARN, "mbox_init: MBOX_INIT failed ecode=0x%x",
serr->e_code);
sbd_err_clear(&serr);
return (-1);
}
mutex_enter(&drmach_g_mbox_mutex);
drmach_mbox_iflag = 1;
drmach_mbox_ipending = 0;
mutex_exit(&drmach_g_mbox_mutex);
return (0);
}
static int
drmach_mbox_fini()
{
int err, rv = 0;
if (drmach_mbox_istate > 2) {
drmach_getmsg_thread_run = 0;
drmach_sendmsg_thread_run = 0;
cmn_err(CE_WARN,
"drmach_mbox_fini: waiting for mbox threads...");
while ((drmach_getmsg_thread_run == 0) ||
(drmach_sendmsg_thread_run == 0)) {
continue;
}
cmn_err(CE_WARN,
"drmach_mbox_fini: mbox threads done.");
mutex_destroy(&drmach_msglist_mutex);
}
if (drmach_mbox_istate) {
/* de-register the outgoing mailbox */
if ((err = mboxsc_fini(KEY_DRSC)) != 0) {
cmn_err(CE_WARN, "DR - SC mboxsc_fini failed: 0x%x",
err);
rv = -1;
}
}
if (drmach_mbox_istate > 1) {
/* de-register the incoming mailbox */
if ((err = mboxsc_fini(KEY_SCDR)) != 0) {
cmn_err(CE_WARN, "SC - DR mboxsc_fini failed: 0x%x",
err);
rv = -1;
}
}
mutex_destroy(&drmach_g_mbox_mutex);
mutex_destroy(&drmach_ri_mbox_mutex);
return (rv);
}
static int
drmach_portid2bnum(int portid)
{
int slot;
switch (portid & 0x1f) {
case 0: case 1: case 2: case 3: /* cpu/wci devices */
case 0x1e: /* slot 0 axq registers */
slot = 0;
break;
case 8: case 9: /* cpu devices */
case 0x1c: case 0x1d: /* schizo/wci devices */
case 0x1f: /* slot 1 axq registers */
slot = 1;
break;
default:
ASSERT(0); /* catch in debug kernels */
}
return (((portid >> 4) & 0x7e) | slot);
}
extern int axq_suspend_iopause;
static int
hold_rele_branch(dev_info_t *rdip, void *arg)
{
int i;
int *holdp = (int *)arg;
char *name = ddi_node_name(rdip);
/*
* For Starcat, we must be children of the root devinfo node
*/
ASSERT(ddi_get_parent(rdip) == ddi_root_node());
i = drmach_name2type_idx(name);
/*
* Only children of the root devinfo node need to be
* held/released since they are the only valid targets
* of tree operations. This corresponds to the node types
* listed in the drmach_name2type array.
*/
if (i < 0) {
/* Not of interest to us */
return (DDI_WALK_PRUNECHILD);
}
if (*holdp) {
ASSERT(!e_ddi_branch_held(rdip));
e_ddi_branch_hold(rdip);
} else {
ASSERT(e_ddi_branch_held(rdip));
e_ddi_branch_rele(rdip);
}
return (DDI_WALK_PRUNECHILD);
}
static int
drmach_init(void)
{
pnode_t nodeid;
gdcd_t *gdcd;
int bnum;
dev_info_t *rdip;
int hold, circ;
mutex_enter(&drmach_i_lock);
if (drmach_initialized) {
mutex_exit(&drmach_i_lock);
return (0);
}
gdcd = drmach_gdcd_new();
if (gdcd == NULL) {
mutex_exit(&drmach_i_lock);
cmn_err(CE_WARN, "drmach_init: failed to access GDCD\n");
return (-1);
}
drmach_boards = drmach_array_new(0, MAX_BOARDS - 1);
nodeid = prom_childnode(prom_rootnode());
do {
int len;
int portid;
drmachid_t id;
len = prom_getproplen(nodeid, "portid");
if (len != sizeof (portid))
continue;
portid = -1;
(void) prom_getprop(nodeid, "portid", (caddr_t)&portid);
if (portid == -1)
continue;
bnum = drmach_portid2bnum(portid);
if (drmach_array_get(drmach_boards, bnum, &id) == -1) {
/* portid translated to an invalid board number */
cmn_err(CE_WARN, "OBP node 0x%x has"
" invalid property value, %s=%u",
nodeid, "portid", portid);
/* clean up */
drmach_array_dispose(drmach_boards,
drmach_board_dispose);
drmach_gdcd_dispose(gdcd);
mutex_exit(&drmach_i_lock);
return (-1);
} else if (id == NULL) {
drmach_board_t *bp;
l1_slot_stat_t *dcd;
int exp, slot;
bp = drmach_board_new(bnum);
bp->assigned = !drmach_initialized;
bp->powered = !drmach_initialized;
exp = DRMACH_BNUM2EXP(bnum);
slot = DRMACH_BNUM2SLOT(bnum);
dcd = &gdcd->dcd_slot[exp][slot];
bp->stardrb_offset =
dcd->l1ss_cpu_drblock_xwd_offset << 3;
DRMACH_PR("%s: stardrb_offset=0x%lx\n", bp->cm.name,
bp->stardrb_offset);
if (gdcd->dcd_slot[exp][slot].l1ss_flags &
L1SSFLG_THIS_L1_NULL_PROC_LPA) {
bp->flags |= DRMACH_NULL_PROC_LPA;
DRMACH_PR("%s: NULL proc LPA\n", bp->cm.name);
}
}
} while ((nodeid = prom_nextnode(nodeid)) != OBP_NONODE);
drmach_cpu_sram_va = vmem_alloc(heap_arena, PAGESIZE, VM_SLEEP);
if (gdcd->dcd_testcage_log2_mbytes_size != DCD_DR_TESTCAGE_DISABLED) {
ASSERT(gdcd->dcd_testcage_log2_mbytes_size ==
gdcd->dcd_testcage_log2_mbytes_align);
drmach_iocage_paddr =
(uint64_t)gdcd->dcd_testcage_mbyte_PA << 20;
drmach_iocage_size =
1 << (gdcd->dcd_testcage_log2_mbytes_size + 20);
drmach_iocage_vaddr = (caddr_t)vmem_alloc(heap_arena,
drmach_iocage_size, VM_SLEEP);
hat_devload(kas.a_hat, drmach_iocage_vaddr, drmach_iocage_size,
mmu_btop(drmach_iocage_paddr),
PROT_READ | PROT_WRITE,
HAT_LOAD_LOCK | HAT_LOAD_NOCONSIST);
DRMACH_PR("gdcd size=0x%x align=0x%x PA=0x%x\n",
gdcd->dcd_testcage_log2_mbytes_size,
gdcd->dcd_testcage_log2_mbytes_align,
gdcd->dcd_testcage_mbyte_PA);
DRMACH_PR("drmach size=0x%x PA=0x%lx VA=0x%p\n",
drmach_iocage_size, drmach_iocage_paddr,
drmach_iocage_vaddr);
}
if (drmach_iocage_size == 0) {
drmach_array_dispose(drmach_boards, drmach_board_dispose);
drmach_boards = NULL;
vmem_free(heap_arena, drmach_cpu_sram_va, PAGESIZE);
drmach_gdcd_dispose(gdcd);
mutex_exit(&drmach_i_lock);
cmn_err(CE_WARN, "drmach_init: iocage not available\n");
return (-1);
}
drmach_gdcd_dispose(gdcd);
mutex_init(&drmach_iocage_lock, NULL, MUTEX_DRIVER, NULL);
cv_init(&drmach_iocage_cv, NULL, CV_DRIVER, NULL);
mutex_init(&drmach_xt_mb_lock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&drmach_bus_sync_lock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&drmach_slice_table_lock, NULL, MUTEX_DRIVER, NULL);
mutex_enter(&cpu_lock);
mutex_enter(&drmach_iocage_lock);
ASSERT(drmach_iocage_is_busy == 0);
drmach_iocage_is_busy = 1;
drmach_iocage_mem_scrub(drmach_iocage_size);
drmach_iocage_is_busy = 0;
cv_signal(&drmach_iocage_cv);
mutex_exit(&drmach_iocage_lock);
mutex_exit(&cpu_lock);
if (drmach_mbox_init() == -1) {
cmn_err(CE_WARN, "DR - SC mailbox initialization Failed");
}
/*
* Walk immediate children of devinfo root node and hold
* all devinfo branches of interest.
*/
hold = 1;
rdip = ddi_root_node();
ndi_devi_enter(rdip, &circ);
ddi_walk_devs(ddi_get_child(rdip), hold_rele_branch, &hold);
ndi_devi_exit(rdip, circ);
drmach_initialized = 1;
/*
* To avoid a circular patch dependency between DR and AXQ, the AXQ
* rev introducing the axq_iopause_*_all interfaces should not regress
* when installed without the DR rev using those interfaces. The default
* is for iopause to be enabled/disabled during axq suspend/resume. By
* setting the following axq flag to zero, axq will not enable iopause
* during suspend/resume, instead DR will call the axq_iopause_*_all
* interfaces during drmach_copy_rename.
*/
axq_suspend_iopause = 0;
mutex_exit(&drmach_i_lock);
return (0);
}
static void
drmach_fini(void)
{
dev_info_t *rdip;
int hold, circ;
if (drmach_initialized) {
rw_enter(&drmach_boards_rwlock, RW_WRITER);
drmach_array_dispose(drmach_boards, drmach_board_dispose);
drmach_boards = NULL;
rw_exit(&drmach_boards_rwlock);
mutex_destroy(&drmach_slice_table_lock);
mutex_destroy(&drmach_xt_mb_lock);
mutex_destroy(&drmach_bus_sync_lock);
cv_destroy(&drmach_iocage_cv);
mutex_destroy(&drmach_iocage_lock);
vmem_free(heap_arena, drmach_cpu_sram_va, PAGESIZE);
/*
* Walk immediate children of the root devinfo node
* releasing holds acquired on branches in drmach_init()
*/
hold = 0;
rdip = ddi_root_node();
ndi_devi_enter(rdip, &circ);
ddi_walk_devs(ddi_get_child(rdip), hold_rele_branch, &hold);
ndi_devi_exit(rdip, circ);
drmach_initialized = 0;
}
drmach_mbox_fini();
if (drmach_xt_mb != NULL) {
vmem_free(static_alloc_arena, (void *)drmach_xt_mb,
drmach_xt_mb_size);
}
rw_destroy(&drmach_boards_rwlock);
mutex_destroy(&drmach_i_lock);
}
static void
drmach_mem_read_madr(drmach_mem_t *mp, int bank, uint64_t *madr)
{
kpreempt_disable();
/* get register address, read madr value */
if (STARCAT_CPUID_TO_PORTID(CPU->cpu_id) == mp->dev.portid) {
*madr = lddmcdecode(DRMACH_MC_ASI_ADDR(mp, bank));
} else {
*madr = lddphysio(DRMACH_MC_ADDR(mp, bank));
}
kpreempt_enable();
}
static uint64_t *
drmach_prep_mc_rename(uint64_t *p, int local,
drmach_mem_t *mp, uint64_t current_basepa, uint64_t new_basepa)
{
int bank;
for (bank = 0; bank < DRMACH_MC_NBANKS; bank++) {
uint64_t madr, bank_offset;
/* fetch mc's bank madr register value */
drmach_mem_read_madr(mp, bank, &madr);
if (madr & DRMACH_MC_VALID_MASK) {
uint64_t bankpa;
bank_offset = (DRMACH_MC_UM_TO_PA(madr) |
DRMACH_MC_LM_TO_PA(madr)) - current_basepa;
bankpa = new_basepa + bank_offset;
/* encode new base pa into madr */
madr &= ~DRMACH_MC_UM_MASK;
madr |= DRMACH_MC_PA_TO_UM(bankpa);
madr &= ~DRMACH_MC_LM_MASK;
madr |= DRMACH_MC_PA_TO_LM(bankpa);
if (local)
*p++ = DRMACH_MC_ASI_ADDR(mp, bank);
else
*p++ = DRMACH_MC_ADDR(mp, bank);
*p++ = madr;
}
}
return (p);
}
static uint64_t *
drmach_prep_schizo_script(uint64_t *p, drmach_mem_t *mp, uint64_t new_basepa)
{
drmach_board_t *bp;
int rv;
int idx;
drmachid_t id;
uint64_t last_scsr_pa = 0;
/* memory is always in slot 0 */
ASSERT(DRMACH_BNUM2SLOT(mp->dev.bp->bnum) == 0);
/* look up slot 1 board on same expander */
idx = DRMACH_EXPSLOT2BNUM(DRMACH_BNUM2EXP(mp->dev.bp->bnum), 1);
rv = drmach_array_get(drmach_boards, idx, &id);
bp = id; /* bp will be NULL if board not found */
/* look up should never be out of bounds */
ASSERT(rv == 0);
/* nothing to do when board is not found or has no devices */
if (rv == -1 || bp == NULL || bp->devices == NULL)
return (p);
rv = drmach_array_first(bp->devices, &idx, &id);
while (rv == 0) {
if (DRMACH_IS_IO_ID(id)) {
drmach_io_t *io = id;
/*
* Skip all non-Schizo IO devices (only IO nodes
* that are Schizo devices have non-zero scsr_pa).
* Filter out "other" leaf to avoid writing to the
* same Schizo Control/Status Register twice.
*/
if (io->scsr_pa && io->scsr_pa != last_scsr_pa) {
uint64_t scsr;
scsr = lddphysio(io->scsr_pa);
scsr &= ~(DRMACH_LPA_BASE_MASK |
DRMACH_LPA_BND_MASK);
scsr |= DRMACH_PA_TO_LPA_BASE(new_basepa);
scsr |= DRMACH_PA_TO_LPA_BND(
new_basepa + DRMACH_MEM_SLICE_SIZE);
*p++ = io->scsr_pa;
*p++ = scsr;
last_scsr_pa = io->scsr_pa;
}
}
rv = drmach_array_next(bp->devices, &idx, &id);
}
return (p);
}
/*
* For Panther MCs, append the MC idle reg address and drmach_mem_t pointer.
* The latter is returned when drmach_rename fails to idle a Panther MC and
* is used to identify the MC for error reporting.
*/
static uint64_t *
drmach_prep_pn_mc_idle(uint64_t *p, drmach_mem_t *mp, int local)
{
/* only slot 0 has memory */
ASSERT(DRMACH_BNUM2SLOT(mp->dev.bp->bnum) == 0);
ASSERT(IS_PANTHER(mp->dev.bp->cpu_impl));
for (mp = mp->dev.bp->mem; mp != NULL; mp = mp->next) {
ASSERT(DRMACH_IS_MEM_ID(mp));
if (mp->dev.portid == STARCAT_CPUID_TO_PORTID(CPU->cpu_id)) {
if (local) {
*p++ = ASI_EMU_ACT_STATUS_VA; /* local ASI */
*p++ = (uintptr_t)mp;
}
} else if (!local) {
*p++ = DRMACH_EMU_ACT_STATUS_ADDR(mp); /* PIO */
*p++ = (uintptr_t)mp;
}
}
return (p);
}
static sbd_error_t *
drmach_prep_rename_script(drmach_mem_t *s_mp, drmach_mem_t *t_mp,
uint64_t t_slice_offset, caddr_t buf, int buflen)
{
_NOTE(ARGUNUSED(buflen))
uint64_t *p = (uint64_t *)buf, *q;
sbd_error_t *err;
int rv;
drmach_mem_t *mp, *skip_mp;
uint64_t s_basepa, t_basepa;
uint64_t s_new_basepa, t_new_basepa;
/* verify supplied buffer space is adequate */
ASSERT(buflen >=
/* addr for all possible MC banks */
(sizeof (uint64_t) * 4 * 4 * 18) +
/* list section terminator */
(sizeof (uint64_t) * 1) +
/* addr/id tuple for local Panther MC idle reg */
(sizeof (uint64_t) * 2) +
/* list section terminator */
(sizeof (uint64_t) * 1) +
/* addr/id tuple for 2 boards with 4 Panther MC idle regs */
(sizeof (uint64_t) * 2 * 2 * 4) +
/* list section terminator */
(sizeof (uint64_t) * 1) +
/* addr/val tuple for 1 proc with 4 MC banks */
(sizeof (uint64_t) * 2 * 4) +
/* list section terminator */
(sizeof (uint64_t) * 1) +
/* addr/val tuple for 2 boards w/ 2 schizos each */
(sizeof (uint64_t) * 2 * 2 * 2) +
/* addr/val tuple for 2 boards w/ 16 MC banks each */
(sizeof (uint64_t) * 2 * 2 * 16) +
/* list section terminator */
(sizeof (uint64_t) * 1) +
/* addr/val tuple for 18 AXQs w/ two slots each */
(sizeof (uint64_t) * 2 * 2 * 18) +
/* list section terminator */
(sizeof (uint64_t) * 1) +
/* list terminator */
(sizeof (uint64_t) * 1));
/* copy bank list to rename script */
mutex_enter(&drmach_bus_sync_lock);
for (q = drmach_bus_sync_list; *q; q++, p++)
*p = *q;
mutex_exit(&drmach_bus_sync_lock);
/* list section terminator */
*p++ = 0;
/*
* Write idle script for MC on this processor. A script will be
* produced only if this is a Panther processor on the source or
* target board.
*/
if (IS_PANTHER(s_mp->dev.bp->cpu_impl))
p = drmach_prep_pn_mc_idle(p, s_mp, 1);
if (IS_PANTHER(t_mp->dev.bp->cpu_impl))
p = drmach_prep_pn_mc_idle(p, t_mp, 1);
/* list section terminator */
*p++ = 0;
/*
* Write idle script for all other MCs on source and target
* Panther boards.
*/
if (IS_PANTHER(s_mp->dev.bp->cpu_impl))
p = drmach_prep_pn_mc_idle(p, s_mp, 0);
if (IS_PANTHER(t_mp->dev.bp->cpu_impl))
p = drmach_prep_pn_mc_idle(p, t_mp, 0);
/* list section terminator */
*p++ = 0;
/*
* Step 1: Write source base address to target MC
* with present bit off.
* Step 2: Now rewrite target reg with present bit on.
*/
err = drmach_mem_get_base_physaddr(s_mp, &s_basepa);
ASSERT(err == NULL);
err = drmach_mem_get_base_physaddr(t_mp, &t_basepa);
ASSERT(err == NULL);
/* exchange base pa. include slice offset in new target base pa */
s_new_basepa = t_basepa & ~ (DRMACH_MEM_SLICE_SIZE - 1);
t_new_basepa = (s_basepa & ~ (DRMACH_MEM_SLICE_SIZE - 1)) +
t_slice_offset;
DRMACH_PR("s_new_basepa 0x%lx\n", s_new_basepa);
DRMACH_PR("t_new_basepa 0x%lx\n", t_new_basepa);
DRMACH_PR("preparing MC MADR rename script (master is CPU%d):\n",
CPU->cpu_id);
/*
* Write rename script for MC on this processor. A script will
* be produced only if this processor is on the source or target
* board.
*/
skip_mp = NULL;
mp = s_mp->dev.bp->mem;
while (mp != NULL && skip_mp == NULL) {
if (mp->dev.portid == STARCAT_CPUID_TO_PORTID(CPU->cpu_id)) {
skip_mp = mp;
p = drmach_prep_mc_rename(p, 1, mp, s_basepa,
s_new_basepa);
}
mp = mp->next;
}
mp = t_mp->dev.bp->mem;
while (mp != NULL && skip_mp == NULL) {
if (mp->dev.portid == STARCAT_CPUID_TO_PORTID(CPU->cpu_id)) {
skip_mp = mp;
p = drmach_prep_mc_rename(p, 1, mp, t_basepa,
t_new_basepa);
}
mp = mp->next;
}
/* list section terminator */
*p++ = 0;
/*
* Write rename script for all other MCs on source and target
* boards.
*/
for (mp = s_mp->dev.bp->mem; mp; mp = mp->next) {
if (mp == skip_mp)
continue;
p = drmach_prep_mc_rename(p, 0, mp, s_basepa, s_new_basepa);
}
for (mp = t_mp->dev.bp->mem; mp; mp = mp->next) {
if (mp == skip_mp)
continue;
p = drmach_prep_mc_rename(p, 0, mp, t_basepa, t_new_basepa);
}
/* Write rename script for Schizo LPA_BASE/LPA_BND */
p = drmach_prep_schizo_script(p, s_mp, s_new_basepa);
p = drmach_prep_schizo_script(p, t_mp, t_new_basepa);
/* list section terminator */
*p++ = 0;
DRMACH_PR("preparing AXQ CASM rename script (EXP%d <> EXP%d):\n",
DRMACH_BNUM2EXP(s_mp->dev.bp->bnum),
DRMACH_BNUM2EXP(t_mp->dev.bp->bnum));
rv = axq_do_casm_rename_script(&p,
DRMACH_PA_TO_SLICE(s_new_basepa),
DRMACH_PA_TO_SLICE(t_new_basepa));
if (rv == DDI_FAILURE)
return (DRMACH_INTERNAL_ERROR());
/* list section & final terminator */
*p++ = 0;
*p++ = 0;
#ifdef DEBUG
{
uint64_t *q = (uint64_t *)buf;
/* paranoia */
ASSERT((caddr_t)p <= buf + buflen);
DRMACH_PR("MC bank base pa list:\n");
while (*q) {
uint64_t a = *q++;
DRMACH_PR("0x%lx\n", a);
}
/* skip terminator */
q += 1;
DRMACH_PR("local Panther MC idle reg (via ASI 0x4a):\n");
while (*q) {
DRMACH_PR("addr=0x%lx, mp=0x%lx\n", *q, *(q + 1));
q += 2;
}
/* skip terminator */
q += 1;
DRMACH_PR("non-local Panther MC idle reg (via ASI 0x15):\n");
while (*q) {
DRMACH_PR("addr=0x%lx, mp=0x%lx\n", *q, *(q + 1));
q += 2;
}
/* skip terminator */
q += 1;
DRMACH_PR("MC reprogramming script (via ASI 0x72):\n");
while (*q) {
uint64_t r = *q++; /* register address */
uint64_t v = *q++; /* new register value */
DRMACH_PR("0x%lx = 0x%lx, basepa 0x%lx\n",
r,
v,
DRMACH_MC_UM_TO_PA(v)|DRMACH_MC_LM_TO_PA(v));
}
/* skip terminator */
q += 1;
DRMACH_PR("MC/SCHIZO reprogramming script:\n");
while (*q) {
DRMACH_PR("0x%lx = 0x%lx\n", *q, *(q + 1));
q += 2;
}
/* skip terminator */
q += 1;
DRMACH_PR("AXQ reprogramming script:\n");
while (*q) {
DRMACH_PR("0x%lx = 0x%lx\n", *q, *(q + 1));
q += 2;
}
/* verify final terminator is present */
ASSERT(*(q + 1) == 0);
DRMACH_PR("copy-rename script 0x%p, len %d\n",
buf, (int)((intptr_t)p - (intptr_t)buf));
if (drmach_debug)
DELAY(10000000);
}
#endif
return (NULL);
}
static void
drmach_prep_xt_mb_for_slice_update(drmach_board_t *bp, uchar_t slice)
{
int rv;
ASSERT(MUTEX_HELD(&drmach_xt_mb_lock));
if (bp->devices) {
int d_idx;
drmachid_t d_id;
rv = drmach_array_first(bp->devices, &d_idx, &d_id);
while (rv == 0) {
if (DRMACH_IS_CPU_ID(d_id)) {
drmach_cpu_t *cp = d_id;
processorid_t cpuid = cp->cpuid;
mutex_enter(&cpu_lock);
if (cpu[cpuid] && cpu[cpuid]->cpu_flags)
drmach_xt_mb[cpuid] = 0x80 | slice;
mutex_exit(&cpu_lock);
}
rv = drmach_array_next(bp->devices, &d_idx, &d_id);
}
}
if (DRMACH_BNUM2SLOT(bp->bnum) == 0) {
drmach_board_t *s1bp = NULL;
rv = drmach_array_get(drmach_boards, bp->bnum + 1,
(void *) &s1bp);
if (rv == 0 && s1bp != NULL) {
ASSERT(DRMACH_IS_BOARD_ID(s1bp));
ASSERT(DRMACH_BNUM2SLOT(s1bp->bnum) == 1);
drmach_prep_xt_mb_for_slice_update(s1bp, slice);
}
}
}
sbd_error_t *
drmach_copy_rename_init(drmachid_t t_id, uint64_t t_slice_offset,
drmachid_t s_id, struct memlist *c_ml, drmachid_t *cr_id)
{
extern void drmach_rename(uint64_t *, uint_t *, uint64_t *);
extern void drmach_rename_end(void);
drmach_mem_t *s_mp, *t_mp;
struct memlist *x_ml;
uint64_t off_mask, s_copybasepa, t_copybasepa, t_basepa;
int len;
caddr_t bp, wp;
uint_t *p, *q;
sbd_error_t *err;
tte_t *tte;
drmach_copy_rename_t *cr;
if (!DRMACH_IS_MEM_ID(s_id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
if (!DRMACH_IS_MEM_ID(t_id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
s_mp = s_id;
t_mp = t_id;
/* get starting physical address of target memory */
err = drmach_mem_get_base_physaddr(t_id, &t_basepa);
if (err)
return (err);
/* calculate slice offset mask from slice size */
off_mask = DRMACH_MEM_SLICE_SIZE - 1;
/* calculate source and target base pa */
s_copybasepa = c_ml->address;
t_copybasepa = t_basepa + ((c_ml->address & off_mask) - t_slice_offset);
/* paranoia */
ASSERT((c_ml->address & off_mask) >= t_slice_offset);
/* adjust copy memlist addresses to be relative to copy base pa */
x_ml = c_ml;
while (x_ml != NULL) {
x_ml->address -= s_copybasepa;
x_ml = x_ml->next;
}
#ifdef DEBUG
{
uint64_t s_basepa, s_size, t_size;
x_ml = c_ml;
while (x_ml->next != NULL)
x_ml = x_ml->next;
DRMACH_PR("source copy span: base pa 0x%lx, end pa 0x%lx\n",
s_copybasepa,
s_copybasepa + x_ml->address + x_ml->size);
DRMACH_PR("target copy span: base pa 0x%lx, end pa 0x%lx\n",
t_copybasepa,
t_copybasepa + x_ml->address + x_ml->size);
DRMACH_PR("copy memlist (relative to copy base pa):\n");
DRMACH_MEMLIST_DUMP(c_ml);
err = drmach_mem_get_base_physaddr(s_id, &s_basepa);
ASSERT(err == NULL);
err = drmach_mem_get_size(s_id, &s_size);
ASSERT(err == NULL);
err = drmach_mem_get_size(t_id, &t_size);
ASSERT(err == NULL);
DRMACH_PR("current source base pa 0x%lx, size 0x%lx\n",
s_basepa, s_size);
DRMACH_PR("current target base pa 0x%lx, size 0x%lx\n",
t_basepa, t_size);
}
#endif /* DEBUG */
/* Map in appropriate cpu sram page */
tte = &drmach_cpu_sram_tte[CPU->cpu_id];
ASSERT(TTE_IS_VALID(tte) && TTE_IS_8K(tte) &&
TTE_IS_PRIVILEGED(tte) && TTE_IS_LOCKED(tte));
sfmmu_dtlb_ld_kva(drmach_cpu_sram_va, tte);
sfmmu_itlb_ld_kva(drmach_cpu_sram_va, tte);
bp = wp = drmach_cpu_sram_va;
/* Make sure the rename routine will fit */
len = (ptrdiff_t)drmach_rename_end - (ptrdiff_t)drmach_rename;
ASSERT(wp + len < bp + PAGESIZE);
/* copy text. standard bcopy not designed to work in nc space */
p = (uint_t *)wp;
q = (uint_t *)drmach_rename;
while (q < (uint_t *)drmach_rename_end)
*p++ = *q++;
/* zero remainder. standard bzero not designed to work in nc space */
while (p < (uint_t *)(bp + PAGESIZE))
*p++ = 0;
DRMACH_PR("drmach_rename function 0x%p, len %d\n", wp, len);
wp += (len + 15) & ~15;
err = drmach_prep_rename_script(s_mp, t_mp, t_slice_offset,
wp, PAGESIZE - (wp - bp));
if (err) {
cleanup:
xt_one(CPU->cpu_id, vtag_flushpage_tl1,
(uint64_t)drmach_cpu_sram_va, (uint64_t)ksfmmup);
return (err);
}
/* disable and flush CDC */
if (axq_cdc_disable_flush_all() != DDI_SUCCESS) {
axq_cdc_enable_all(); /* paranoia */
err = DRMACH_INTERNAL_ERROR();
goto cleanup;
}
/* mark both memory units busy */
t_mp->dev.busy++;
s_mp->dev.busy++;
cr = vmem_alloc(static_alloc_arena, sizeof (drmach_copy_rename_t),
VM_SLEEP);
cr->isa = (void *)drmach_copy_rename_init;
cr->data = wp;
cr->c_ml = c_ml;
cr->s_mp = s_mp;
cr->t_mp = t_mp;
cr->s_copybasepa = s_copybasepa;
cr->t_copybasepa = t_copybasepa;
cr->ecode = DRMACH_CR_OK;
mutex_enter(&drmach_slice_table_lock);
mutex_enter(&drmach_xt_mb_lock);
bzero((void *)drmach_xt_mb, drmach_xt_mb_size);
if (DRMACH_L1_SET_LPA(s_mp->dev.bp) && drmach_reprogram_lpa) {
drmach_prep_xt_mb_for_slice_update(s_mp->dev.bp,
DRMACH_PA_TO_SLICE(t_copybasepa));
}
if (DRMACH_L1_SET_LPA(t_mp->dev.bp) && drmach_reprogram_lpa) {
drmach_prep_xt_mb_for_slice_update(t_mp->dev.bp,
DRMACH_PA_TO_SLICE(s_copybasepa));
}
*cr_id = cr;
return (NULL);
}
int drmach_rename_count;
int drmach_rename_ntries;
sbd_error_t *
drmach_copy_rename_fini(drmachid_t id)
{
drmach_copy_rename_t *cr = id;
sbd_error_t *err = NULL;
dr_mbox_msg_t *obufp;
ASSERT(cr->isa == (void *)drmach_copy_rename_init);
axq_cdc_enable_all();
xt_one(CPU->cpu_id, vtag_flushpage_tl1,
(uint64_t)drmach_cpu_sram_va, (uint64_t)ksfmmup);
switch (cr->ecode) {
case DRMACH_CR_OK:
break;
case DRMACH_CR_MC_IDLE_ERR: {
dev_info_t *dip = NULL;
drmach_mem_t *mp = (drmach_mem_t *)cr->earg;
char *path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
ASSERT(DRMACH_IS_MEM_ID(mp));
err = drmach_get_dip(mp, &dip);
ASSERT(err == NULL);
ASSERT(dip != NULL);
err = drerr_new(0, ESBD_MEMFAIL, NULL);
(void) ddi_pathname(dip, path);
cmn_err(CE_WARN, "failed to idle memory controller %s on %s: "
"copy-rename aborted", path, mp->dev.bp->cm.name);
kmem_free(path, MAXPATHLEN);
break;
}
case DRMACH_CR_IOPAUSE_ERR:
ASSERT((uintptr_t)cr->earg >= 0 &&
(uintptr_t)cr->earg < AXQ_MAX_EXP);
err = drerr_new(0, ESBD_SUSPEND, "EX%d", (uintptr_t)cr->earg);
cmn_err(CE_WARN, "failed to idle EX%ld AXQ slot1 activity prior"
" to copy-rename", (uintptr_t)cr->earg);
break;
case DRMACH_CR_ONTRAP_ERR:
err = drerr_new(0, ESBD_MEMFAIL, NULL);
cmn_err(CE_WARN, "copy-rename aborted due to uncorrectable "
"memory error");
break;
default:
err = DRMACH_INTERNAL_ERROR();
cmn_err(CE_WARN, "unknown copy-rename error code (%d)\n",
cr->ecode);
break;
}
#ifdef DEBUG
if ((DRMACH_L1_SET_LPA(cr->s_mp->dev.bp) ||
DRMACH_L1_SET_LPA(cr->t_mp->dev.bp)) && drmach_reprogram_lpa) {
int i;
for (i = 0; i < NCPU; i++) {
if (drmach_xt_mb[i])
DRMACH_PR("cpu%d ignored drmach_xt_mb", i);
}
}
#endif
mutex_exit(&drmach_xt_mb_lock);
if (cr->c_ml != NULL)
memlist_delete(cr->c_ml);
cr->t_mp->dev.busy--;
cr->s_mp->dev.busy--;
if (err) {
mutex_exit(&drmach_slice_table_lock);
goto done;
}
/* update casm shadow for target and source board */
drmach_slice_table_update(cr->t_mp->dev.bp, 0);
drmach_slice_table_update(cr->s_mp->dev.bp, 0);
mutex_exit(&drmach_slice_table_lock);
mutex_enter(&drmach_bus_sync_lock);
drmach_bus_sync_list_update();
mutex_exit(&drmach_bus_sync_lock);
/*
* Make a good-faith effort to notify the SC about the copy-rename, but
* don't worry if it fails, since a subsequent claim/unconfig/unclaim
* will duplicate the update.
*/
obufp = kmem_zalloc(sizeof (dr_mbox_msg_t), KM_SLEEP);
mutex_enter(&drmach_slice_table_lock);
drmach_msg_memslice_init(obufp->msgdata.dm_uc.mem_slice);
drmach_msg_memregs_init(obufp->msgdata.dm_uc.mem_regs);
mutex_exit(&drmach_slice_table_lock);
(void) drmach_mbox_trans(DRMSG_UNCONFIG, cr->s_mp->dev.bp->bnum,
(caddr_t)obufp, sizeof (dr_mbox_msg_t), (caddr_t)NULL, 0);
kmem_free(obufp, sizeof (dr_mbox_msg_t));
done:
vmem_free(static_alloc_arena, cr, sizeof (drmach_copy_rename_t));
DRMACH_PR("waited %d out of %d tries for drmach_rename_wait on %d cpus",
drmach_rename_ntries, drmach_cpu_ntries, drmach_rename_count);
return (err);
}
int drmach_slow_copy = 0;
void
drmach_copy_rename(drmachid_t id)
{
extern uint_t getpstate(void);
extern void setpstate(uint_t);
extern xcfunc_t drmach_rename_wait;
extern xcfunc_t drmach_rename_done;
extern xcfunc_t drmach_rename_abort;
drmach_copy_rename_t *cr = id;
uint64_t neer;
struct memlist *ml;
int i, count;
int csize, lnsize;
uint64_t caddr;
cpuset_t cpuset;
uint_t pstate;
uint32_t exp = 0;
on_trap_data_t otd;
xcfunc_t *drmach_end_wait_xcall = drmach_rename_done;
ASSERT(cr->isa == (void *)drmach_copy_rename_init);
ASSERT(MUTEX_HELD(&cpu_lock));
ASSERT(cr->ecode == DRMACH_CR_OK);
/*
* Prevent slot1 IO from accessing Safari memory bus.
*/
if (axq_iopause_enable_all(&exp) != DDI_SUCCESS) {
ASSERT(exp >= 0 && exp < AXQ_MAX_EXP);
cr->ecode = DRMACH_CR_IOPAUSE_ERR;
cr->earg = (void *)(uintptr_t)exp;
return;
}
cpuset = cpu_ready_set;
CPUSET_DEL(cpuset, CPU->cpu_id);
count = ncpus - 1;
drmach_rename_count = count; /* for debug */
drmach_xt_ready = 0;
xt_some(cpuset, drmach_rename_wait, NULL, NULL);
for (i = 0; i < drmach_cpu_ntries; i++) {
if (drmach_xt_ready == count)
break;
DELAY(drmach_cpu_delay);
}
drmach_rename_ntries = i; /* for debug */
drmach_xt_ready = 0; /* steal the line back */
for (i = 0; i < NCPU; i++) /* steal the line back, preserve data */
drmach_xt_mb[i] = drmach_xt_mb[i];
caddr = drmach_iocage_paddr;
csize = cpunodes[CPU->cpu_id].ecache_size;
lnsize = cpunodes[CPU->cpu_id].ecache_linesize;
/* disable CE reporting */
neer = get_error_enable();
set_error_enable(neer & ~EN_REG_CEEN);
/* disable interrupts (paranoia) */
pstate = getpstate();
setpstate(pstate & ~PSTATE_IE);
/*
* Execute copy-rename under on_trap to protect against a panic due
* to an uncorrectable error. Instead, DR will abort the copy-rename
* operation and rely on the OS to do the error reporting.
*
* In general, trap handling on any cpu once the copy begins
* can result in an inconsistent memory image on the target.
*/
if (on_trap(&otd, OT_DATA_EC)) {
cr->ecode = DRMACH_CR_ONTRAP_ERR;
goto copy_rename_end;
}
/*
* DO COPY.
*/
for (ml = cr->c_ml; ml; ml = ml->next) {
uint64_t s_pa, t_pa;
uint64_t nbytes;
s_pa = cr->s_copybasepa + ml->address;
t_pa = cr->t_copybasepa + ml->address;
nbytes = ml->size;
while (nbytes != 0ull) {
/* copy 32 bytes at src_pa to dst_pa */
bcopy32_il(s_pa, t_pa);
/* increment by 32 bytes */
s_pa += (4 * sizeof (uint64_t));
t_pa += (4 * sizeof (uint64_t));
/* decrement by 32 bytes */
nbytes -= (4 * sizeof (uint64_t));
if (drmach_slow_copy) { /* for debug */
uint64_t i = 13 * 50;
while (i--);
}
}
}
/*
* XXX CHEETAH SUPPORT
* For cheetah, we need to grab the iocage lock since iocage
* memory is used for e$ flush.
*
* NOTE: This code block is dangerous at this point in the
* copy-rename operation. It modifies memory after the copy
* has taken place which means that any persistent state will
* be abandoned after the rename operation. The code is also
* performing thread synchronization at a time when all but
* one processors are paused. This is a potential deadlock
* situation.
*
* This code block must be moved to drmach_copy_rename_init.
*/
if (drmach_is_cheetah) {
mutex_enter(&drmach_iocage_lock);
while (drmach_iocage_is_busy)
cv_wait(&drmach_iocage_cv, &drmach_iocage_lock);
drmach_iocage_is_busy = 1;
drmach_iocage_mem_scrub(ecache_size * 2);
mutex_exit(&drmach_iocage_lock);
}
/*
* bcopy32_il is implemented as a series of ldxa/stxa via
* ASI_MEM instructions. Following the copy loop, the E$
* of the master (this) processor will have lines in state
* O that correspond to lines of home memory in state gI.
* An E$ flush is necessary to commit these lines before
* proceeding with the rename operation.
*
* Flushing the E$ will automatically flush the W$, but
* the D$ and I$ must be flushed separately and explicitly.
*/
flush_ecache_il(caddr, csize, lnsize); /* inline version */
/*
* Each line of home memory is now in state gM, except in
* the case of a cheetah processor when the E$ flush area
* is included within the copied region. In such a case,
* the lines of home memory for the upper half of the
* flush area are in state gS.
*
* Each line of target memory is in state gM.
*
* Each line of this processor's E$ is in state I, except
* those of a cheetah processor. All lines of a cheetah
* processor's E$ are in state S and correspond to the lines
* in upper half of the E$ flush area.
*
* It is vital at this point that none of the lines in the
* home or target memories are in state gI and that none
* of the lines in this processor's E$ are in state O or Os.
* A single instance of such a condition will cause loss of
* coherency following the rename operation.
*/
/*
* Rename
*/
(*(void(*)())drmach_cpu_sram_va)(cr->data, &cr->ecode, &cr->earg);
/*
* Rename operation complete. The physical address space
* of the home and target memories have been swapped, the
* routing data in the respective CASM entries have been
* swapped, and LPA settings in the processor and schizo
* devices have been reprogrammed accordingly.
*
* In the case of a cheetah processor, the E$ remains
* populated with lines in state S that correspond to the
* lines in the former home memory. Now that the physical
* addresses have been swapped, these E$ lines correspond
* to lines in the new home memory which are in state gM.
* This combination is invalid. An additional E$ flush is
* necessary to restore coherency. The E$ flush will cause
* the lines of the new home memory for the flush region
* to transition from state gM to gS. The former home memory
* remains unmodified. This additional E$ flush has no effect
* on a cheetah+ processor.
*/
flush_ecache_il(caddr, csize, lnsize); /* inline version */
/*
* The D$ and I$ must be flushed to ensure that coherency is
* maintained. Any line in a cache that is in the valid
* state has its corresponding line of the new home memory
* in the gM state. This is an invalid condition. When the
* flushes are complete the cache line states will be
* resynchronized with those in the new home memory.
*/
flush_icache_il(); /* inline version */
flush_dcache_il(); /* inline version */
flush_pcache_il(); /* inline version */
copy_rename_end:
no_trap();
/* enable interrupts */
setpstate(pstate);
/* enable CE reporting */
set_error_enable(neer);
if (cr->ecode != DRMACH_CR_OK)
drmach_end_wait_xcall = drmach_rename_abort;
/*
* XXX CHEETAH SUPPORT
*/
if (drmach_is_cheetah) {
mutex_enter(&drmach_iocage_lock);
drmach_iocage_mem_scrub(ecache_size * 2);
drmach_iocage_is_busy = 0;
cv_signal(&drmach_iocage_cv);
mutex_exit(&drmach_iocage_lock);
}
axq_iopause_disable_all();
xt_some(cpuset, drmach_end_wait_xcall, NULL, NULL);
}
static void drmach_io_dispose(drmachid_t);
static sbd_error_t *drmach_io_release(drmachid_t);
static sbd_error_t *drmach_io_status(drmachid_t, drmach_status_t *);
static sbd_error_t *
drmach_pci_new(drmach_device_t *proto, drmachid_t *idp)
{
drmach_node_t *node = proto->node;
sbd_error_t *err;
drmach_reg_t regs[3];
int rv;
int len = 0;
rv = node->n_getproplen(node, "reg", &len);
if (rv != 0 || len != sizeof (regs)) {
sbd_error_t *err;
/* pci nodes are expected to have regs */
err = drerr_new(1, ESTC_GETPROP,
"Device Node 0x%x: property %s",
(uint_t)node->get_dnode(node), "reg");
return (err);
}
rv = node->n_getprop(node, "reg", (void *)regs, sizeof (regs));
if (rv) {
sbd_error_t *err;
err = drerr_new(1, ESTC_GETPROP,
"Device Node 0x%x: property %s",
(uint_t)node->get_dnode(node), "reg");
return (err);
}
/*
* Fix up unit number so that Leaf A has a lower unit number
* than Leaf B.
*/
if ((proto->portid % 2) != 0) {
if ((regs[0].reg_addr_lo & 0x700000) == 0x700000)
proto->unum = 0;
else
proto->unum = 1;
} else {
if ((regs[0].reg_addr_lo & 0x700000) == 0x700000)
proto->unum = 2;
else
proto->unum = 3;
}
err = drmach_io_new(proto, idp);
if (err == NULL) {
drmach_io_t *self = *idp;
/* reassemble 64-bit base address */
self->scsr_pa = (uint64_t)regs[1].reg_addr_hi << 32;
self->scsr_pa |= (uint64_t)regs[1].reg_addr_lo;
}
return (err);
}
static sbd_error_t *
drmach_io_new(drmach_device_t *proto, drmachid_t *idp)
{
drmach_io_t *ip;
ip = kmem_zalloc(sizeof (drmach_io_t), KM_SLEEP);
bcopy(proto, &ip->dev, sizeof (ip->dev));
ip->dev.node = drmach_node_dup(proto->node);
ip->dev.cm.isa = (void *)drmach_io_new;
ip->dev.cm.dispose = drmach_io_dispose;
ip->dev.cm.release = drmach_io_release;
ip->dev.cm.status = drmach_io_status;
snprintf(ip->dev.cm.name, sizeof (ip->dev.cm.name), "%s%d",
ip->dev.type, ip->dev.unum);
*idp = (drmachid_t)ip;
return (NULL);
}
static void
drmach_io_dispose(drmachid_t id)
{
drmach_io_t *self;
ASSERT(DRMACH_IS_IO_ID(id));
self = id;
if (self->dev.node)
drmach_node_dispose(self->dev.node);
kmem_free(self, sizeof (*self));
}
/*ARGSUSED*/
sbd_error_t *
drmach_pre_op(int cmd, drmachid_t id, drmach_opts_t *opts)
{
drmach_board_t *bp = (drmach_board_t *)id;
sbd_error_t *err = NULL;
if (id && DRMACH_IS_BOARD_ID(id)) {
switch (cmd) {
case SBD_CMD_TEST:
case SBD_CMD_STATUS:
case SBD_CMD_GETNCM:
break;
case SBD_CMD_CONNECT:
if (bp->connected)
err = drerr_new(0, ESBD_STATE, NULL);
if (bp->cond == SBD_COND_UNUSABLE)
err = drerr_new(0,
ESBD_FATAL_STATE, NULL);
break;
case SBD_CMD_DISCONNECT:
if (!bp->connected)
err = drerr_new(0, ESBD_STATE, NULL);
if (bp->cond == SBD_COND_UNUSABLE)
err = drerr_new(0,
ESBD_FATAL_STATE, NULL);
break;
default:
if (bp->cond == SBD_COND_UNUSABLE)
err = drerr_new(0,
ESBD_FATAL_STATE, NULL);
break;
}
}
return (err);
}
/*ARGSUSED*/
sbd_error_t *
drmach_post_op(int cmd, drmachid_t id, drmach_opts_t *opts)
{
return (NULL);
}
sbd_error_t *
drmach_board_assign(int bnum, drmachid_t *id)
{
sbd_error_t *err = NULL;
caddr_t obufp;
if (!drmach_initialized && drmach_init() == -1) {
err = DRMACH_INTERNAL_ERROR();
}
rw_enter(&drmach_boards_rwlock, RW_WRITER);
if (!err) {
if (drmach_array_get(drmach_boards, bnum, id) == -1) {
err = drerr_new(0, ESTC_BNUM, "%d", bnum);
} else {
drmach_board_t *bp;
if (*id)
rw_downgrade(&drmach_boards_rwlock);
obufp = kmem_zalloc(sizeof (dr_proto_hdr_t), KM_SLEEP);
err = drmach_mbox_trans(DRMSG_ASSIGN, bnum, obufp,
sizeof (dr_proto_hdr_t), (caddr_t)NULL, 0);
kmem_free(obufp, sizeof (dr_proto_hdr_t));
if (!err) {
bp = *id;
if (!*id)
bp = *id =
(drmachid_t)drmach_board_new(bnum);
bp->assigned = 1;
}
}
}
rw_exit(&drmach_boards_rwlock);
return (err);
}
static uint_t
drmach_board_non_panther_cpus(gdcd_t *gdcd, uint_t exp, uint_t slot)
{
uint_t port, port_start, port_end;
uint_t non_panther_cpus = 0;
uint_t impl;
ASSERT(gdcd != NULL);
/*
* Determine PRD port indices based on slot location.
*/
switch (slot) {
case 0:
port_start = 0;
port_end = 3;
break;
case 1:
port_start = 4;
port_end = 5;
break;
default:
ASSERT(0);
/* check all */
port_start = 0;
port_end = 5;
break;
}
for (port = port_start; port <= port_end; port++) {
if (gdcd->dcd_prd[exp][port].prd_ptype == SAFPTYPE_CPU &&
RSV_GOOD(gdcd->dcd_prd[exp][port].prd_prsv)) {
/*
* This Safari port passed POST and represents a
* cpu, so check the implementation.
*/
impl = (gdcd->dcd_prd[exp][port].prd_ver_reg >> 32)
& 0xffff;
switch (impl) {
case CHEETAH_IMPL:
case CHEETAH_PLUS_IMPL:
case JAGUAR_IMPL:
non_panther_cpus++;
break;
case PANTHER_IMPL:
break;
default:
ASSERT(0);
non_panther_cpus++;
break;
}
}
}
DRMACH_PR("drmach_board_non_panther_cpus: exp=%d, slot=%d, "
"non_panther_cpus=%d", exp, slot, non_panther_cpus);
return (non_panther_cpus);
}
sbd_error_t *
drmach_board_connect(drmachid_t id, drmach_opts_t *opts)
{
_NOTE(ARGUNUSED(opts))
drmach_board_t *bp = (drmach_board_t *)id;
sbd_error_t *err;
dr_mbox_msg_t *obufp;
gdcd_t *gdcd = NULL;
uint_t exp, slot;
sc_gptwocfg_cookie_t scc;
int panther_pages_enabled;
if (!DRMACH_IS_BOARD_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
/*
* Build the casm info portion of the CLAIM message.
*/
obufp = kmem_zalloc(sizeof (dr_mbox_msg_t), KM_SLEEP);
mutex_enter(&drmach_slice_table_lock);
drmach_msg_memslice_init(obufp->msgdata.dm_cr.mem_slice);
drmach_msg_memregs_init(obufp->msgdata.dm_cr.mem_regs);
mutex_exit(&drmach_slice_table_lock);
err = drmach_mbox_trans(DRMSG_CLAIM, bp->bnum, (caddr_t)obufp,
sizeof (dr_mbox_msg_t), (caddr_t)NULL, 0);
kmem_free(obufp, sizeof (dr_mbox_msg_t));
if (err) {
/*
* if mailbox timeout or unrecoverable error from SC,
* board cannot be touched. Mark the status as
* unusable.
*/
if ((err->e_code == ESTC_SMS_ERR_UNRECOVERABLE) ||
(err->e_code == ESTC_MBXRPLY))
bp->cond = SBD_COND_UNUSABLE;
return (err);
}
gdcd = drmach_gdcd_new();
if (gdcd == NULL) {
cmn_err(CE_WARN, "failed to read GDCD info for %s\n",
bp->cm.name);
return (DRMACH_INTERNAL_ERROR());
}
/*
* Read CPU SRAM DR buffer offset from GDCD.
*/
exp = DRMACH_BNUM2EXP(bp->bnum);
slot = DRMACH_BNUM2SLOT(bp->bnum);
bp->stardrb_offset =
gdcd->dcd_slot[exp][slot].l1ss_cpu_drblock_xwd_offset << 3;
DRMACH_PR("%s: stardrb_offset=0x%lx\n", bp->cm.name,
bp->stardrb_offset);
/*
* Read board LPA setting from GDCD.
*/
bp->flags &= ~DRMACH_NULL_PROC_LPA;
if (gdcd->dcd_slot[exp][slot].l1ss_flags &
L1SSFLG_THIS_L1_NULL_PROC_LPA) {
bp->flags |= DRMACH_NULL_PROC_LPA;
DRMACH_PR("%s: NULL proc LPA\n", bp->cm.name);
}
/*
* XXX Until the Solaris large pages support heterogeneous cpu
* domains, DR needs to prevent the addition of non-Panther cpus
* to an all-Panther domain with large pages enabled.
*/
panther_pages_enabled = (page_num_pagesizes() > DEFAULT_MMU_PAGE_SIZES);
if (drmach_board_non_panther_cpus(gdcd, exp, slot) > 0 &&
panther_pages_enabled && drmach_large_page_restriction) {
cmn_err(CE_WARN, "Domain shutdown is required to add a non-"
"UltraSPARC-IV+ board into an all UltraSPARC-IV+ domain");
err = drerr_new(0, ESTC_SUPPORT, NULL);
}
if (err == NULL) {
/* do saf configurator stuff */
DRMACH_PR("calling sc_probe_board for bnum=%d\n", bp->bnum);
scc = sc_probe_board(bp->bnum);
if (scc == NULL)
err = drerr_new(0, ESTC_PROBE, bp->cm.name);
}
if (err) {
/* flush CDC srams */
if (axq_cdc_flush_all() != DDI_SUCCESS) {
goto out;
}
/*
* Build the casm info portion of the UNCLAIM message.
*/
obufp = kmem_zalloc(sizeof (dr_mbox_msg_t), KM_SLEEP);
mutex_enter(&drmach_slice_table_lock);
drmach_msg_memslice_init(obufp->msgdata.dm_ur.mem_slice);
drmach_msg_memregs_init(obufp->msgdata.dm_ur.mem_regs);
mutex_exit(&drmach_slice_table_lock);
(void) drmach_mbox_trans(DRMSG_UNCLAIM, bp->bnum,
(caddr_t)obufp, sizeof (dr_mbox_msg_t),
(caddr_t)NULL, 0);
kmem_free(obufp, sizeof (dr_mbox_msg_t));
/*
* we clear the connected flag just in case it would have
* been set by a concurrent drmach_board_status() thread
* before the UNCLAIM completed.
*/
bp->connected = 0;
goto out;
}
/*
* Now that the board has been successfully attached, obtain
* platform-specific DIMM serial id information for the board.
*/
if ((DRMACH_BNUM2SLOT(bp->bnum) == 0) &&
plat_ecc_capability_sc_get(PLAT_ECC_DIMM_SID_MESSAGE)) {
(void) plat_request_mem_sids(DRMACH_BNUM2EXP(bp->bnum));
}
out:
if (gdcd != NULL)
drmach_gdcd_dispose(gdcd);
return (err);
}
static void
drmach_slice_table_update(drmach_board_t *bp, int invalidate)
{
static char *axq_name = "address-extender-queue";
static dev_info_t *axq_dip = NULL;
static int axq_exp = -1;
static int axq_slot;
int e, s, slice;
ASSERT(MUTEX_HELD(&drmach_slice_table_lock));
e = DRMACH_BNUM2EXP(bp->bnum);
if (invalidate) {
ASSERT(DRMACH_BNUM2SLOT(bp->bnum) == 0);
/* invalidate cached casm value */
drmach_slice_table[e] = 0;
/* invalidate cached axq info if for same exp */
if (e == axq_exp && axq_dip) {
ndi_rele_devi(axq_dip);
axq_dip = NULL;
}
}
if (axq_dip == NULL || !i_ddi_devi_attached(axq_dip)) {
int i, portid;
/* search for an attached slot0 axq instance */
for (i = 0; i < AXQ_MAX_EXP * AXQ_MAX_SLOT_PER_EXP; i++) {
if (axq_dip)
ndi_rele_devi(axq_dip);
axq_dip = ddi_find_devinfo(axq_name, i, 0);
if (axq_dip && DDI_CF2(axq_dip)) {
portid = ddi_getprop(DDI_DEV_T_ANY, axq_dip,
DDI_PROP_DONTPASS, "portid", -1);
if (portid == -1) {
DRMACH_PR("cant get portid of axq "
"instance %d\n", i);
continue;
}
axq_exp = (portid >> 5) & 0x1f;
axq_slot = portid & 1;
if (invalidate && axq_exp == e)
continue;
if (axq_slot == 0)
break; /* found */
}
}
if (i == AXQ_MAX_EXP * AXQ_MAX_SLOT_PER_EXP) {
if (axq_dip) {
ndi_rele_devi(axq_dip);
axq_dip = NULL;
}
DRMACH_PR("drmach_slice_table_update: failed to "
"update axq dip\n");
return;
}
}
ASSERT(axq_dip);
ASSERT(axq_slot == 0);
if (invalidate)
return;
s = DRMACH_BNUM2SLOT(bp->bnum);
DRMACH_PR("using AXQ casm %d.%d for slot%d.%d\n",
axq_exp, axq_slot, e, s);
/* invalidate entry */
drmach_slice_table[e] &= ~0x20;
/*
* find a slice that routes to expander e. If no match
* is found, drmach_slice_table[e] will remain invalid.
*
* The CASM is a routing table indexed by slice number.
* Each element in the table contains permission bits,
* a destination expander number and a valid bit. The
* valid bit must true for the element to be meaningful.
*
* CASM entry structure
* Bits 15..6 ignored
* Bit 5 valid
* Bits 0..4 expander number
*
* NOTE: the for loop is really enumerating the range of slices,
* which is ALWAYS equal to the range of expanders. Hence,
* AXQ_MAX_EXP is okay to use in this loop.
*/
for (slice = 0; slice < AXQ_MAX_EXP; slice++) {
uint32_t casm = axq_casm_read(axq_exp, axq_slot, slice);
if ((casm & 0x20) && (casm & 0x1f) == e)
drmach_slice_table[e] = 0x20 | slice;
}
}
/*
* Get base and bound PAs for slot 1 board lpa programming
* If a cpu/mem board is present in the same expander, use slice
* information corresponding to the CASM. Otherwise, set base and
* bound PAs to 0.
*/
static void
drmach_lpa_bb_get(drmach_board_t *s1bp, uint64_t *basep, uint64_t *boundp)
{
drmachid_t s0id;
ASSERT(mutex_owned(&drmach_slice_table_lock));
ASSERT(DRMACH_BNUM2SLOT(s1bp->bnum) == 1);
*basep = *boundp = 0;
if (drmach_array_get(drmach_boards, s1bp->bnum - 1, &s0id) == 0 &&
s0id != 0) {
uint32_t slice;
if ((slice =
drmach_slice_table[DRMACH_BNUM2EXP(s1bp->bnum)])
& 0x20) {
*basep = DRMACH_SLICE_TO_PA(slice & DRMACH_SLICE_MASK);
*boundp = *basep + DRMACH_MEM_SLICE_SIZE;
}
}
}
/*
* Reprogram slot 1 lpa's as required.
* The purpose of this routine is maintain the LPA settings of the devices
* in slot 1. To date we know Schizo and Cheetah are the only devices that
* require this attention. The LPA setting must match the slice field in the
* CASM element for the local expander. This field is guaranteed to be
* programmed in accordance with the cacheable address space on the slot 0
* board of the local expander. If no memory is present on the slot 0 board,
* there is no cacheable address space and, hence, the CASM slice field will
* be zero or its valid bit will be false (or both).
*/
static void
drmach_slot1_lpa_set(drmach_board_t *bp)
{
drmachid_t id;
drmach_board_t *s1bp = NULL;
int rv, idx, is_maxcat = 1;
uint64_t last_scsr_pa = 0;
uint64_t new_basepa, new_boundpa;
if (DRMACH_BNUM2SLOT(bp->bnum)) {
s1bp = bp;
if (s1bp->devices == NULL) {
DRMACH_PR("drmach...lpa_set: slot1=%d not present",
bp->bnum);
return;
}
} else {
rv = drmach_array_get(drmach_boards, bp->bnum + 1, &id);
/* nothing to do when board is not found or has no devices */
s1bp = id;
if (rv == -1 || s1bp == NULL || s1bp->devices == NULL) {
DRMACH_PR("drmach...lpa_set: slot1=%d not present",
bp->bnum + 1);
return;
}
ASSERT(DRMACH_IS_BOARD_ID(id));
}
mutex_enter(&drmach_slice_table_lock);
drmach_lpa_bb_get(s1bp, &new_basepa, &new_boundpa);
DRMACH_PR("drmach_...lpa_set: bnum=%d base=0x%lx bound=0x%lx\n",
s1bp->bnum, new_basepa, new_boundpa);
rv = drmach_array_first(s1bp->devices, &idx, &id);
while (rv == 0) {
if (DRMACH_IS_IO_ID(id)) {
drmach_io_t *io = id;
is_maxcat = 0;
/*
* Skip all non-Schizo IO devices (only IO nodes
* that are Schizo devices have non-zero scsr_pa).
* Filter out "other" leaf to avoid writing to the
* same Schizo Control/Status Register twice.
*/
if (io->scsr_pa && io->scsr_pa != last_scsr_pa) {
uint64_t scsr;
scsr = lddphysio(io->scsr_pa);
DRMACH_PR("drmach...lpa_set: old scsr=0x%lx\n",
scsr);
scsr &= ~(DRMACH_LPA_BASE_MASK |
DRMACH_LPA_BND_MASK);
scsr |= DRMACH_PA_TO_LPA_BASE(new_basepa);
scsr |= DRMACH_PA_TO_LPA_BND(new_boundpa);
stdphysio(io->scsr_pa, scsr);
DRMACH_PR("drmach...lpa_set: new scsr=0x%lx\n",
scsr);
last_scsr_pa = io->scsr_pa;
}
}
rv = drmach_array_next(s1bp->devices, &idx, &id);
}
if (is_maxcat && DRMACH_L1_SET_LPA(s1bp) && drmach_reprogram_lpa) {
extern xcfunc_t drmach_set_lpa;
DRMACH_PR("reprogramming maxcat lpa's");
mutex_enter(&cpu_lock);
rv = drmach_array_first(s1bp->devices, &idx, &id);
while (rv == 0 && id != NULL) {
if (DRMACH_IS_CPU_ID(id)) {
int ntries;
processorid_t cpuid;
cpuid = ((drmach_cpu_t *)id)->cpuid;
/*
* Check for unconfigured or powered-off
* MCPUs. If CPU_READY flag is clear, the
* MCPU cannot be xcalled.
*/
if ((cpu[cpuid] == NULL) ||
(cpu[cpuid]->cpu_flags &
CPU_READY) == 0) {
rv = drmach_array_next(s1bp->devices,
&idx, &id);
continue;
}
/*
* XXX CHEETAH SUPPORT
* for cheetah, we need to clear iocage
* memory since it will be used for e$ flush
* in drmach_set_lpa.
*/
if (drmach_is_cheetah) {
mutex_enter(&drmach_iocage_lock);
while (drmach_iocage_is_busy)
cv_wait(&drmach_iocage_cv,
&drmach_iocage_lock);
drmach_iocage_is_busy = 1;
drmach_iocage_mem_scrub(
ecache_size * 2);
mutex_exit(&drmach_iocage_lock);
}
/*
* drmach_slice_table[*]
* bit 5 valid
* bit 0:4 slice number
*
* drmach_xt_mb[*] format for drmach_set_lpa
* bit 7 valid
* bit 6 set null LPA
* (overrides bits 0:4)
* bit 0:4 slice number
*
* drmach_set_lpa derives processor CBASE and
* CBND from bits 6 and 0:4 of drmach_xt_mb.
* If bit 6 is set, then CBASE = CBND = 0.
* Otherwise, CBASE = slice number;
* CBND = slice number + 1.
* No action is taken if bit 7 is zero.
*/
mutex_enter(&drmach_xt_mb_lock);
bzero((void *)drmach_xt_mb,
drmach_xt_mb_size);
if (new_basepa == 0 && new_boundpa == 0)
drmach_xt_mb[cpuid] = 0x80 | 0x40;
else
drmach_xt_mb[cpuid] = 0x80 |
DRMACH_PA_TO_SLICE(new_basepa);
drmach_xt_ready = 0;
xt_one(cpuid, drmach_set_lpa, NULL, NULL);
ntries = drmach_cpu_ntries;
while (!drmach_xt_ready && ntries) {
DELAY(drmach_cpu_delay);
ntries--;
}
mutex_exit(&drmach_xt_mb_lock);
drmach_xt_ready = 0;
/*
* XXX CHEETAH SUPPORT
* for cheetah, we need to clear iocage
* memory since it was used for e$ flush
* in performed drmach_set_lpa.
*/
if (drmach_is_cheetah) {
mutex_enter(&drmach_iocage_lock);
drmach_iocage_mem_scrub(
ecache_size * 2);
drmach_iocage_is_busy = 0;
cv_signal(&drmach_iocage_cv);
mutex_exit(&drmach_iocage_lock);
}
}
rv = drmach_array_next(s1bp->devices, &idx, &id);
}
mutex_exit(&cpu_lock);
}
mutex_exit(&drmach_slice_table_lock);
}
/*
* Return the number of connected Panther boards in the domain.
*/
static int
drmach_panther_boards(void)
{
int rv;
int b_idx;
drmachid_t b_id;
drmach_board_t *bp;
int npanther = 0;
rv = drmach_array_first(drmach_boards, &b_idx, &b_id);
while (rv == 0) {
ASSERT(DRMACH_IS_BOARD_ID(b_id));
bp = b_id;
if (IS_PANTHER(bp->cpu_impl))
npanther++;
rv = drmach_array_next(drmach_boards, &b_idx, &b_id);
}
return (npanther);
}
/*ARGSUSED*/
sbd_error_t *
drmach_board_disconnect(drmachid_t id, drmach_opts_t *opts)
{
drmach_board_t *bp;
dr_mbox_msg_t *obufp;
sbd_error_t *err = NULL;
sc_gptwocfg_cookie_t scc;
if (!DRMACH_IS_BOARD_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
bp = id;
/*
* Build the casm info portion of the UNCLAIM message.
* This must be done prior to calling for saf configurator
* deprobe, to ensure that the associated axq instance
* is not detached.
*/
obufp = kmem_zalloc(sizeof (dr_mbox_msg_t), KM_SLEEP);
mutex_enter(&drmach_slice_table_lock);
drmach_msg_memslice_init(obufp->msgdata.dm_ur.mem_slice);
/*
* If disconnecting slot 0 board, update the casm slice table
* info now, for use by drmach_slot1_lpa_set()
*/
if (DRMACH_BNUM2SLOT(bp->bnum) == 0)
drmach_slice_table_update(bp, 1);
drmach_msg_memregs_init(obufp->msgdata.dm_ur.mem_regs);
mutex_exit(&drmach_slice_table_lock);
/*
* Update LPA information for slot1 board
*/
drmach_slot1_lpa_set(bp);
/* disable and flush CDC */
if (axq_cdc_disable_flush_all() != DDI_SUCCESS) {
axq_cdc_enable_all(); /* paranoia */
err = DRMACH_INTERNAL_ERROR();
}
/*
* call saf configurator for deprobe
* It's done now before sending an UNCLAIM message because
* IKP will probe boards it doesn't know about <present at boot>
* prior to unprobing them. If this happens after sending the
* UNCLAIM, it will cause a dstop for domain transgression error.
*/
if (!err) {
scc = sc_unprobe_board(bp->bnum);
axq_cdc_enable_all();
if (scc != NULL) {
err = drerr_new(0, ESTC_DEPROBE, bp->cm.name);
}
}
/*
* If disconnecting a board from a Panther domain, wait a fixed-
* time delay for pending Safari transactions to complete on the
* disconnecting board's processors. The bus sync list read used
* in drmach_shutdown_asm to synchronize with outstanding Safari
* transactions assumes no read-bypass-write mode for all memory
* controllers. Since Panther supports read-bypass-write, a
* delay is used that is slightly larger than the maximum Safari
* timeout value in the Safari/Fireplane Config Reg.
*/
if (drmach_panther_boards() > 0 || drmach_unclaim_delay_all) {
clock_t stime = lbolt;
delay(drv_usectohz(drmach_unclaim_usec_delay));
stime = lbolt - stime;
DRMACH_PR("delayed %ld ticks (%ld secs) before disconnecting "
"board %s from domain\n", stime, stime / hz, bp->cm.name);
}
if (!err) {
obufp->msgdata.dm_ur.mem_clear = 0;
err = drmach_mbox_trans(DRMSG_UNCLAIM, bp->bnum, (caddr_t)obufp,
sizeof (dr_mbox_msg_t), (caddr_t)NULL, 0);
if (err) {
/*
* if mailbox timeout or unrecoverable error from SC,
* board cannot be touched. Mark the status as
* unusable.
*/
if ((err->e_code == ESTC_SMS_ERR_UNRECOVERABLE) ||
(err->e_code == ESTC_MBXRPLY))
bp->cond = SBD_COND_UNUSABLE;
else {
DRMACH_PR("UNCLAIM failed for bnum=%d\n",
bp->bnum);
DRMACH_PR("calling sc_probe_board: bnum=%d\n",
bp->bnum);
scc = sc_probe_board(bp->bnum);
if (scc == NULL) {
cmn_err(CE_WARN,
"sc_probe_board failed for bnum=%d",
bp->bnum);
} else {
if (DRMACH_BNUM2SLOT(bp->bnum) == 0) {
mutex_enter(
&drmach_slice_table_lock);
drmach_slice_table_update(bp,
0);
mutex_exit(
&drmach_slice_table_lock);
}
drmach_slot1_lpa_set(bp);
}
}
} else {
bp->connected = 0;
/*
* Now that the board has been successfully detached,
* discard platform-specific DIMM serial id information
* for the board.
*/
if ((DRMACH_BNUM2SLOT(bp->bnum) == 0) &&
plat_ecc_capability_sc_get(
PLAT_ECC_DIMM_SID_MESSAGE)) {
(void) plat_discard_mem_sids(
DRMACH_BNUM2EXP(bp->bnum));
}
}
}
kmem_free(obufp, sizeof (dr_mbox_msg_t));
return (err);
}
static int
drmach_get_portid(drmach_node_t *np)
{
drmach_node_t pp;
int portid;
char type[OBP_MAXPROPNAME];
if (np->n_getprop(np, "portid", &portid, sizeof (portid)) == 0)
return (portid);
/*
* Get the device_type property to see if we should
* continue processing this node.
*/
if (np->n_getprop(np, "device_type", &type, sizeof (type)) != 0)
return (-1);
/*
* If the device is a CPU without a 'portid' property,
* it is a CMP core. For such cases, the parent node
* has the portid.
*/
if (strcmp(type, DRMACH_CPU_NAMEPROP) == 0) {
if (np->get_parent(np, &pp) != 0)
return (-1);
if (pp.n_getprop(&pp, "portid", &portid, sizeof (portid)) == 0)
return (portid);
}
return (-1);
}
/*
* This is a helper function to determine if a given
* node should be considered for a dr operation according
* to predefined dr type nodes and the node's name.
* Formal Parameter : The name of a device node.
* Return Value: -1, name does not map to a valid dr type.
* A value greater or equal to 0, name is a valid dr type.
*/
static int
drmach_name2type_idx(char *name)
{
int index, ntypes;
if (name == NULL)
return (-1);
/*
* Determine how many possible types are currently supported
* for dr.
*/
ntypes = sizeof (drmach_name2type) / sizeof (drmach_name2type[0]);
/* Determine if the node's name correspond to a predefined type. */
for (index = 0; index < ntypes; index++) {
if (strcmp(drmach_name2type[index].name, name) == 0)
/* The node is an allowed type for dr. */
return (index);
}
/*
* If the name of the node does not map to any of the
* types in the array drmach_name2type then the node is not of
* interest to dr.
*/
return (-1);
}
static int
drmach_board_find_devices_cb(drmach_node_walk_args_t *args)
{
drmach_node_t *node = args->node;
drmach_board_cb_data_t *data = args->data;
drmach_board_t *obj = data->obj;
int rv, portid;
drmachid_t id;
drmach_device_t *device;
char name[OBP_MAXDRVNAME];
portid = drmach_get_portid(node);
if (portid == -1) {
/*
* if the node does not have a portid property, then
* by that information alone it is known that drmach
* is not interested in it.
*/
return (0);
}
rv = node->n_getprop(node, "name", name, OBP_MAXDRVNAME);
/* The node must have a name */
if (rv)
return (0);
/*
* Ignore devices whose portid do not map to this board,
* or that their name property is not mapped to a valid
* dr device name.
*/
if ((drmach_portid2bnum(portid) != obj->bnum) ||
(drmach_name2type_idx(name) < 0))
return (0);
/*
* Create a device data structure from this node data.
* The call may yield nothing if the node is not of interest
* to drmach.
*/
data->err = drmach_device_new(node, obj, portid, &id);
if (data->err)
return (-1);
else if (!id) {
/*
* drmach_device_new examined the node we passed in
* and determined that it was either one not of
* interest to drmach or the PIM dr layer.
* So, it is skipped.
*/
return (0);
}
rv = drmach_array_set(obj->devices, data->ndevs++, id);
if (rv) {
data->err = DRMACH_INTERNAL_ERROR();
return (-1);
}
device = id;
#ifdef DEBUG
DRMACH_PR("%d %s %d %p\n", portid, device->type, device->unum, id);
if (DRMACH_IS_IO_ID(id))
DRMACH_PR("ndevs = %d dip/node = %p", data->ndevs, node->here);
#endif
data->err = (*data->found)(data->a, device->type, device->unum, id);
return (data->err == NULL ? 0 : -1);
}
sbd_error_t *
drmach_board_find_devices(drmachid_t id, void *a,
sbd_error_t *(*found)(void *a, const char *, int, drmachid_t))
{
drmach_board_t *bp = (drmach_board_t *)id;
sbd_error_t *err;
int max_devices;
int rv;
drmach_board_cb_data_t data;
if (!DRMACH_IS_BOARD_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
max_devices = plat_max_cpu_units_per_board();
max_devices += plat_max_mem_units_per_board();
max_devices += plat_max_io_units_per_board();
bp->devices = drmach_array_new(0, max_devices);
if (bp->tree == NULL)
bp->tree = drmach_node_new();
data.obj = bp;
data.ndevs = 0;
data.found = found;
data.a = a;
data.err = NULL;
mutex_enter(&drmach_slice_table_lock);
mutex_enter(&drmach_bus_sync_lock);
rv = drmach_node_walk(bp->tree, &data, drmach_board_find_devices_cb);
drmach_slice_table_update(bp, 0);
drmach_bus_sync_list_update();
mutex_exit(&drmach_bus_sync_lock);
mutex_exit(&drmach_slice_table_lock);
if (rv == 0) {
err = NULL;
drmach_slot1_lpa_set(bp);
} else {
drmach_array_dispose(bp->devices, drmach_device_dispose);
bp->devices = NULL;
if (data.err)
err = data.err;
else
err = DRMACH_INTERNAL_ERROR();
}
return (err);
}
int
drmach_board_lookup(int bnum, drmachid_t *id)
{
int rv = 0;
if (!drmach_initialized && drmach_init() == -1) {
*id = 0;
return (-1);
}
rw_enter(&drmach_boards_rwlock, RW_WRITER);
if (drmach_array_get(drmach_boards, bnum, id)) {
*id = 0;
rv = -1;
} else {
caddr_t obufp;
dr_showboard_t shb;
sbd_error_t *err = NULL;
drmach_board_t *bp;
bp = *id;
if (bp)
rw_downgrade(&drmach_boards_rwlock);
obufp = kmem_zalloc(sizeof (dr_proto_hdr_t), KM_SLEEP);
err = drmach_mbox_trans(DRMSG_SHOWBOARD, bnum, obufp,
sizeof (dr_proto_hdr_t), (caddr_t)&shb,
sizeof (dr_showboard_t));
kmem_free(obufp, sizeof (dr_proto_hdr_t));
if (err) {
if (err->e_code == ESTC_UNAVAILABLE) {
*id = 0;
rv = -1;
}
sbd_err_clear(&err);
} else {
if (!bp)
bp = *id = (drmachid_t)drmach_board_new(bnum);
bp->connected = (shb.bd_assigned && shb.bd_active);
bp->empty = shb.slot_empty;
switch (shb.test_status) {
case DR_TEST_STATUS_UNKNOWN:
case DR_TEST_STATUS_IPOST:
case DR_TEST_STATUS_ABORTED:
bp->cond = SBD_COND_UNKNOWN;
break;
case DR_TEST_STATUS_PASSED:
bp->cond = SBD_COND_OK;
break;
case DR_TEST_STATUS_FAILED:
bp->cond = SBD_COND_FAILED;
break;
default:
bp->cond = SBD_COND_UNKNOWN;
DRMACH_PR("Unknown test status=0x%x from SC\n",
shb.test_status);
break;
}
strncpy(bp->type, shb.board_type, sizeof (bp->type));
bp->assigned = shb.bd_assigned;
bp->powered = shb.power_on;
}
}
rw_exit(&drmach_boards_rwlock);
return (rv);
}
sbd_error_t *
drmach_board_name(int bnum, char *buf, int buflen)
{
snprintf(buf, buflen, "%s%d", DRMACH_BNUM2SLOT(bnum) ?
"IO" : "SB", DRMACH_BNUM2EXP(bnum));
return (NULL);
}
sbd_error_t *
drmach_board_poweroff(drmachid_t id)
{
drmach_board_t *bp;
sbd_error_t *err;
drmach_status_t stat;
if (!DRMACH_IS_BOARD_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
bp = id;
err = drmach_board_status(id, &stat);
if (!err) {
if (stat.configured || stat.busy)
err = drerr_new(0, ESTC_CONFIGBUSY, bp->cm.name);
else {
caddr_t obufp;
obufp = kmem_zalloc(sizeof (dr_proto_hdr_t), KM_SLEEP);
err = drmach_mbox_trans(DRMSG_POWEROFF, bp->bnum, obufp,
sizeof (dr_proto_hdr_t), (caddr_t)NULL, 0);
kmem_free(obufp, sizeof (dr_proto_hdr_t));
if (!err)
bp->powered = 0;
}
}
return (err);
}
sbd_error_t *
drmach_board_poweron(drmachid_t id)
{
drmach_board_t *bp;
caddr_t obufp;
sbd_error_t *err;
if (!DRMACH_IS_BOARD_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
bp = id;
obufp = kmem_zalloc(sizeof (dr_proto_hdr_t), KM_SLEEP);
err = drmach_mbox_trans(DRMSG_POWERON, bp->bnum, obufp,
sizeof (dr_proto_hdr_t), (caddr_t)NULL, 0);
if (!err)
bp->powered = 1;
kmem_free(obufp, sizeof (dr_proto_hdr_t));
return (err);
}
static sbd_error_t *
drmach_board_release(drmachid_t id)
{
if (!DRMACH_IS_BOARD_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
return (NULL);
}
sbd_error_t *
drmach_board_test(drmachid_t id, drmach_opts_t *opts, int force)
{
drmach_board_t *bp;
drmach_device_t *dp[MAX_CORES_PER_CMP];
dr_mbox_msg_t *obufp;
sbd_error_t *err;
dr_testboard_reply_t tbr;
int cpylen;
char *copts;
int is_io;
cpu_flag_t oflags[MAX_CORES_PER_CMP];
if (!DRMACH_IS_BOARD_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
bp = id;
/*
* If the board is an I/O or MAXCAT board, setup I/O cage for
* testing. Slot 1 indicates I/O or MAXCAT board.
*/
is_io = DRMACH_BNUM2SLOT(bp->bnum);
obufp = kmem_zalloc(sizeof (dr_mbox_msg_t), KM_SLEEP);
if (force)
obufp->msgdata.dm_tb.force = 1;
obufp->msgdata.dm_tb.immediate = 1;
if ((opts->size > 0) && ((copts = opts->copts) != NULL)) {
cpylen = (opts->size > DR_HPOPTLEN ? DR_HPOPTLEN : opts->size);
bcopy(copts, obufp->msgdata.dm_tb.hpost_opts, cpylen);
}
if (is_io) {
err = drmach_iocage_setup(&obufp->msgdata.dm_tb, dp, oflags);
if (err) {
kmem_free(obufp, sizeof (dr_mbox_msg_t));
return (err);
}
}
err = drmach_mbox_trans(DRMSG_TESTBOARD, bp->bnum, (caddr_t)obufp,
sizeof (dr_mbox_msg_t), (caddr_t)&tbr, sizeof (tbr));
if (!err)
bp->cond = SBD_COND_OK;
else
bp->cond = SBD_COND_UNKNOWN;
if ((!err) && (tbr.test_status != DR_TEST_STATUS_PASSED)) {
/* examine test status */
switch (tbr.test_status) {
case DR_TEST_STATUS_IPOST:
bp->cond = SBD_COND_UNKNOWN;
err = drerr_new(0, ESTC_TEST_IN_PROGRESS,
NULL);
break;
case DR_TEST_STATUS_UNKNOWN:
bp->cond = SBD_COND_UNKNOWN;
err = drerr_new(1,
ESTC_TEST_STATUS_UNKNOWN, NULL);
break;
case DR_TEST_STATUS_FAILED:
bp->cond = SBD_COND_FAILED;
err = drerr_new(1, ESTC_TEST_FAILED,
NULL);
break;
case DR_TEST_STATUS_ABORTED:
bp->cond = SBD_COND_UNKNOWN;
err = drerr_new(1, ESTC_TEST_ABORTED,
NULL);
break;
default:
bp->cond = SBD_COND_UNKNOWN;
err = drerr_new(1,
ESTC_TEST_RESULT_UNKNOWN,
NULL);
break;
}
}
/*
* If I/O cage test was performed, check for availability of the
* cpu used. If cpu has been returned, it's OK to proceed with
* reconfiguring it for use.
*/
if (is_io) {
DRMACH_PR("drmach_board_test: tbr.cpu_recovered: %d",
tbr.cpu_recovered);
DRMACH_PR("drmach_board_test: port id: %d",
tbr.cpu_portid);
/*
* Check the cpu_recovered flag in the testboard reply, or
* if the testboard request message was not sent to SMS due
* to an mboxsc_putmsg() failure, it's OK to recover the
* cpu since hpost hasn't touched it.
*/
if ((tbr.cpu_recovered && tbr.cpu_portid ==
obufp->msgdata.dm_tb.cpu_portid) ||
((err) && (err->e_code == ESTC_MBXRQST))) {
int i;
mutex_enter(&cpu_lock);
for (i = 0; i < MAX_CORES_PER_CMP; i++) {
if (dp[i] != NULL) {
(void) drmach_iocage_cpu_return(dp[i],
oflags[i]);
}
}
mutex_exit(&cpu_lock);
} else {
cmn_err(CE_WARN, "Unable to recover port id %d "
"after I/O cage test: cpu_recovered=%d, "
"returned portid=%d",
obufp->msgdata.dm_tb.cpu_portid,
tbr.cpu_recovered, tbr.cpu_portid);
}
drmach_iocage_mem_return(&tbr);
}
kmem_free(obufp, sizeof (dr_mbox_msg_t));
return (err);
}
sbd_error_t *
drmach_board_unassign(drmachid_t id)
{
drmach_board_t *bp;
sbd_error_t *err;
drmach_status_t stat;
caddr_t obufp;
rw_enter(&drmach_boards_rwlock, RW_WRITER);
if (!DRMACH_IS_BOARD_ID(id)) {
rw_exit(&drmach_boards_rwlock);
return (drerr_new(0, ESTC_INAPPROP, NULL));
}
bp = id;
err = drmach_board_status(id, &stat);
if (err) {
rw_exit(&drmach_boards_rwlock);
return (err);
}
if (stat.configured || stat.busy) {
err = drerr_new(0, ESTC_CONFIGBUSY, bp->cm.name);
} else {
obufp = kmem_zalloc(sizeof (dr_proto_hdr_t), KM_SLEEP);
err = drmach_mbox_trans(DRMSG_UNASSIGN, bp->bnum, obufp,
sizeof (dr_proto_hdr_t), (caddr_t)NULL, 0);
kmem_free(obufp, sizeof (dr_proto_hdr_t));
if (!err) {
if (drmach_array_set(drmach_boards, bp->bnum, 0) != 0)
err = DRMACH_INTERNAL_ERROR();
else
drmach_board_dispose(bp);
}
}
rw_exit(&drmach_boards_rwlock);
return (err);
}
static sbd_error_t *
drmach_read_reg_addr(drmach_device_t *dp, uint64_t *p)
{
int len;
drmach_reg_t reg;
drmach_node_t pp;
drmach_node_t *np = dp->node;
/*
* If the node does not have a portid property,
* it represents a CMP device. For a CMP, the reg
* property of the parent holds the information of
* interest.
*/
if (dp->node->n_getproplen(dp->node, "portid", &len) != 0) {
if (dp->node->get_parent(dp->node, &pp) != 0) {
return (DRMACH_INTERNAL_ERROR());
}
np = &pp;
}
if (np->n_getproplen(np, "reg", &len) != 0)
return (DRMACH_INTERNAL_ERROR());
if (len != sizeof (reg))
return (DRMACH_INTERNAL_ERROR());
if (np->n_getprop(np, "reg", &reg, sizeof (reg)) != 0)
return (DRMACH_INTERNAL_ERROR());
/* reassemble 64-bit base address */
*p = ((uint64_t)reg.reg_addr_hi << 32) | reg.reg_addr_lo;
return (NULL);
}
static void
drmach_cpu_read(uint64_t arg1, uint64_t arg2)
{
uint64_t *saf_config_reg = (uint64_t *)arg1;
uint_t *reg_read = (uint_t *)arg2;
*saf_config_reg = lddsafconfig();
*reg_read = 0x1;
}
/*
* A return value of 1 indicates success and 0 indicates a failure
*/
static int
drmach_cpu_read_scr(drmach_cpu_t *cp, uint64_t *scr)
{
int rv = 0x0;
*scr = 0x0;
/*
* Confirm cpu was in ready set when xc was issued.
* This is done by verifying rv which is
* set to 0x1 when xc_one is successful.
*/
xc_one(cp->dev.portid, (xcfunc_t *)drmach_cpu_read,
(uint64_t)scr, (uint64_t)&rv);
return (rv);
}
static sbd_error_t *
drmach_cpu_read_cpuid(drmach_cpu_t *cp, processorid_t *cpuid)
{
drmach_node_t *np;
np = cp->dev.node;
/*
* If a CPU does not have a portid property, it must
* be a CMP device with a cpuid property.
*/
if (np->n_getprop(np, "portid", cpuid, sizeof (*cpuid)) != 0) {
if (np->n_getprop(np, "cpuid", cpuid, sizeof (*cpuid)) != 0) {
return (DRMACH_INTERNAL_ERROR());
}
}
return (NULL);
}
/* Starcat CMP core id is bit 2 of the cpuid */
#define DRMACH_COREID_MASK (1u << 2)
#define DRMACH_CPUID2SRAM_IDX(id) \
((id & DRMACH_COREID_MASK) >> 1 | (id & 0x1))
static sbd_error_t *
drmach_cpu_new(drmach_device_t *proto, drmachid_t *idp)
{
static void drmach_cpu_dispose(drmachid_t);
static sbd_error_t *drmach_cpu_release(drmachid_t);
static sbd_error_t *drmach_cpu_status(drmachid_t, drmach_status_t *);
sbd_error_t *err;
uint64_t scr_pa;
drmach_cpu_t *cp = NULL;
pfn_t pfn;
uint64_t cpu_stardrb_offset, cpu_sram_pa;
int idx;
int impl;
processorid_t cpuid;
err = drmach_read_reg_addr(proto, &scr_pa);
if (err) {
goto fail;
}
cp = kmem_zalloc(sizeof (drmach_cpu_t), KM_SLEEP);
bcopy(proto, &cp->dev, sizeof (cp->dev));
cp->dev.node = drmach_node_dup(proto->node);
cp->dev.cm.isa = (void *)drmach_cpu_new;
cp->dev.cm.dispose = drmach_cpu_dispose;
cp->dev.cm.release = drmach_cpu_release;
cp->dev.cm.status = drmach_cpu_status;
cp->scr_pa = scr_pa;
err = drmach_cpu_read_cpuid(cp, &cpuid);
if (err) {
goto fail;
}
err = drmach_cpu_get_impl(cp, &impl);
if (err) {
goto fail;
}
cp->cpuid = cpuid;
cp->coreid = STARCAT_CPUID_TO_COREID(cp->cpuid);
cp->dev.unum = STARCAT_CPUID_TO_AGENT(cp->cpuid);
/*
* Init the board cpu type. Assumes all board cpus are the same type.
*/
if (cp->dev.bp->cpu_impl == 0) {
cp->dev.bp->cpu_impl = impl;
}
ASSERT(cp->dev.bp->cpu_impl == impl);
/*
* XXX CHEETAH SUPPORT
* determine if the domain uses Cheetah procs
*/
if (drmach_is_cheetah < 0) {
drmach_is_cheetah = IS_CHEETAH(impl);
}
/*
* Initialize TTE for mapping CPU SRAM STARDRB buffer.
* The STARDRB buffer (16KB on Cheetah+ boards, 32KB on
* Jaguar/Panther boards) is shared by all cpus in a Safari port
* pair. Each cpu uses 8KB according to the following layout:
*
* Page 0: even numbered Cheetah+'s and Panther/Jaguar core 0's
* Page 1: odd numbered Cheetah+'s and Panther/Jaguar core 0's
* Page 2: even numbered Panther/Jaguar core 1's
* Page 3: odd numbered Panther/Jaguar core 1's
*/
idx = DRMACH_CPUID2SRAM_IDX(cp->cpuid);
cpu_stardrb_offset = cp->dev.bp->stardrb_offset + (PAGESIZE * idx);
cpu_sram_pa = DRMACH_CPU_SRAM_ADDR + cpu_stardrb_offset;
pfn = cpu_sram_pa >> PAGESHIFT;
ASSERT(drmach_cpu_sram_tte[cp->cpuid].tte_inthi == 0 &&
drmach_cpu_sram_tte[cp->cpuid].tte_intlo == 0);
drmach_cpu_sram_tte[cp->cpuid].tte_inthi = TTE_PFN_INTHI(pfn) |
TTE_VALID_INT | TTE_SZ_INT(TTE8K);
drmach_cpu_sram_tte[cp->cpuid].tte_intlo = TTE_PFN_INTLO(pfn) |
TTE_HWWR_INT | TTE_PRIV_INT | TTE_LCK_INT;
DRMACH_PR("drmach_cpu_new: cpuid=%d, coreid=%d, stardrb_offset=0x%lx, "
"cpu_sram_offset=0x%lx, idx=%d\n", cp->cpuid, cp->coreid,
cp->dev.bp->stardrb_offset, cpu_stardrb_offset, idx);
snprintf(cp->dev.cm.name, sizeof (cp->dev.cm.name), "%s%d",
cp->dev.type, cp->dev.unum);
*idp = (drmachid_t)cp;
return (NULL);
fail:
if (cp) {
drmach_node_dispose(cp->dev.node);
kmem_free(cp, sizeof (*cp));
}
*idp = (drmachid_t)0;
return (err);
}
static void
drmach_cpu_dispose(drmachid_t id)
{
drmach_cpu_t *self;
processorid_t cpuid;
ASSERT(DRMACH_IS_CPU_ID(id));
self = id;
if (self->dev.node)
drmach_node_dispose(self->dev.node);
cpuid = self->cpuid;
ASSERT(TTE_IS_VALID(&drmach_cpu_sram_tte[cpuid]) &&
TTE_IS_8K(&drmach_cpu_sram_tte[cpuid]) &&
TTE_IS_PRIVILEGED(&drmach_cpu_sram_tte[cpuid]) &&
TTE_IS_LOCKED(&drmach_cpu_sram_tte[cpuid]));
drmach_cpu_sram_tte[cpuid].tte_inthi = 0;
drmach_cpu_sram_tte[cpuid].tte_intlo = 0;
kmem_free(self, sizeof (*self));
}
static int
drmach_cpu_start(struct cpu *cp)
{
extern xcfunc_t drmach_set_lpa;
extern void restart_other_cpu(int);
int cpuid = cp->cpu_id;
int rv, bnum;
drmach_board_t *bp;
ASSERT(MUTEX_HELD(&cpu_lock));
ASSERT(cpunodes[cpuid].nodeid != (pnode_t)0);
cp->cpu_flags &= ~CPU_POWEROFF;
/*
* NOTE: restart_other_cpu pauses cpus during the
* slave cpu start. This helps to quiesce the
* bus traffic a bit which makes the tick sync
* routine in the prom more robust.
*/
DRMACH_PR("COLD START for cpu (%d)\n", cpuid);
if (prom_hotaddcpu(cpuid) != 0) {
cmn_err(CE_PANIC, "prom_hotaddcpu() for cpuid=%d failed.",
cpuid);
}
restart_other_cpu(cpuid);
bnum = drmach_portid2bnum(cpunodes[cpuid].portid);
rv = drmach_array_get(drmach_boards, bnum, (drmachid_t)&bp);
if (rv == -1 || bp == NULL) {
DRMACH_PR("drmach_cpu_start: cannot read board info for "
"cpuid=%d: rv=%d, bp=%p\n", cpuid, rv, bp);
} else if (DRMACH_L1_SET_LPA(bp) && drmach_reprogram_lpa) {
int exp;
int ntries;
mutex_enter(&drmach_xt_mb_lock);
mutex_enter(&drmach_slice_table_lock);
bzero((void *)drmach_xt_mb, drmach_xt_mb_size);
/*
* drmach_slice_table[*]
* bit 5 valid
* bit 0:4 slice number
*
* drmach_xt_mb[*] format for drmach_set_lpa
* bit 7 valid
* bit 6 set null LPA (overrides bits 0:4)
* bit 0:4 slice number
*
* drmach_set_lpa derives processor CBASE and CBND
* from bits 6 and 0:4 of drmach_xt_mb. If bit 6 is
* set, then CBASE = CBND = 0. Otherwise, CBASE = slice
* number; CBND = slice number + 1.
* No action is taken if bit 7 is zero.
*/
exp = (cpuid >> 5) & 0x1f;
if (drmach_slice_table[exp] & 0x20) {
drmach_xt_mb[cpuid] = 0x80 |
(drmach_slice_table[exp] & 0x1f);
} else {
drmach_xt_mb[cpuid] = 0x80 | 0x40;
}
drmach_xt_ready = 0;
xt_one(cpuid, drmach_set_lpa, NULL, NULL);
ntries = drmach_cpu_ntries;
while (!drmach_xt_ready && ntries) {
DELAY(drmach_cpu_delay);
ntries--;
}
mutex_exit(&drmach_slice_table_lock);
mutex_exit(&drmach_xt_mb_lock);
DRMACH_PR(
"waited %d out of %d tries for drmach_set_lpa on cpu%d",
drmach_cpu_ntries - ntries, drmach_cpu_ntries,
cp->cpu_id);
}
xt_one(cpuid, vtag_flushpage_tl1,
(uint64_t)drmach_cpu_sram_va, (uint64_t)ksfmmup);
return (0);
}
/*
* A detaching CPU is xcalled with an xtrap to drmach_cpu_stop_self() after
* it has been offlined. The function of this routine is to get the cpu
* spinning in a safe place. The requirement is that the system will not
* reference anything on the detaching board (memory and i/o is detached
* elsewhere) and that the CPU not reference anything on any other board
* in the system. This isolation is required during and after the writes
* to the domain masks to remove the board from the domain.
*
* To accomplish this isolation the following is done:
* 1) Create a locked mapping to the STARDRB data buffer located
* in this cpu's sram. There is one TTE per cpu, initialized in
* drmach_cpu_new(). The cpuid is used to select which TTE to use.
* Each Safari port pair shares the CPU SRAM on a Serengeti CPU/MEM
* board. The STARDRB buffer is 16KB on Cheetah+ boards, 32KB on Jaguar
* boards. Each STARDRB buffer is logically divided by DR into one
* 8KB page per cpu (or Jaguar core).
* 2) Copy the target function (drmach_shutdown_asm) into buffer.
* 3) Jump to function now in the cpu sram.
* Function will:
* 3.1) Flush its Ecache (displacement).
* 3.2) Flush its Dcache with HW mechanism.
* 3.3) Flush its Icache with HW mechanism.
* 3.4) Flush all valid and _unlocked_ D-TLB and I-TLB entries.
* 3.5) Set LPA to NULL
* 3.6) Clear xt_mb to signal completion. Note: cache line is
* recovered by drmach_cpu_poweroff().
* 4) Jump into an infinite loop.
*/
static void
drmach_cpu_stop_self(void)
{
extern void drmach_shutdown_asm(
uint64_t, uint64_t, int, int, uint64_t);
extern void drmach_shutdown_asm_end(void);
tte_t *tte;
uint_t *p, *q;
uint64_t stack_pointer;
ASSERT(((ptrdiff_t)drmach_shutdown_asm_end -
(ptrdiff_t)drmach_shutdown_asm) < PAGESIZE);
tte = &drmach_cpu_sram_tte[CPU->cpu_id];
ASSERT(TTE_IS_VALID(tte) && TTE_IS_8K(tte) &&
TTE_IS_PRIVILEGED(tte) && TTE_IS_LOCKED(tte));
sfmmu_dtlb_ld_kva(drmach_cpu_sram_va, tte);
sfmmu_itlb_ld_kva(drmach_cpu_sram_va, tte);
/* copy text. standard bcopy not designed to work in nc space */
p = (uint_t *)drmach_cpu_sram_va;
q = (uint_t *)drmach_shutdown_asm;
while (q < (uint_t *)drmach_shutdown_asm_end)
*p++ = *q++;
/* zero to assist debug */
q = (uint_t *)(drmach_cpu_sram_va + PAGESIZE);
while (p < q)
*p++ = 0;
/* a parking spot for the stack pointer */
stack_pointer = (uint64_t)q;
/* call copy of drmach_shutdown_asm */
(*(void (*)())drmach_cpu_sram_va)(
stack_pointer,
drmach_iocage_paddr,
cpunodes[CPU->cpu_id].ecache_size,
cpunodes[CPU->cpu_id].ecache_linesize,
va_to_pa((void *)&drmach_xt_mb[CPU->cpu_id]));
}
static void
drmach_cpu_shutdown_self(void)
{
cpu_t *cp = CPU;
int cpuid = cp->cpu_id;
extern void flush_windows(void);
flush_windows();
(void) spl8();
ASSERT(cp->cpu_intr_actv == 0);
ASSERT(cp->cpu_thread == cp->cpu_idle_thread ||
cp->cpu_thread == cp->cpu_startup_thread);
cp->cpu_flags = CPU_OFFLINE | CPU_QUIESCED | CPU_POWEROFF;
drmach_cpu_stop_self();
cmn_err(CE_PANIC, "CPU %d FAILED TO SHUTDOWN", cpuid);
}
static sbd_error_t *
drmach_cpu_release(drmachid_t id)
{
drmach_cpu_t *cp;
struct cpu *cpu;
sbd_error_t *err;
if (!DRMACH_IS_CPU_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
cp = id;
ASSERT(MUTEX_HELD(&cpu_lock));
cpu = cpu_get(cp->cpuid);
if (cpu == NULL)
err = DRMACH_INTERNAL_ERROR();
else
err = NULL;
return (err);
}
static sbd_error_t *
drmach_cpu_status(drmachid_t id, drmach_status_t *stat)
{
drmach_cpu_t *cp;
drmach_device_t *dp;
ASSERT(DRMACH_IS_CPU_ID(id));
cp = id;
dp = &cp->dev;
stat->assigned = dp->bp->assigned;
stat->powered = dp->bp->powered;
mutex_enter(&cpu_lock);
stat->configured = (cpu_get(cp->cpuid) != NULL);
mutex_exit(&cpu_lock);
stat->busy = dp->busy;
strncpy(stat->type, dp->type, sizeof (stat->type));
stat->info[0] = '\0';
return (NULL);
}
sbd_error_t *
drmach_cpu_disconnect(drmachid_t id)
{
if (!DRMACH_IS_CPU_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
return (NULL);
}
sbd_error_t *
drmach_cpu_get_id(drmachid_t id, processorid_t *cpuid)
{
drmach_cpu_t *cpu;
if (!DRMACH_IS_CPU_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
cpu = id;
*cpuid = cpu->cpuid;
return (NULL);
}
sbd_error_t *
drmach_cpu_get_impl(drmachid_t id, int *ip)
{
drmach_node_t *np;
int impl;
if (!DRMACH_IS_CPU_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
np = ((drmach_device_t *)id)->node;
if (np->n_getprop(np, "implementation#", &impl, sizeof (impl)) == -1) {
return (DRMACH_INTERNAL_ERROR());
}
*ip = impl;
return (NULL);
}
/*
* Flush this cpu's ecache, then ensure all outstanding safari
* transactions have retired.
*/
void
drmach_cpu_flush_ecache_sync(void)
{
uint64_t *p;
ASSERT(curthread->t_bound_cpu == CPU);
cpu_flush_ecache();
mutex_enter(&drmach_bus_sync_lock);
for (p = drmach_bus_sync_list; *p; p++)
(void) ldphys(*p);
mutex_exit(&drmach_bus_sync_lock);
cpu_flush_ecache();
}
sbd_error_t *
drmach_get_dip(drmachid_t id, dev_info_t **dip)
{
drmach_device_t *dp;
if (!DRMACH_IS_DEVICE_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
dp = id;
*dip = dp->node->n_getdip(dp->node);
return (NULL);
}
sbd_error_t *
drmach_io_is_attached(drmachid_t id, int *yes)
{
drmach_device_t *dp;
dev_info_t *dip;
int state;
if (!DRMACH_IS_IO_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
dp = id;
dip = dp->node->n_getdip(dp->node);
if (dip == NULL) {
*yes = 0;
return (NULL);
}
state = ddi_get_devstate(dip);
*yes = i_ddi_devi_attached(dip) || (state == DDI_DEVSTATE_UP);
return (NULL);
}
static int
drmach_dip_is_schizo_xmits_0_pci_b(dev_info_t *dip)
{
char dtype[OBP_MAXPROPNAME];
int portid;
uint_t pci_csr_base;
struct pci_phys_spec *regbuf = NULL;
int rv, len;
ASSERT(dip != NULL);
rv = ddi_getproplen(DDI_DEV_T_ANY, dip, 0, "device_type", &len);
if ((rv != DDI_PROP_SUCCESS) || (len > sizeof (dtype)))
return (0);
if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, 0, "device_type",
(caddr_t)dtype, &len) == DDI_PROP_SUCCESS) {
if (strncmp(dtype, "pci", 3) == 0) {
/*
* Get safari portid. All schizo/xmits 0
* safari IDs end in 0x1C.
*/
rv = ddi_getproplen(DDI_DEV_T_ANY, dip, 0,
"portid", &len);
if ((rv != DDI_PROP_SUCCESS) ||
(len > sizeof (portid)))
return (0);
rv = ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, 0,
"portid", (caddr_t)&portid, &len);
if (rv != DDI_PROP_SUCCESS)
return (0);
if ((portid & 0x1F) != 0x1C)
return (0);
if (ddi_getlongprop(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "reg", (caddr_t)&regbuf,
&len) == DDI_PROP_SUCCESS) {
pci_csr_base = regbuf[0].pci_phys_mid &
PCI_CONF_ADDR_MASK;
kmem_free(regbuf, len);
/*
* All PCI B-Leafs are at configspace 0x70.0000.
*/
if (pci_csr_base == 0x700000)
return (1);
}
}
}
return (0);
}
#define SCHIZO_BINDING_NAME "pci108e,8001"
#define XMITS_BINDING_NAME "pci108e,8002"
/*
* Verify if the dip is an instance of MAN 'eri'.
*/
static int
drmach_dip_is_man_eri(dev_info_t *dip)
{
struct pci_phys_spec *regbuf = NULL;
dev_info_t *parent_dip;
char *name;
uint_t pci_device;
uint_t pci_function;
int len;
if (dip == NULL)
return (0);
/*
* Verify if the parent is schizo(xmits)0 and pci B leaf.
*/
if (((parent_dip = ddi_get_parent(dip)) == NULL) ||
((name = ddi_binding_name(parent_dip)) == NULL))
return (0);
if (strcmp(name, SCHIZO_BINDING_NAME) != 0) {
/*
* This RIO could be on XMITS, so get the dip to
* XMITS PCI Leaf.
*/
if ((parent_dip = ddi_get_parent(parent_dip)) == NULL)
return (0);
if (((name = ddi_binding_name(parent_dip)) == NULL) ||
(strcmp(name, XMITS_BINDING_NAME) != 0)) {
return (0);
}
}
if (!drmach_dip_is_schizo_xmits_0_pci_b(parent_dip))
return (0);
/*
* Finally make sure it is the MAN eri.
*/
if (ddi_getlongprop(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
"reg", (caddr_t)&regbuf, &len) == DDI_PROP_SUCCESS) {
pci_device = PCI_REG_DEV_G(regbuf->pci_phys_hi);
pci_function = PCI_REG_FUNC_G(regbuf->pci_phys_hi);
kmem_free(regbuf, len);
/*
* The network function of the RIO ASIC will always be
* device 3 and function 1 ("network@3,1").
*/
if ((pci_device == 3) && (pci_function == 1))
return (1);
}
return (0);
}
typedef struct {
int iosram_inst;
dev_info_t *eri_dip;
int bnum;
} drmach_io_inst_t;
int
drmach_board_find_io_insts(dev_info_t *dip, void *args)
{
drmach_io_inst_t *ios = (drmach_io_inst_t *)args;
int rv;
int len;
int portid;
char name[OBP_MAXDRVNAME];
rv = ddi_getproplen(DDI_DEV_T_ANY, dip, 0, "portid", &len);
if ((rv != DDI_PROP_SUCCESS) || (len > sizeof (portid))) {
return (DDI_WALK_CONTINUE);
}
rv = ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, 0,
"portid", (caddr_t)&portid, &len);
if (rv != DDI_PROP_SUCCESS)
return (DDI_WALK_CONTINUE);
/* ignore devices that are not on this board */
if (drmach_portid2bnum(portid) != ios->bnum)
return (DDI_WALK_CONTINUE);
if ((ios->iosram_inst < 0) || (ios->eri_dip == NULL)) {
rv = ddi_getproplen(DDI_DEV_T_ANY, dip, 0,
"name", &len);
if (rv == DDI_PROP_SUCCESS) {
rv = ddi_getlongprop_buf(DDI_DEV_T_ANY, dip,
0, "name",
(caddr_t)name, &len);
if (rv != DDI_PROP_SUCCESS)
return (DDI_WALK_CONTINUE);
if (strncmp("iosram", name, 6) == 0) {
ios->iosram_inst = ddi_get_instance(dip);
if (ios->eri_dip == NULL)
return (DDI_WALK_CONTINUE);
else
return (DDI_WALK_TERMINATE);
} else {
if (drmach_dip_is_man_eri(dip)) {
ASSERT(ios->eri_dip == NULL);
ndi_hold_devi(dip);
ios->eri_dip = dip;
if (ios->iosram_inst < 0)
return (DDI_WALK_CONTINUE);
else
return (DDI_WALK_TERMINATE);
}
}
}
}
return (DDI_WALK_CONTINUE);
}
sbd_error_t *
drmach_io_pre_release(drmachid_t id)
{
drmach_io_inst_t ios;
drmach_board_t *bp;
int rv = 0;
sbd_error_t *err = NULL;
drmach_device_t *dp;
dev_info_t *rdip;
int circ;
if (!DRMACH_IS_IO_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
dp = id;
bp = dp->bp;
rdip = dp->node->n_getdip(dp->node);
/* walk device tree to find iosram instance for the board */
ios.iosram_inst = -1;
ios.eri_dip = NULL;
ios.bnum = bp->bnum;
ndi_devi_enter(rdip, &circ);
ddi_walk_devs(ddi_get_child(rdip), drmach_board_find_io_insts,
(void *)&ios);
DRMACH_PR("drmach_io_pre_release: bnum=%d iosram=%d eri=0x%p\n",
ios.bnum, ios.iosram_inst, ios.eri_dip);
ndi_devi_exit(rdip, circ);
if (ios.eri_dip) {
/*
* Release hold acquired in drmach_board_find_io_insts()
*/
ndi_rele_devi(ios.eri_dip);
}
if (ios.iosram_inst >= 0) {
/* call for tunnel switch */
do {
DRMACH_PR("calling iosram_switchfrom(%d)\n",
ios.iosram_inst);
rv = iosram_switchfrom(ios.iosram_inst);
if (rv)
DRMACH_PR("iosram_switchfrom returned %d\n",
rv);
} while (rv == EAGAIN);
if (rv)
err = drerr_new(0, ESTC_IOSWITCH, NULL);
}
return (err);
}
sbd_error_t *
drmach_io_unrelease(drmachid_t id)
{
dev_info_t *dip;
sbd_error_t *err = NULL;
drmach_device_t *dp;
if (!DRMACH_IS_IO_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
dp = id;
dip = dp->node->n_getdip(dp->node);
if (dip == NULL)
err = DRMACH_INTERNAL_ERROR();
else {
int (*func)(dev_info_t *dip);
func = (int (*)(dev_info_t *))kobj_getsymvalue("man_dr_attach",
0);
if (func) {
drmach_io_inst_t ios;
dev_info_t *pdip;
int circ;
/*
* Walk device tree to find rio dip for the board
* Since we are not interested in iosram instance here,
* initialize it to 0, so that the walk terminates as
* soon as eri dip is found.
*/
ios.iosram_inst = 0;
ios.eri_dip = NULL;
ios.bnum = dp->bp->bnum;
if (pdip = ddi_get_parent(dip)) {
ndi_hold_devi(pdip);
ndi_devi_enter(pdip, &circ);
}
/*
* Root node doesn't have to be held in any way.
*/
ddi_walk_devs(dip,
drmach_board_find_io_insts, (void *)&ios);
if (pdip) {
ndi_devi_exit(pdip, circ);
ndi_rele_devi(pdip);
}
DRMACH_PR("drmach_io_unrelease: bnum=%d eri=0x%p\n",
ios.bnum, ios.eri_dip);
if (ios.eri_dip) {
DRMACH_PR("calling man_dr_attach\n");
if ((*func)(ios.eri_dip))
err = drerr_new(0,
ESTC_NWSWITCH, NULL);
/*
* Release hold acquired in
* drmach_board_find_io_insts()
*/
ndi_rele_devi(ios.eri_dip);
}
} else
DRMACH_PR("man_dr_attach NOT present\n");
}
return (err);
}
static sbd_error_t *
drmach_io_release(drmachid_t id)
{
dev_info_t *dip;
sbd_error_t *err = NULL;
drmach_device_t *dp;
if (!DRMACH_IS_IO_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
dp = id;
dip = dp->node->n_getdip(dp->node);
if (dip == NULL)
err = DRMACH_INTERNAL_ERROR();
else {
int (*func)(dev_info_t *dip);
func = (int (*)(dev_info_t *))kobj_getsymvalue("man_dr_detach",
0);
if (func) {
drmach_io_inst_t ios;
dev_info_t *pdip;
int circ;
/*
* Walk device tree to find rio dip for the board
* Since we are not interested in iosram instance here,
* initialize it to 0, so that the walk terminates as
* soon as eri dip is found.
*/
ios.iosram_inst = 0;
ios.eri_dip = NULL;
ios.bnum = dp->bp->bnum;
if (pdip = ddi_get_parent(dip)) {
ndi_hold_devi(pdip);
ndi_devi_enter(pdip, &circ);
}
/*
* Root node doesn't have to be held in any way.
*/
ddi_walk_devs(dip,
drmach_board_find_io_insts, (void *)&ios);
if (pdip) {
ndi_devi_exit(pdip, circ);
ndi_rele_devi(pdip);
}
DRMACH_PR("drmach_io_release: bnum=%d eri=0x%p\n",
ios.bnum, ios.eri_dip);
if (ios.eri_dip) {
DRMACH_PR("calling man_dr_detach\n");
if ((*func)(ios.eri_dip))
err = drerr_new(0,
ESTC_NWSWITCH, NULL);
/*
* Release hold acquired in
* drmach_board_find_io_insts()
*/
ndi_rele_devi(ios.eri_dip);
}
} else
DRMACH_PR("man_dr_detach NOT present\n");
}
return (err);
}
sbd_error_t *
drmach_io_post_release(drmachid_t id)
{
char *path;
dev_info_t *rdip;
drmach_device_t *dp;
if (!DRMACH_IS_DEVICE_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
dp = id;
rdip = dp->node->n_getdip(dp->node);
/*
* Always called after drmach_unconfigure() which on Starcat
* unconfigures the branch but doesn't remove it so the
* dip must always exist.
*/
ASSERT(rdip);
ASSERT(e_ddi_branch_held(rdip));
#ifdef DEBUG
path = kmem_alloc(MAXPATHLEN, KM_SLEEP);
(void) ddi_pathname(rdip, path);
DRMACH_PR("post_release dip path is: %s\n", path);
kmem_free(path, MAXPATHLEN);
#endif
if (strcmp(dp->type, DRMACH_DEVTYPE_PCI) == 0) {
if (schpc_remove_pci(rdip)) {
DRMACH_PR("schpc_remove_pci failed\n");
return (drerr_new(0, ESBD_OFFLINE, NULL));
} else {
DRMACH_PR("schpc_remove_pci succeeded\n");
}
}
return (NULL);
}
sbd_error_t *
drmach_io_post_attach(drmachid_t id)
{
int circ;
dev_info_t *dip;
dev_info_t *pdip;
drmach_device_t *dp;
drmach_io_inst_t ios;
if (!DRMACH_IS_DEVICE_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
dp = id;
dip = dp->node->n_getdip(dp->node);
/*
* We held the branch rooted at dip earlier, so at a minimum the
* root i.e. dip must be present in the device tree.
*/
ASSERT(dip);
if (strcmp(dp->type, DRMACH_DEVTYPE_PCI) == 0) {
if (schpc_add_pci(dip)) {
DRMACH_PR("schpc_add_pci failed\n");
} else {
DRMACH_PR("schpc_add_pci succeeded\n");
}
}
/*
* Walk device tree to find rio dip for the board
* Since we are not interested in iosram instance here,
* initialize it to 0, so that the walk terminates as
* soon as eri dip is found.
*/
ios.iosram_inst = 0;
ios.eri_dip = NULL;
ios.bnum = dp->bp->bnum;
if (pdip = ddi_get_parent(dip)) {
ndi_hold_devi(pdip);
ndi_devi_enter(pdip, &circ);
}
/*
* Root node doesn't have to be held in any way.
*/
ddi_walk_devs(dip, drmach_board_find_io_insts,
(void *)&ios);
if (pdip) {
ndi_devi_exit(pdip, circ);
ndi_rele_devi(pdip);
}
DRMACH_PR("drmach_io_post_attach: bnum=%d eri=0x%p\n",
ios.bnum, ios.eri_dip);
if (ios.eri_dip) {
int (*func)(dev_info_t *dip);
func =
(int (*)(dev_info_t *))kobj_getsymvalue("man_dr_attach", 0);
if (func) {
DRMACH_PR("calling man_dr_attach\n");
(void) (*func)(ios.eri_dip);
} else {
DRMACH_PR("man_dr_attach NOT present\n");
}
/*
* Release hold acquired in drmach_board_find_io_insts()
*/
ndi_rele_devi(ios.eri_dip);
}
return (NULL);
}
static sbd_error_t *
drmach_io_status(drmachid_t id, drmach_status_t *stat)
{
drmach_device_t *dp;
sbd_error_t *err;
int configured;
ASSERT(DRMACH_IS_IO_ID(id));
dp = id;
err = drmach_io_is_attached(id, &configured);
if (err)
return (err);
stat->assigned = dp->bp->assigned;
stat->powered = dp->bp->powered;
stat->configured = (configured != 0);
stat->busy = dp->busy;
strncpy(stat->type, dp->type, sizeof (stat->type));
stat->info[0] = '\0';
return (NULL);
}
sbd_error_t *
drmach_mem_init_size(drmachid_t id)
{
drmach_mem_t *mp;
sbd_error_t *err;
gdcd_t *gdcd;
mem_chunk_t *chunk;
uint64_t chunks, pa, mask, sz;
if (!DRMACH_IS_MEM_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
mp = id;
err = drmach_mem_get_base_physaddr(id, &pa);
if (err)
return (err);
mask = ~ (DRMACH_MEM_SLICE_SIZE - 1);
pa &= mask;
gdcd = drmach_gdcd_new();
if (gdcd == NULL)
return (DRMACH_INTERNAL_ERROR());
sz = 0;
chunk = gdcd->dcd_chunk_list.dcl_chunk;
chunks = gdcd->dcd_chunk_list.dcl_chunks;
while (chunks-- != 0) {
if ((chunk->mc_base_pa & mask) == pa) {
sz += chunk->mc_mbytes * 1048576;
}
++chunk;
}
mp->nbytes = sz;
drmach_gdcd_dispose(gdcd);
return (NULL);
}
/*
* Hardware registers are organized into consecutively
* addressed registers. The reg property's hi and lo fields
* together describe the base address of the register set for
* this memory-controller. Register descriptions and offsets
* (from the base address) are as follows:
*
* Description Offset Size (bytes)
* Memory Timing Control Register I 0x00 8
* Memory Timing Control Register II 0x08 8
* Memory Address Decoding Register I 0x10 8
* Memory Address Decoding Register II 0x18 8
* Memory Address Decoding Register III 0x20 8
* Memory Address Decoding Register IV 0x28 8
* Memory Address Control Register 0x30 8
* Memory Timing Control Register III 0x38 8
* Memory Timing Control Register IV 0x40 8
* Memory Timing Control Register V 0x48 8 (Jaguar, Panther only)
* EMU Activity Status Register 0x50 8 (Panther only)
*
* Only the Memory Address Decoding Register and EMU Activity Status
* Register addresses are needed for DRMACH.
*/
static sbd_error_t *
drmach_mem_new(drmach_device_t *proto, drmachid_t *idp)
{
static void drmach_mem_dispose(drmachid_t);
static sbd_error_t *drmach_mem_release(drmachid_t);
static sbd_error_t *drmach_mem_status(drmachid_t, drmach_status_t *);
sbd_error_t *err;
uint64_t madr_pa;
drmach_mem_t *mp;
int bank, count;
err = drmach_read_reg_addr(proto, &madr_pa);
if (err)
return (err);
mp = kmem_zalloc(sizeof (drmach_mem_t), KM_SLEEP);
bcopy(proto, &mp->dev, sizeof (mp->dev));
mp->dev.node = drmach_node_dup(proto->node);
mp->dev.cm.isa = (void *)drmach_mem_new;
mp->dev.cm.dispose = drmach_mem_dispose;
mp->dev.cm.release = drmach_mem_release;
mp->dev.cm.status = drmach_mem_status;
mp->madr_pa = madr_pa;
snprintf(mp->dev.cm.name,
sizeof (mp->dev.cm.name), "%s", mp->dev.type);
for (count = bank = 0; bank < DRMACH_MC_NBANKS; bank++) {
uint64_t madr;
drmach_mem_read_madr(mp, bank, &madr);
if (madr & DRMACH_MC_VALID_MASK) {
count += 1;
break;
}
}
/*
* If none of the banks had their valid bit set, that means
* post did not configure this MC to participate in the
* domain. So, pretend this node does not exist by returning
* a drmachid of zero.
*/
if (count == 0) {
/* drmach_mem_dispose frees board mem list */
drmach_node_dispose(mp->dev.node);
kmem_free(mp, sizeof (*mp));
*idp = (drmachid_t)0;
return (NULL);
}
/*
* Only one mem unit per board is exposed to the
* PIM layer. The first mem unit encountered during
* tree walk is used to represent all mem units on
* the same board.
*/
if (mp->dev.bp->mem == NULL) {
/* start list of mem units on this board */
mp->dev.bp->mem = mp;
/*
* force unum to zero since this is the only mem unit
* that will be visible to the PIM layer.
*/
mp->dev.unum = 0;
/*
* board memory size kept in this mem unit only
*/
err = drmach_mem_init_size(mp);
if (err) {
mp->dev.bp->mem = NULL;
/* drmach_mem_dispose frees board mem list */
drmach_node_dispose(mp->dev.node);
kmem_free(mp, sizeof (*mp));
*idp = (drmachid_t)0;
return (NULL);
}
/*
* allow this instance (the first encountered on this board)
* to be visible to the PIM layer.
*/
*idp = (drmachid_t)mp;
} else {
drmach_mem_t *lp;
/* hide this mem instance behind the first. */
for (lp = mp->dev.bp->mem; lp->next; lp = lp->next)
;
lp->next = mp;
/*
* hide this instance from the caller.
* See drmach_board_find_devices_cb() for details.
*/
*idp = (drmachid_t)0;
}
return (NULL);
}
static void
drmach_mem_dispose(drmachid_t id)
{
drmach_mem_t *mp, *next;
drmach_board_t *bp;
ASSERT(DRMACH_IS_MEM_ID(id));
mutex_enter(&drmach_bus_sync_lock);
mp = id;
bp = mp->dev.bp;
do {
if (mp->dev.node)
drmach_node_dispose(mp->dev.node);
next = mp->next;
kmem_free(mp, sizeof (*mp));
mp = next;
} while (mp);
bp->mem = NULL;
drmach_bus_sync_list_update();
mutex_exit(&drmach_bus_sync_lock);
}
sbd_error_t *
drmach_mem_add_span(drmachid_t id, uint64_t basepa, uint64_t size)
{
pfn_t basepfn = (pfn_t)(basepa >> PAGESHIFT);
pgcnt_t npages = (pgcnt_t)(size >> PAGESHIFT);
int rv;
ASSERT(size != 0);
if (!DRMACH_IS_MEM_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
kcage_range_lock();
rv = kcage_range_add(basepfn, npages, 1);
kcage_range_unlock();
if (rv == ENOMEM) {
cmn_err(CE_WARN, "%lu megabytes not available"
" to kernel cage", size >> 20);
} else if (rv != 0) {
/* catch this in debug kernels */
ASSERT(0);
cmn_err(CE_WARN, "unexpected kcage_range_add"
" return value %d", rv);
}
return (NULL);
}
sbd_error_t *
drmach_mem_del_span(drmachid_t id, uint64_t basepa, uint64_t size)
{
pfn_t basepfn = (pfn_t)(basepa >> PAGESHIFT);
pgcnt_t npages = (pgcnt_t)(size >> PAGESHIFT);
int rv;
if (!DRMACH_IS_MEM_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
if (size > 0) {
kcage_range_lock();
rv = kcage_range_delete_post_mem_del(basepfn, npages);
kcage_range_unlock();
if (rv != 0) {
cmn_err(CE_WARN,
"unexpected kcage_range_delete_post_mem_del"
" return value %d", rv);
return (DRMACH_INTERNAL_ERROR());
}
}
return (NULL);
}
sbd_error_t *
drmach_mem_disable(drmachid_t id)
{
if (!DRMACH_IS_MEM_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
else
return (NULL);
}
sbd_error_t *
drmach_mem_enable(drmachid_t id)
{
if (!DRMACH_IS_MEM_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
else
return (NULL);
}
sbd_error_t *
drmach_mem_get_alignment(drmachid_t id, uint64_t *mask)
{
#define MB(mb) ((mb) * 1048576ull)
static struct {
uint_t uk;
uint64_t segsz;
} uk2segsz[] = {
{ 0x003, MB(256) },
{ 0x007, MB(512) },
{ 0x00f, MB(1024) },
{ 0x01f, MB(2048) },
{ 0x03f, MB(4096) },
{ 0x07f, MB(8192) },
{ 0x0ff, MB(16384) },
{ 0x1ff, MB(32768) },
{ 0x3ff, MB(65536) },
{ 0x7ff, MB(131072) }
};
static int len = sizeof (uk2segsz) / sizeof (uk2segsz[0]);
#undef MB
uint64_t largest_sz = 0;
drmach_mem_t *mp;
if (!DRMACH_IS_MEM_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
/* prime the result with a default value */
*mask = (DRMACH_MEM_SLICE_SIZE - 1);
for (mp = id; mp; mp = mp->next) {
int bank;
for (bank = 0; bank < DRMACH_MC_NBANKS; bank++) {
int i;
uint_t uk;
uint64_t madr;
/* get register value, extract uk and normalize */
drmach_mem_read_madr(mp, bank, &madr);
if (!(madr & DRMACH_MC_VALID_MASK))
continue;
uk = DRMACH_MC_UK(madr);
/* match uk value */
for (i = 0; i < len; i++)
if (uk == uk2segsz[i].uk)
break;
if (i < len) {
uint64_t sz = uk2segsz[i].segsz;
/*
* remember largest segment size,
* update mask result
*/
if (sz > largest_sz) {
largest_sz = sz;
*mask = sz - 1;
}
} else {
/*
* uk not in table, punt using
* entire slice size. no longer any
* reason to check other banks.
*/
*mask = (DRMACH_MEM_SLICE_SIZE - 1);
return (NULL);
}
}
}
return (NULL);
}
sbd_error_t *
drmach_mem_get_base_physaddr(drmachid_t id, uint64_t *base_addr)
{
drmach_mem_t *mp;
if (!DRMACH_IS_MEM_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
*base_addr = (uint64_t)-1;
for (mp = id; mp; mp = mp->next) {
int bank;
for (bank = 0; bank < DRMACH_MC_NBANKS; bank++) {
uint64_t addr, madr;
drmach_mem_read_madr(mp, bank, &madr);
if (madr & DRMACH_MC_VALID_MASK) {
addr = DRMACH_MC_UM_TO_PA(madr) |
DRMACH_MC_LM_TO_PA(madr);
if (addr < *base_addr)
*base_addr = addr;
}
}
}
/* should not happen, but ... */
if (*base_addr == (uint64_t)-1)
return (DRMACH_INTERNAL_ERROR());
return (NULL);
}
void
drmach_bus_sync_list_update(void)
{
int rv, idx, cnt = 0;
drmachid_t id;
ASSERT(MUTEX_HELD(&drmach_bus_sync_lock));
rv = drmach_array_first(drmach_boards, &idx, &id);
while (rv == 0) {
drmach_board_t *bp = id;
drmach_mem_t *mp = bp->mem;
while (mp) {
int bank;
for (bank = 0; bank < DRMACH_MC_NBANKS; bank++) {
uint64_t madr;
drmach_mem_read_madr(mp, bank, &madr);
if (madr & DRMACH_MC_VALID_MASK) {
uint64_t pa;
pa = DRMACH_MC_UM_TO_PA(madr);
pa |= DRMACH_MC_LM_TO_PA(madr);
/*
* The list is zero terminated.
* Offset the pa by a doubleword
* to avoid confusing a pa value of
* of zero with the terminator.
*/
pa += sizeof (uint64_t);
drmach_bus_sync_list[cnt++] = pa;
}
}
mp = mp->next;
}
rv = drmach_array_next(drmach_boards, &idx, &id);
}
drmach_bus_sync_list[cnt] = 0;
}
sbd_error_t *
drmach_mem_get_memlist(drmachid_t id, struct memlist **ml)
{
sbd_error_t *err;
struct memlist *mlist;
gdcd_t *gdcd;
mem_chunk_t *chunk;
uint64_t chunks, pa, mask;
err = drmach_mem_get_base_physaddr(id, &pa);
if (err)
return (err);
gdcd = drmach_gdcd_new();
if (gdcd == NULL)
return (DRMACH_INTERNAL_ERROR());
mask = ~ (DRMACH_MEM_SLICE_SIZE - 1);
pa &= mask;
mlist = NULL;
chunk = gdcd->dcd_chunk_list.dcl_chunk;
chunks = gdcd->dcd_chunk_list.dcl_chunks;
while (chunks-- != 0) {
if ((chunk->mc_base_pa & mask) == pa) {
mlist = memlist_add_span(mlist,
chunk->mc_base_pa, chunk->mc_mbytes * 1048576);
}
++chunk;
}
drmach_gdcd_dispose(gdcd);
#ifdef DEBUG
DRMACH_PR("GDCD derived memlist:");
memlist_dump(mlist);
#endif
*ml = mlist;
return (NULL);
}
sbd_error_t *
drmach_mem_get_size(drmachid_t id, uint64_t *bytes)
{
drmach_mem_t *mp;
if (!DRMACH_IS_MEM_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
mp = id;
ASSERT(mp->nbytes != 0);
*bytes = mp->nbytes;
return (NULL);
}
sbd_error_t *
drmach_mem_get_slice_size(drmachid_t id, uint64_t *bytes)
{
sbd_error_t *err;
drmach_device_t *mp;
if (!DRMACH_IS_MEM_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
mp = id;
switch (DRMACH_BNUM2SLOT(mp->bp->bnum)) {
case 0: *bytes = DRMACH_MEM_USABLE_SLICE_SIZE;
err = NULL;
break;
case 1: *bytes = 0;
err = NULL;
break;
default:
err = DRMACH_INTERNAL_ERROR();
break;
}
return (err);
}
processorid_t drmach_mem_cpu_affinity_nail;
processorid_t
drmach_mem_cpu_affinity(drmachid_t id)
{
drmach_device_t *mp;
drmach_board_t *bp;
processorid_t cpuid;
if (!DRMACH_IS_MEM_ID(id))
return (CPU_CURRENT);
if (drmach_mem_cpu_affinity_nail) {
cpuid = drmach_mem_cpu_affinity_nail;
if (cpuid < 0 || cpuid > NCPU)
return (CPU_CURRENT);
mutex_enter(&cpu_lock);
if (cpu[cpuid] == NULL || !CPU_ACTIVE(cpu[cpuid]))
cpuid = CPU_CURRENT;
mutex_exit(&cpu_lock);
return (cpuid);
}
/* try to choose a proc on the target board */
mp = id;
bp = mp->bp;
if (bp->devices) {
int rv;
int d_idx;
drmachid_t d_id;
rv = drmach_array_first(bp->devices, &d_idx, &d_id);
while (rv == 0) {
if (DRMACH_IS_CPU_ID(d_id)) {
drmach_cpu_t *cp = d_id;
mutex_enter(&cpu_lock);
cpuid = cp->cpuid;
if (cpu[cpuid] && CPU_ACTIVE(cpu[cpuid])) {
mutex_exit(&cpu_lock);
return (cpuid);
} else {
mutex_exit(&cpu_lock);
}
}
rv = drmach_array_next(bp->devices, &d_idx, &d_id);
}
}
/* otherwise, this proc, wherever it is */
return (CPU_CURRENT);
}
static sbd_error_t *
drmach_mem_release(drmachid_t id)
{
if (!DRMACH_IS_MEM_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
return (NULL);
}
static sbd_error_t *
drmach_mem_status(drmachid_t id, drmach_status_t *stat)
{
drmach_mem_t *mp;
sbd_error_t *err;
uint64_t pa, slice_size;
struct memlist *ml;
ASSERT(DRMACH_IS_MEM_ID(id));
mp = id;
/* get starting physical address of target memory */
err = drmach_mem_get_base_physaddr(id, &pa);
if (err)
return (err);
/* round down to slice boundary */
slice_size = DRMACH_MEM_SLICE_SIZE;
pa &= ~ (slice_size - 1);
/* stop at first span that is in slice */
memlist_read_lock();
for (ml = phys_install; ml; ml = ml->next)
if (ml->address >= pa && ml->address < pa + slice_size)
break;
memlist_read_unlock();
stat->assigned = mp->dev.bp->assigned;
stat->powered = mp->dev.bp->powered;
stat->configured = (ml != NULL);
stat->busy = mp->dev.busy;
strncpy(stat->type, mp->dev.type, sizeof (stat->type));
stat->info[0] = '\0';
return (NULL);
}
sbd_error_t *
drmach_board_deprobe(drmachid_t id)
{
drmach_board_t *bp;
sbd_error_t *err = NULL;
if (!DRMACH_IS_BOARD_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
bp = id;
if (bp->tree) {
drmach_node_dispose(bp->tree);
bp->tree = NULL;
}
if (bp->devices) {
drmach_array_dispose(bp->devices, drmach_device_dispose);
bp->devices = NULL;
bp->mem = NULL; /* TODO: still needed? */
}
return (err);
}
/*ARGSUSED1*/
static sbd_error_t *
drmach_pt_showlpa(drmachid_t id, drmach_opts_t *opts)
{
drmach_device_t *dp;
uint64_t val;
int err = 1;
if (DRMACH_IS_CPU_ID(id)) {
drmach_cpu_t *cp = id;
if (drmach_cpu_read_scr(cp, &val))
err = 0;
} else if (DRMACH_IS_IO_ID(id) && ((drmach_io_t *)id)->scsr_pa != 0) {
drmach_io_t *io = id;
val = lddphysio(io->scsr_pa);
err = 0;
}
if (err)
return (drerr_new(0, ESTC_INAPPROP, NULL));
dp = id;
uprintf("showlpa %s::%s portid %d, base pa %lx, bound pa %lx\n",
dp->bp->cm.name,
dp->cm.name,
dp->portid,
DRMACH_LPA_BASE_TO_PA(val),
DRMACH_LPA_BND_TO_PA(val));
return (NULL);
}
/*ARGSUSED*/
static sbd_error_t *
drmach_pt_ikprobe(drmachid_t id, drmach_opts_t *opts)
{
drmach_board_t *bp = (drmach_board_t *)id;
sbd_error_t *err;
sc_gptwocfg_cookie_t scc;
if (!DRMACH_IS_BOARD_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
/* do saf configurator stuff */
DRMACH_PR("calling sc_probe_board for bnum=%d\n", bp->bnum);
scc = sc_probe_board(bp->bnum);
if (scc == NULL) {
err = drerr_new(0, ESTC_PROBE, bp->cm.name);
return (err);
}
return (err);
}
/*ARGSUSED*/
static sbd_error_t *
drmach_pt_ikdeprobe(drmachid_t id, drmach_opts_t *opts)
{
drmach_board_t *bp;
sbd_error_t *err = NULL;
sc_gptwocfg_cookie_t scc;
if (!DRMACH_IS_BOARD_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
bp = id;
cmn_err(CE_CONT, "DR: in-kernel unprobe board %d\n", bp->bnum);
scc = sc_unprobe_board(bp->bnum);
if (scc != NULL) {
err = drerr_new(0, ESTC_DEPROBE, bp->cm.name);
}
if (err == NULL)
err = drmach_board_deprobe(id);
return (err);
}
static sbd_error_t *
drmach_pt_readmem(drmachid_t id, drmach_opts_t *opts)
{
_NOTE(ARGUNUSED(id))
_NOTE(ARGUNUSED(opts))
struct memlist *ml;
uint64_t src_pa;
uint64_t dst_pa;
uint64_t dst;
dst_pa = va_to_pa(&dst);
memlist_read_lock();
for (ml = phys_install; ml; ml = ml->next) {
uint64_t nbytes;
src_pa = ml->address;
nbytes = ml->size;
while (nbytes != 0ull) {
/* copy 32 bytes at src_pa to dst_pa */
bcopy32_il(src_pa, dst_pa);
/* increment by 32 bytes */
src_pa += (4 * sizeof (uint64_t));
/* decrement by 32 bytes */
nbytes -= (4 * sizeof (uint64_t));
}
}
memlist_read_unlock();
return (NULL);
}
static sbd_error_t *
drmach_pt_recovercpu(drmachid_t id, drmach_opts_t *opts)
{
_NOTE(ARGUNUSED(opts))
drmach_cpu_t *cp;
if (!DRMACH_IS_CPU_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
cp = id;
mutex_enter(&cpu_lock);
(void) drmach_iocage_cpu_return(&(cp->dev),
CPU_ENABLE | CPU_EXISTS | CPU_READY | CPU_RUNNING);
mutex_exit(&cpu_lock);
return (NULL);
}
/*
* Starcat DR passthrus are for debugging purposes only.
*/
static struct {
const char *name;
sbd_error_t *(*handler)(drmachid_t id, drmach_opts_t *opts);
} drmach_pt_arr[] = {
{ "showlpa", drmach_pt_showlpa },
{ "ikprobe", drmach_pt_ikprobe },
{ "ikdeprobe", drmach_pt_ikdeprobe },
{ "readmem", drmach_pt_readmem },
{ "recovercpu", drmach_pt_recovercpu },
/* the following line must always be last */
{ NULL, NULL }
};
/*ARGSUSED*/
sbd_error_t *
drmach_passthru(drmachid_t id, drmach_opts_t *opts)
{
int i;
sbd_error_t *err;
i = 0;
while (drmach_pt_arr[i].name != NULL) {
int len = strlen(drmach_pt_arr[i].name);
if (strncmp(drmach_pt_arr[i].name, opts->copts, len) == 0)
break;
i += 1;
}
if (drmach_pt_arr[i].name == NULL)
err = drerr_new(0, ESTC_UNKPTCMD, opts->copts);
else
err = (*drmach_pt_arr[i].handler)(id, opts);
return (err);
}
sbd_error_t *
drmach_release(drmachid_t id)
{
drmach_common_t *cp;
if (!DRMACH_IS_DEVICE_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
cp = id;
return (cp->release(id));
}
sbd_error_t *
drmach_status(drmachid_t id, drmach_status_t *stat)
{
drmach_common_t *cp;
sbd_error_t *err;
rw_enter(&drmach_boards_rwlock, RW_READER);
if (!DRMACH_IS_ID(id)) {
rw_exit(&drmach_boards_rwlock);
return (drerr_new(0, ESTC_NOTID, NULL));
}
cp = id;
err = cp->status(id, stat);
rw_exit(&drmach_boards_rwlock);
return (err);
}
static sbd_error_t *
drmach_i_status(drmachid_t id, drmach_status_t *stat)
{
drmach_common_t *cp;
if (!DRMACH_IS_ID(id))
return (drerr_new(0, ESTC_NOTID, NULL));
cp = id;
return (cp->status(id, stat));
}
/*ARGSUSED*/
sbd_error_t *
drmach_unconfigure(drmachid_t id, int flags)
{
drmach_device_t *dp;
dev_info_t *rdip;
char name[OBP_MAXDRVNAME];
int rv;
/*
* Since CPU nodes are not configured, it is
* necessary to skip the unconfigure step as
* well.
*/
if (DRMACH_IS_CPU_ID(id)) {
return (NULL);
}
for (; id; ) {
dev_info_t *fdip = NULL;
if (!DRMACH_IS_DEVICE_ID(id))
return (drerr_new(0, ESTC_INAPPROP, NULL));
dp = id;
rdip = dp->node->n_getdip(dp->node);
/*
* drmach_unconfigure() is always called on a configured branch.
* So the root of the branch was held earlier and must exist.
*/
ASSERT(rdip);
DRMACH_PR("drmach_unconfigure: unconfiguring DDI branch");
rv = dp->node->n_getprop(dp->node,
"name", name, OBP_MAXDRVNAME);
/* The node must have a name */
if (rv)
return (0);
if (drmach_name2type_idx(name) < 0) {
if (DRMACH_IS_MEM_ID(id)) {
drmach_mem_t *mp = id;
id = mp->next;
} else {
id = NULL;
}
continue;
}
/*
* NOTE: FORCE flag is no longer needed under devfs
*/
ASSERT(e_ddi_branch_held(rdip));
if (e_ddi_branch_unconfigure(rdip, &fdip, 0) != 0) {
sbd_error_t *err = NULL;
char *path = kmem_alloc(MAXPATHLEN,
KM_SLEEP);
/*
* If non-NULL, fdip is returned held and must be
* released.
*/
if (fdip != NULL) {
(void) ddi_pathname(fdip, path);
ddi_release_devi(fdip);
} else {
(void) ddi_pathname(rdip, path);
}
err = drerr_new(1, ESTC_DRVFAIL, path);
kmem_free(path, MAXPATHLEN);
/*
* If we were unconfiguring an IO board, a call was
* made to man_dr_detach. We now need to call
* man_dr_attach to regain man use of the eri.
*/
if (DRMACH_IS_IO_ID(id)) {
int (*func)(dev_info_t *dip);
func = (int (*)(dev_info_t *))kobj_getsymvalue\
("man_dr_attach", 0);
if (func) {
drmach_io_inst_t ios;
dev_info_t *pdip;
int circ;
/*
* Walk device tree to find rio dip for
* the board
* Since we are not interested in iosram
* instance here, initialize it to 0, so
* that the walk terminates as soon as
* eri dip is found.
*/
ios.iosram_inst = 0;
ios.eri_dip = NULL;
ios.bnum = dp->bp->bnum;
if (pdip = ddi_get_parent(rdip)) {
ndi_hold_devi(pdip);
ndi_devi_enter(pdip, &circ);
}
/*
* Root node doesn't have to be held in
* any way.
*/
ASSERT(e_ddi_branch_held(rdip));
ddi_walk_devs(rdip,
drmach_board_find_io_insts,
(void *)&ios);
DRMACH_PR("drmach_unconfigure: bnum=%d"
" eri=0x%p\n",
ios.bnum, ios.eri_dip);
if (pdip) {
ndi_devi_exit(pdip, circ);
ndi_rele_devi(pdip);
}
if (ios.eri_dip) {
DRMACH_PR("calling"
" man_dr_attach\n");
(void) (*func)(ios.eri_dip);
/*
* Release hold acquired in
* drmach_board_find_io_insts()
*/
ndi_rele_devi(ios.eri_dip);
}
}
}
return (err);
}
if (DRMACH_IS_MEM_ID(id)) {
drmach_mem_t *mp = id;
id = mp->next;
} else {
id = NULL;
}
}
return (NULL);
}
/*
* drmach interfaces to legacy Starfire platmod logic
* linkage via runtime symbol look up, called from plat_cpu_power*
*/
/*
* Start up a cpu. It is possible that we're attempting to restart
* the cpu after an UNCONFIGURE in which case the cpu will be
* spinning in its cache. So, all we have to do is wakeup him up.
* Under normal circumstances the cpu will be coming from a previous
* CONNECT and thus will be spinning in OBP. In both cases, the
* startup sequence is the same.
*/
int
drmach_cpu_poweron(struct cpu *cp)
{
DRMACH_PR("drmach_cpu_poweron: starting cpuid %d\n", cp->cpu_id);
ASSERT(MUTEX_HELD(&cpu_lock));
if (drmach_cpu_start(cp) != 0)
return (EBUSY);
else
return (0);
}
int
drmach_cpu_poweroff(struct cpu *cp)
{
int ntries;
processorid_t cpuid;
void drmach_cpu_shutdown_self(void);
DRMACH_PR("drmach_cpu_poweroff: stopping cpuid %d\n", cp->cpu_id);
ASSERT(MUTEX_HELD(&cpu_lock));
/*
* XXX CHEETAH SUPPORT
* for cheetah, we need to grab the iocage lock since iocage
* memory is used for e$ flush.
*/
if (drmach_is_cheetah) {
mutex_enter(&drmach_iocage_lock);
while (drmach_iocage_is_busy)
cv_wait(&drmach_iocage_cv, &drmach_iocage_lock);
drmach_iocage_is_busy = 1;
drmach_iocage_mem_scrub(ecache_size * 2);
mutex_exit(&drmach_iocage_lock);
}
cpuid = cp->cpu_id;
/*
* Set affinity to ensure consistent reading and writing of
* drmach_xt_mb[cpuid] by one "master" CPU directing
* the shutdown of the target CPU.
*/
affinity_set(CPU->cpu_id);
/*
* Capture all CPUs (except for detaching proc) to prevent
* crosscalls to the detaching proc until it has cleared its
* bit in cpu_ready_set.
*
* The CPUs remain paused and the prom_mutex is known to be free.
* This prevents blocking when doing prom IEEE-1275 calls at a
* high PIL level.
*/
promsafe_pause_cpus();
/*
* Quiesce interrupts on the target CPU. We do this by setting
* the CPU 'not ready'- (i.e. removing the CPU from cpu_ready_set) to
* prevent it from receiving cross calls and cross traps.
* This prevents the processor from receiving any new soft interrupts.
*/
mp_cpu_quiesce(cp);
prom_hotremovecpu(cpuid);
start_cpus();
/* setup xt_mb, will be cleared by drmach_shutdown_asm when ready */
drmach_xt_mb[cpuid] = 0x80;
xt_one_unchecked(cp->cpu_id, (xcfunc_t *)idle_stop_xcall,
(uint64_t)drmach_cpu_shutdown_self, NULL);
ntries = drmach_cpu_ntries;
while (drmach_xt_mb[cpuid] && ntries) {
DELAY(drmach_cpu_delay);
ntries--;
}
drmach_xt_mb[cpuid] = 0; /* steal the cache line back */
membar_sync(); /* make sure copy-back retires */
affinity_clear();
/*
* XXX CHEETAH SUPPORT
*/
if (drmach_is_cheetah) {
mutex_enter(&drmach_iocage_lock);
drmach_iocage_mem_scrub(ecache_size * 2);
drmach_iocage_is_busy = 0;
cv_signal(&drmach_iocage_cv);
mutex_exit(&drmach_iocage_lock);
}
DRMACH_PR("waited %d out of %d tries for "
"drmach_cpu_shutdown_self on cpu%d",
drmach_cpu_ntries - ntries, drmach_cpu_ntries, cp->cpu_id);
/*
* Do this here instead of drmach_cpu_shutdown_self() to
* avoid an assertion failure panic in turnstile.c.
*/
CPU_SIGNATURE(OS_SIG, SIGST_DETACHED, SIGSUBST_NULL, cpuid);
return (0);
}
void
drmach_iocage_mem_scrub(uint64_t nbytes)
{
extern int drmach_bc_bzero(void*, size_t);
int rv;
ASSERT(MUTEX_HELD(&cpu_lock));
affinity_set(CPU->cpu_id);
rv = drmach_bc_bzero(drmach_iocage_vaddr, nbytes);
if (rv != 0) {
DRMACH_PR(
"iocage scrub failed, drmach_bc_bzero returned %d\n", rv);
rv = drmach_bc_bzero(drmach_iocage_vaddr,
drmach_iocage_size);
if (rv != 0)
cmn_err(CE_PANIC,
"iocage scrub failed, drmach_bc_bzero rv=%d\n",
rv);
}
cpu_flush_ecache();
affinity_clear();
}
#define ALIGN(x, a) ((a) == 0 ? (uintptr_t)(x) : \
(((uintptr_t)(x) + (uintptr_t)(a) - 1l) & ~((uintptr_t)(a) - 1l)))
static sbd_error_t *
drmach_iocage_mem_get(dr_testboard_req_t *tbrq)
{
pfn_t basepfn;
pgcnt_t npages;
extern int memscrub_delete_span(pfn_t, pgcnt_t);
uint64_t drmach_iocage_paddr_mbytes;
ASSERT(drmach_iocage_paddr != -1);
basepfn = (pfn_t)(drmach_iocage_paddr >> PAGESHIFT);
npages = (pgcnt_t)(drmach_iocage_size >> PAGESHIFT);
memscrub_delete_span(basepfn, npages);
mutex_enter(&cpu_lock);
drmach_iocage_mem_scrub(drmach_iocage_size);
mutex_exit(&cpu_lock);
/*
* HPOST wants the address of the cage to be 64 megabyte-aligned
* and in megabyte units.
* The size of the cage is also in megabyte units.
*/
ASSERT(drmach_iocage_paddr == ALIGN(drmach_iocage_paddr, 0x4000000));
drmach_iocage_paddr_mbytes = drmach_iocage_paddr / 0x100000;
tbrq->memaddrhi = (uint32_t)(drmach_iocage_paddr_mbytes >> 32);
tbrq->memaddrlo = (uint32_t)drmach_iocage_paddr_mbytes;
tbrq->memlen = drmach_iocage_size / 0x100000;
DRMACH_PR("drmach_iocage_mem_get: hi: 0x%x", tbrq->memaddrhi);
DRMACH_PR("drmach_iocage_mem_get: lo: 0x%x", tbrq->memaddrlo);
DRMACH_PR("drmach_iocage_mem_get: size: 0x%x", tbrq->memlen);
return (NULL);
}
static sbd_error_t *
drmach_iocage_mem_return(dr_testboard_reply_t *tbr)
{
_NOTE(ARGUNUSED(tbr))
pfn_t basepfn;
pgcnt_t npages;
extern int memscrub_add_span(pfn_t, pgcnt_t);
ASSERT(drmach_iocage_paddr != -1);
basepfn = (pfn_t)(drmach_iocage_paddr >> PAGESHIFT);
npages = (pgcnt_t)(drmach_iocage_size >> PAGESHIFT);
memscrub_add_span(basepfn, npages);
mutex_enter(&cpu_lock);
mutex_enter(&drmach_iocage_lock);
drmach_iocage_mem_scrub(drmach_iocage_size);
drmach_iocage_is_busy = 0;
cv_signal(&drmach_iocage_cv);
mutex_exit(&drmach_iocage_lock);
mutex_exit(&cpu_lock);
return (NULL);
}
static int
drmach_cpu_intr_disable(cpu_t *cp)
{
if (cpu_intr_disable(cp) != 0)
return (-1);
return (0);
}
static int
drmach_iocage_cpu_acquire(drmach_device_t *dp, cpu_flag_t *oflags)
{
struct cpu *cp;
processorid_t cpuid;
static char *fn = "drmach_iocage_cpu_acquire";
sbd_error_t *err;
int impl;
ASSERT(DRMACH_IS_CPU_ID(dp));
ASSERT(MUTEX_HELD(&cpu_lock));
cpuid = ((drmach_cpu_t *)dp)->cpuid;
DRMACH_PR("%s: attempting to acquire CPU id %d", fn, cpuid);
if (dp->busy)
return (-1);
if ((cp = cpu_get(cpuid)) == NULL) {
DRMACH_PR("%s: cpu_get(%d) returned NULL", fn, cpuid);
return (-1);
}
if (!CPU_ACTIVE(cp)) {
DRMACH_PR("%s: skipping offlined CPU id %d", fn, cpuid);
return (-1);
}
/*
* There is a known HW bug where a Jaguar CPU in Safari port 0 (SBX/P0)
* can fail to receive an XIR. To workaround this issue until a hardware
* fix is implemented, we will exclude the selection of these CPUs.
*
* Once a fix is implemented in hardware, this code should be updated
* to allow Jaguar CPUs that have the fix to be used. However, support
* must be retained to skip revisions that do not have this fix.
*/
err = drmach_cpu_get_impl(dp, &impl);
if (err) {
DRMACH_PR("%s: error getting impl. of CPU id %d", fn, cpuid);
sbd_err_clear(&err);
return (-1);
}
if (IS_JAGUAR(impl) && (STARCAT_CPUID_TO_LPORT(cpuid) == 0) &&
drmach_iocage_exclude_jaguar_port_zero) {
DRMACH_PR("%s: excluding CPU id %d: port 0 on jaguar",
fn, cpuid);
return (-1);
}
ASSERT(oflags);
*oflags = cp->cpu_flags;
if (cpu_offline(cp, 0)) {
DRMACH_PR("%s: cpu_offline failed for CPU id %d", fn, cpuid);
return (-1);
}
if (cpu_poweroff(cp)) {
DRMACH_PR("%s: cpu_poweroff failed for CPU id %d", fn, cpuid);
if (cpu_online(cp)) {
cmn_err(CE_WARN, "failed to online CPU id %d "
"during I/O cage test selection", cpuid);
}
if (CPU_ACTIVE(cp) && cpu_flagged_nointr(*oflags) &&
drmach_cpu_intr_disable(cp) != 0) {
cmn_err(CE_WARN, "failed to restore CPU id %d "
"no-intr during I/O cage test selection", cpuid);
}
return (-1);
}
if (cpu_unconfigure(cpuid)) {
DRMACH_PR("%s: cpu_unconfigure failed for CPU id %d", fn,
cpuid);
(void) cpu_configure(cpuid);
if ((cp = cpu_get(cpuid)) == NULL) {
cmn_err(CE_WARN, "failed to reconfigure CPU id %d "
"during I/O cage test selection", cpuid);
dp->busy = 1;
return (-1);
}
if (cpu_poweron(cp) || cpu_online(cp)) {
cmn_err(CE_WARN, "failed to %s CPU id %d "
"during I/O cage test selection",
cpu_is_poweredoff(cp) ?
"poweron" : "online", cpuid);
}
if (CPU_ACTIVE(cp) && cpu_flagged_nointr(*oflags) &&
drmach_cpu_intr_disable(cp) != 0) {
cmn_err(CE_WARN, "failed to restore CPU id %d "
"no-intr during I/O cage test selection", cpuid);
}
return (-1);
}
dp->busy = 1;
DRMACH_PR("%s: acquired CPU id %d", fn, cpuid);
return (0);
}
/*
* Attempt to acquire all the CPU devices passed in. It is
* assumed that all the devices in the list are the cores of
* a single CMP device. Non CMP devices can be handled as a
* single core CMP by passing in a one element list.
*
* Success is only returned if *all* the devices in the list
* can be acquired. In the failure case, none of the devices
* in the list will be held as acquired.
*/
static int
drmach_iocage_cmp_acquire(drmach_device_t **dpp, cpu_flag_t *oflags)
{
int curr;
int i;
int rv = 0;
ASSERT((dpp != NULL) && (*dpp != NULL));
/*
* Walk the list of CPU devices (cores of a CMP)
* and attempt to acquire them. Bail out if an
* error is encountered.
*/
for (curr = 0; curr < MAX_CORES_PER_CMP; curr++) {
/* check for the end of the list */
if (dpp[curr] == NULL) {
break;
}
ASSERT(DRMACH_IS_CPU_ID(dpp[curr]));
ASSERT(dpp[curr]->portid == (*dpp)->portid);
rv = drmach_iocage_cpu_acquire(dpp[curr], &oflags[curr]);
if (rv != 0) {
break;
}
}
/*
* Check for an error.
*/
if (rv != 0) {
/*
* Make a best effort attempt to return any cores
* that were already acquired before the error was
* encountered.
*/
for (i = 0; i < curr; i++) {
(void) drmach_iocage_cpu_return(dpp[i], oflags[i]);
}
}
return (rv);
}
static int
drmach_iocage_cpu_return(drmach_device_t *dp, cpu_flag_t oflags)
{
processorid_t cpuid;
struct cpu *cp;
int rv = 0;
static char *fn = "drmach_iocage_cpu_return";
ASSERT(DRMACH_IS_CPU_ID(dp));
ASSERT(MUTEX_HELD(&cpu_lock));
cpuid = ((drmach_cpu_t *)dp)->cpuid;
DRMACH_PR("%s: attempting to return CPU id: %d", fn, cpuid);
if (cpu_configure(cpuid)) {
cmn_err(CE_WARN, "failed to reconfigure CPU id %d "
"after I/O cage test", cpuid);
/*
* The component was never set to unconfigured during the IO
* cage test, so we need to leave marked as busy to prevent
* further DR operations involving this component.
*/
return (-1);
}
if ((cp = cpu_get(cpuid)) == NULL) {
cmn_err(CE_WARN, "cpu_get failed on CPU id %d after "
"I/O cage test", cpuid);
dp->busy = 0;
return (-1);
}
if (cpu_poweron(cp) || cpu_online(cp)) {
cmn_err(CE_WARN, "failed to %s CPU id %d after I/O "
"cage test", cpu_is_poweredoff(cp) ?
"poweron" : "online", cpuid);
rv = -1;
}
/*
* drmach_iocage_cpu_acquire will accept cpus in state P_ONLINE or
* P_NOINTR. Need to return to previous user-visible state.
*/
if (CPU_ACTIVE(cp) && cpu_flagged_nointr(oflags) &&
drmach_cpu_intr_disable(cp) != 0) {
cmn_err(CE_WARN, "failed to restore CPU id %d "
"no-intr after I/O cage test", cpuid);
rv = -1;
}
dp->busy = 0;
DRMACH_PR("%s: returned CPU id: %d", fn, cpuid);
return (rv);
}
static sbd_error_t *
drmach_iocage_cpu_get(dr_testboard_req_t *tbrq, drmach_device_t **dpp,
cpu_flag_t *oflags)
{
drmach_board_t *bp;
int b_rv;
int b_idx;
drmachid_t b_id;
int found;
mutex_enter(&cpu_lock);
ASSERT(drmach_boards != NULL);
found = 0;
/*
* Walk the board list.
*/
b_rv = drmach_array_first(drmach_boards, &b_idx, &b_id);
while (b_rv == 0) {
int d_rv;
int d_idx;
drmachid_t d_id;
bp = b_id;
if (bp->connected == 0 || bp->devices == NULL) {
b_rv = drmach_array_next(drmach_boards, &b_idx, &b_id);
continue;
}
/* An AXQ restriction disqualifies MCPU's as candidates. */
if (DRMACH_BNUM2SLOT(bp->bnum) == 1) {
b_rv = drmach_array_next(drmach_boards, &b_idx, &b_id);
continue;
}
/*
* Walk the device list of this board.
*/
d_rv = drmach_array_first(bp->devices, &d_idx, &d_id);
while (d_rv == 0) {
drmach_device_t *ndp;
/* only interested in CPU devices */
if (!DRMACH_IS_CPU_ID(d_id)) {
d_rv = drmach_array_next(bp->devices, &d_idx,
&d_id);
continue;
}
/*
* The following code assumes two properties
* of a CMP device:
*
* 1. All cores of a CMP are grouped together
* in the device list.
*
* 2. There will only be a maximum of two cores
* present in the CMP.
*
* If either of these two properties change,
* this code will have to be revisited.
*/
dpp[0] = d_id;
dpp[1] = NULL;
/*
* Get the next device. It may or may not be used.
*/
d_rv = drmach_array_next(bp->devices, &d_idx, &d_id);
ndp = d_id;
if ((d_rv == 0) && DRMACH_IS_CPU_ID(d_id)) {
/*
* The second device is only interesting for
* this pass if it has the same portid as the
* first device. This implies that both are
* cores of the same CMP.
*/
if (dpp[0]->portid == ndp->portid) {
dpp[1] = d_id;
}
}
/*
* Attempt to acquire all cores of the CMP.
*/
if (drmach_iocage_cmp_acquire(dpp, oflags) == 0) {
found = 1;
break;
}
/*
* Check if the search for the second core was
* successful. If not, the next iteration should
* use that device.
*/
if (dpp[1] == NULL) {
continue;
}
d_rv = drmach_array_next(bp->devices, &d_idx, &d_id);
}
if (found)
break;
b_rv = drmach_array_next(drmach_boards, &b_idx, &b_id);
}
mutex_exit(&cpu_lock);
if (!found) {
return (drerr_new(1, ESTC_IOCAGE_NO_CPU_AVAIL, NULL));
}
tbrq->cpu_portid = (*dpp)->portid;
return (NULL);
}
/*
* Setup an iocage by acquiring a cpu and memory.
*/
static sbd_error_t *
drmach_iocage_setup(dr_testboard_req_t *tbrq, drmach_device_t **dpp,
cpu_flag_t *oflags)
{
sbd_error_t *err;
err = drmach_iocage_cpu_get(tbrq, dpp, oflags);
if (!err) {
mutex_enter(&drmach_iocage_lock);
while (drmach_iocage_is_busy)
cv_wait(&drmach_iocage_cv, &drmach_iocage_lock);
drmach_iocage_is_busy = 1;
mutex_exit(&drmach_iocage_lock);
err = drmach_iocage_mem_get(tbrq);
if (err) {
mutex_enter(&drmach_iocage_lock);
drmach_iocage_is_busy = 0;
cv_signal(&drmach_iocage_cv);
mutex_exit(&drmach_iocage_lock);
}
}
return (err);
}
#define DRMACH_SCHIZO_PCI_LEAF_MAX 2
#define DRMACH_SCHIZO_PCI_SLOT_MAX 8
#define DRMACH_S1P_SAMPLE_MAX 2
typedef enum {
DRMACH_POST_SUSPEND = 0,
DRMACH_PRE_RESUME
} drmach_sr_iter_t;
typedef struct {
dev_info_t *dip;
uint32_t portid;
uint32_t pcr_sel_save;
uint32_t pic_l2_io_q[DRMACH_S1P_SAMPLE_MAX];
uint64_t reg_basepa;
} drmach_s1p_axq_t;
typedef struct {
dev_info_t *dip;
uint32_t portid;
uint64_t csr_basepa;
struct {
uint64_t slot_intr_state_diag;
uint64_t obio_intr_state_diag;
uint_t nmap_regs;
uint64_t *intr_map_regs;
} regs[DRMACH_S1P_SAMPLE_MAX];
} drmach_s1p_pci_t;
typedef struct {
uint64_t csr_basepa;
struct {
uint64_t csr;
uint64_t errctrl;
uint64_t errlog;
} regs[DRMACH_S1P_SAMPLE_MAX];
drmach_s1p_pci_t pci[DRMACH_SCHIZO_PCI_LEAF_MAX];
} drmach_s1p_schizo_t;
typedef struct {
drmach_s1p_axq_t axq;
drmach_s1p_schizo_t schizo[STARCAT_SLOT1_IO_MAX];
} drmach_slot1_pause_t;
/*
* Table of saved state for paused slot1 devices.
*/
static drmach_slot1_pause_t *drmach_slot1_paused[STARCAT_BDSET_MAX];
static int drmach_slot1_pause_init = 1;
#ifdef DEBUG
int drmach_slot1_pause_debug = 1;
#else
int drmach_slot1_pause_debug = 0;
#endif /* DEBUG */
static int
drmach_is_slot1_pause_axq(dev_info_t *dip, char *name, int *id, uint64_t *reg)
{
int portid, exp, slot, i;
drmach_reg_t regs[2];
int reglen = sizeof (regs);
if ((portid = ddi_getprop(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "portid", -1)) == -1) {
return (0);
}
exp = (portid >> 5) & 0x1f;
slot = portid & 0x1;
if (slot == 0 || strncmp(name, DRMACH_AXQ_NAMEPROP,
strlen(DRMACH_AXQ_NAMEPROP))) {
return (0);
}
mutex_enter(&cpu_lock);
for (i = 0; i < STARCAT_SLOT1_CPU_MAX; i++) {
if (cpu[MAKE_CPUID(exp, slot, i)]) {
/* maxcat cpu present */
mutex_exit(&cpu_lock);
return (0);
}
}
mutex_exit(&cpu_lock);
if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
"reg", (caddr_t)regs, &reglen) != DDI_PROP_SUCCESS) {
DRMACH_PR("drmach_is_slot1_pause_axq: no reg prop for "
"axq dip=%p\n", dip);
return (0);
}
ASSERT(id && reg);
*reg = (uint64_t)regs[0].reg_addr_hi << 32;
*reg |= (uint64_t)regs[0].reg_addr_lo;
*id = portid;
return (1);
}
/*
* Allocate an entry in the slot1_paused state table.
*/
static void
drmach_slot1_pause_add_axq(dev_info_t *axq_dip, char *axq_name, int axq_portid,
uint64_t reg, drmach_slot1_pause_t **slot1_paused)
{
int axq_exp;
drmach_slot1_pause_t *slot1;
axq_exp = (axq_portid >> 5) & 0x1f;
ASSERT(axq_portid & 0x1);
ASSERT(slot1_paused[axq_exp] == NULL);
ASSERT(strncmp(axq_name, DRMACH_AXQ_NAMEPROP,
strlen(DRMACH_AXQ_NAMEPROP)) == 0);
slot1 = kmem_zalloc(sizeof (*slot1), KM_SLEEP);
/*
* XXX This dip should really be held (via ndi_hold_devi())
* before saving it in the axq pause structure. However that
* would prevent DR as the pause data structures persist until
* the next suspend. drmach code should be modified to free the
* the slot 1 pause data structures for a boardset when its
* slot 1 board is DRed out. The dip can then be released via
* ndi_rele_devi() when the pause data structure is freed
* allowing DR to proceed. Until this change is made, drmach
* code should be careful about dereferencing the saved dip
* as it may no longer exist.
*/
slot1->axq.dip = axq_dip;
slot1->axq.portid = axq_portid;
slot1->axq.reg_basepa = reg;
slot1_paused[axq_exp] = slot1;
}
static void
drmach_s1p_pci_free(drmach_s1p_pci_t *pci)
{
int i;
for (i = 0; i < DRMACH_S1P_SAMPLE_MAX; i++) {
if (pci->regs[i].intr_map_regs != NULL) {
ASSERT(pci->regs[i].nmap_regs > 0);
kmem_free(pci->regs[i].intr_map_regs,
pci->regs[i].nmap_regs * sizeof (uint64_t));
}
}
}
static void
drmach_slot1_pause_free(drmach_slot1_pause_t **slot1_paused)
{
int i, j, k;
drmach_slot1_pause_t *slot1;
for (i = 0; i < STARCAT_BDSET_MAX; i++) {
if ((slot1 = slot1_paused[i]) == NULL)
continue;
for (j = 0; j < STARCAT_SLOT1_IO_MAX; j++)
for (k = 0; k < DRMACH_SCHIZO_PCI_LEAF_MAX; k++)
drmach_s1p_pci_free(&slot1->schizo[j].pci[k]);
kmem_free(slot1, sizeof (*slot1));
slot1_paused[i] = NULL;
}
}
/*
* Tree walk callback routine. If dip represents a Schizo PCI leaf,
* fill in the appropriate info in the slot1_paused state table.
*/
static int
drmach_find_slot1_io(dev_info_t *dip, void *arg)
{
int portid, exp, ioc_unum, leaf_unum;
char buf[OBP_MAXDRVNAME];
int buflen = sizeof (buf);
drmach_reg_t regs[3];
int reglen = sizeof (regs);
uint32_t leaf_offset;
uint64_t schizo_csr_pa, pci_csr_pa;
drmach_s1p_pci_t *pci;
drmach_slot1_pause_t **slot1_paused = (drmach_slot1_pause_t **)arg;
if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
"name", (caddr_t)buf, &buflen) != DDI_PROP_SUCCESS ||
strncmp(buf, DRMACH_PCI_NAMEPROP, strlen(DRMACH_PCI_NAMEPROP))) {
return (DDI_WALK_CONTINUE);
}
if ((portid = ddi_getprop(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "portid", -1)) == -1) {
return (DDI_WALK_CONTINUE);
}
if (ddi_getlongprop_buf(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
"reg", (caddr_t)regs, &reglen) != DDI_PROP_SUCCESS) {
DRMACH_PR("drmach_find_slot1_io: no reg prop for pci "
"dip=%p\n", dip);
return (DDI_WALK_CONTINUE);
}
exp = portid >> 5;
ioc_unum = portid & 0x1;
leaf_offset = regs[0].reg_addr_lo & 0x7fffff;
pci_csr_pa = (uint64_t)regs[0].reg_addr_hi << 32;
pci_csr_pa |= (uint64_t)regs[0].reg_addr_lo;
schizo_csr_pa = (uint64_t)regs[1].reg_addr_hi << 32;
schizo_csr_pa |= (uint64_t)regs[1].reg_addr_lo;
ASSERT(exp >= 0 && exp < STARCAT_BDSET_MAX);
ASSERT(slot1_paused[exp] != NULL);
ASSERT(leaf_offset == 0x600000 || leaf_offset == 0x700000);
ASSERT(slot1_paused[exp]->schizo[ioc_unum].csr_basepa == 0x0UL ||
slot1_paused[exp]->schizo[ioc_unum].csr_basepa == schizo_csr_pa);
leaf_unum = (leaf_offset == 0x600000) ? 0 : 1;
slot1_paused[exp]->schizo[ioc_unum].csr_basepa = schizo_csr_pa;
pci = &slot1_paused[exp]->schizo[ioc_unum].pci[leaf_unum];
/*
* XXX This dip should really be held (via ndi_hold_devi())
* before saving it in the pci pause structure. However that
* would prevent DR as the pause data structures persist until
* the next suspend. drmach code should be modified to free the
* the slot 1 pause data structures for a boardset when its
* slot 1 board is DRed out. The dip can then be released via
* ndi_rele_devi() when the pause data structure is freed
* allowing DR to proceed. Until this change is made, drmach
* code should be careful about dereferencing the saved dip as
* it may no longer exist.
*/
pci->dip = dip;
pci->portid = portid;
pci->csr_basepa = pci_csr_pa;
DRMACH_PR("drmach_find_slot1_io: name=%s, portid=0x%x, dip=%p\n",
buf, portid, dip);
return (DDI_WALK_PRUNECHILD);
}
static void
drmach_slot1_pause_add_io(drmach_slot1_pause_t **slot1_paused)
{
/*
* Root node doesn't have to be held
*/
ddi_walk_devs(ddi_root_node(), drmach_find_slot1_io,
(void *)slot1_paused);
}
/*
* Save the interrupt mapping registers for each non-idle interrupt
* represented by the bit pairs in the saved interrupt state
* diagnostic registers for this PCI leaf.
*/
static void
drmach_s1p_intr_map_reg_save(drmach_s1p_pci_t *pci, drmach_sr_iter_t iter)
{
int i, cnt, ino;
uint64_t reg;
char *dname;
uchar_t Xmits;
dname = ddi_binding_name(pci->dip);
Xmits = (strcmp(dname, XMITS_BINDING_NAME) == 0) ? 1 : 0;
/*
* 1st pass allocates, 2nd pass populates.
*/
for (i = 0; i < 2; i++) {
cnt = ino = 0;
/*
* PCI slot interrupts
*/
reg = pci->regs[iter].slot_intr_state_diag;
while (reg) {
/*
* Xmits Interrupt Number Offset(ino) Assignments
* 00-17 PCI Slot Interrupts
* 18-1f Not Used
*/
if ((Xmits) && (ino > 0x17))
break;
if ((reg & COMMON_CLEAR_INTR_REG_MASK) !=
COMMON_CLEAR_INTR_REG_IDLE) {
if (i) {
pci->regs[iter].intr_map_regs[cnt] =
lddphysio(pci->csr_basepa +
SCHIZO_IB_INTR_MAP_REG_OFFSET +
ino * sizeof (reg));
}
++cnt;
}
++ino;
reg >>= 2;
}
/*
* Xmits Interrupt Number Offset(ino) Assignments
* 20-2f Not Used
* 30-37 Internal interrupts
* 38-3e Not Used
*/
ino = (Xmits) ? 0x30 : 0x20;
/*
* OBIO and internal schizo interrupts
* Each PCI leaf has a set of mapping registers for all
* possible interrupt sources except the NewLink interrupts.
*/
reg = pci->regs[iter].obio_intr_state_diag;
while (reg && ino <= 0x38) {
if ((reg & COMMON_CLEAR_INTR_REG_MASK) !=
COMMON_CLEAR_INTR_REG_IDLE) {
if (i) {
pci->regs[iter].intr_map_regs[cnt] =
lddphysio(pci->csr_basepa +
SCHIZO_IB_INTR_MAP_REG_OFFSET +
ino * sizeof (reg));
}
++cnt;
}
++ino;
reg >>= 2;
}
if (!i) {
pci->regs[iter].nmap_regs = cnt;
pci->regs[iter].intr_map_regs =
kmem_zalloc(cnt * sizeof (reg), KM_SLEEP);
}
}
}
static void
drmach_s1p_axq_update(drmach_s1p_axq_t *axq, drmach_sr_iter_t iter)
{
uint32_t reg;
if (axq->reg_basepa == 0x0UL)
return;
if (iter == DRMACH_POST_SUSPEND) {
axq->pcr_sel_save = ldphysio(axq->reg_basepa +
AXQ_SLOT1_PERFCNT_SEL);
/*
* Select l2_io_queue counter by writing L2_IO_Q mux
* input to bits 0-6 of perf cntr select reg.
*/
reg = axq->pcr_sel_save;
reg &= ~AXQ_PIC_CLEAR_MASK;
reg |= L2_IO_Q;
stphysio(axq->reg_basepa + AXQ_SLOT1_PERFCNT_SEL, reg);
}
axq->pic_l2_io_q[iter] = ldphysio(axq->reg_basepa + AXQ_SLOT1_PERFCNT0);
if (iter == DRMACH_PRE_RESUME) {
stphysio(axq->reg_basepa + AXQ_SLOT1_PERFCNT_SEL,
axq->pcr_sel_save);
}
DRMACH_PR("drmach_s1p_axq_update: axq #%d pic_l2_io_q[%d]=%d\n",
ddi_get_instance(axq->dip), iter, axq->pic_l2_io_q[iter]);
}
static void
drmach_s1p_schizo_update(drmach_s1p_schizo_t *schizo, drmach_sr_iter_t iter)
{
int i;
drmach_s1p_pci_t *pci;
if (schizo->csr_basepa == 0x0UL)
return;
schizo->regs[iter].csr =
lddphysio(schizo->csr_basepa + SCHIZO_CB_CSR_OFFSET);
schizo->regs[iter].errctrl =
lddphysio(schizo->csr_basepa + SCHIZO_CB_ERRCTRL_OFFSET);
schizo->regs[iter].errlog =
lddphysio(schizo->csr_basepa + SCHIZO_CB_ERRLOG_OFFSET);
for (i = 0; i < DRMACH_SCHIZO_PCI_LEAF_MAX; i++) {
pci = &schizo->pci[i];
if (pci->dip != NULL && pci->csr_basepa != 0x0UL) {
pci->regs[iter].slot_intr_state_diag =
lddphysio(pci->csr_basepa +
COMMON_IB_SLOT_INTR_STATE_DIAG_REG);
pci->regs[iter].obio_intr_state_diag =
lddphysio(pci->csr_basepa +
COMMON_IB_OBIO_INTR_STATE_DIAG_REG);
drmach_s1p_intr_map_reg_save(pci, iter);
}
}
}
/*
* Called post-suspend and pre-resume to snapshot the suspend state
* of slot1 AXQs and Schizos.
*/
static void
drmach_slot1_pause_update(drmach_slot1_pause_t **slot1_paused,
drmach_sr_iter_t iter)
{
int i, j;
drmach_slot1_pause_t *slot1;
for (i = 0; i < STARCAT_BDSET_MAX; i++) {
if ((slot1 = slot1_paused[i]) == NULL)
continue;
drmach_s1p_axq_update(&slot1->axq, iter);
for (j = 0; j < STARCAT_SLOT1_IO_MAX; j++)
drmach_s1p_schizo_update(&slot1->schizo[j], iter);
}
}
/*
* Starcat hPCI Schizo devices.
*
* The name field is overloaded. NULL means the slot (interrupt concentrator
* bus) is not used. intr_mask is a bit mask representing the 4 possible
* interrupts per slot, on if valid (rio does not use interrupt lines 0, 1).
*/
static struct {
char *name;
uint8_t intr_mask;
} drmach_schz_slot_intr[][DRMACH_SCHIZO_PCI_LEAF_MAX] = {
/* Schizo 0 */ /* Schizo 1 */
{{"C3V0", 0xf}, {"C3V1", 0xf}}, /* slot 0 */
{{"C5V0", 0xf}, {"C5V1", 0xf}}, /* slot 1 */
{{"rio", 0xc}, {NULL, 0x0}}, /* slot 2 */
{{NULL, 0x0}, {NULL, 0x0}}, /* slot 3 */
{{"sbbc", 0xf}, {NULL, 0x0}}, /* slot 4 */
{{NULL, 0x0}, {NULL, 0x0}}, /* slot 5 */
{{NULL, 0x0}, {NULL, 0x0}}, /* slot 6 */
{{NULL, 0x0}, {NULL, 0x0}} /* slot 7 */
};
/*
* See Schizo Specification, Revision 51 (May 23, 2001), Section 22.4.4
* "Interrupt Registers", Table 22-69, page 306.
*/
static char *
drmach_schz_internal_ino2str(int ino)
{
int intr;
ASSERT(ino >= 0x30 && ino <= 0x37);
intr = ino & 0x7;
switch (intr) {
case (0x0): return ("Uncorrectable ECC error");
case (0x1): return ("Correctable ECC error");
case (0x2): return ("PCI Bus A Error");
case (0x3): return ("PCI Bus B Error");
case (0x4): return ("Safari Bus Error");
default: return ("Reserved");
}
}
#define DRMACH_INTR_MASK_SHIFT(ino) ((ino) << 1)
static void
drmach_s1p_decode_slot_intr(int exp, int unum, drmach_s1p_pci_t *pci,
int ino, drmach_sr_iter_t iter)
{
uint8_t intr_mask;
char *slot_devname;
char namebuf[OBP_MAXDRVNAME];
int slot, intr_line, slot_valid, intr_valid;
ASSERT(ino >= 0 && ino <= 0x1f);
ASSERT((pci->regs[iter].slot_intr_state_diag &
(COMMON_CLEAR_INTR_REG_MASK << DRMACH_INTR_MASK_SHIFT(ino))) !=
COMMON_CLEAR_INTR_REG_IDLE);
slot = (ino >> 2) & 0x7;
intr_line = ino & 0x3;
slot_devname = drmach_schz_slot_intr[slot][unum].name;
slot_valid = (slot_devname == NULL) ? 0 : 1;
if (!slot_valid) {
snprintf(namebuf, sizeof (namebuf), "slot %d (INVALID)", slot);
slot_devname = namebuf;
}
intr_mask = drmach_schz_slot_intr[slot][unum].intr_mask;
intr_valid = (1 << intr_line) & intr_mask;
prom_printf("IO%d/P%d PCI slot interrupt: ino=0x%x, source device=%s, "
"interrupt line=%d%s\n", exp, unum, ino, slot_devname, intr_line,
(slot_valid && !intr_valid) ? " (INVALID)" : "");
}
/*
* Log interrupt source device info for all valid, pending interrupts
* on each Schizo PCI leaf. Called if Schizo has logged a Safari bus
* error in the error ctrl reg.
*/
static void
drmach_s1p_schizo_log_intr(drmach_s1p_schizo_t *schizo, int exp,
int unum, drmach_sr_iter_t iter)
{
uint64_t reg;
int i, n, ino;
drmach_s1p_pci_t *pci;
ASSERT(exp >= 0 && exp < STARCAT_BDSET_MAX);
ASSERT(unum < STARCAT_SLOT1_IO_MAX);
/*
* Check the saved interrupt mapping registers. If interrupt is valid,
* map the ino to the Schizo source device and check that the pci
* slot and interrupt line are valid.
*/
for (i = 0; i < DRMACH_SCHIZO_PCI_LEAF_MAX; i++) {
pci = &schizo->pci[i];
for (n = 0; n < pci->regs[iter].nmap_regs; n++) {
reg = pci->regs[iter].intr_map_regs[n];
if (reg & COMMON_INTR_MAP_REG_VALID) {
ino = reg & COMMON_INTR_MAP_REG_INO;
if (ino <= 0x1f) {
/*
* PCI slot interrupt
*/
drmach_s1p_decode_slot_intr(exp, unum,
pci, ino, iter);
} else if (ino <= 0x2f) {
/*
* OBIO interrupt
*/
prom_printf("IO%d/P%d OBIO interrupt: "
"ino=0x%x\n", exp, unum, ino);
} else if (ino <= 0x37) {
/*
* Internal interrupt
*/
prom_printf("IO%d/P%d Internal "
"interrupt: ino=0x%x (%s)\n",
exp, unum, ino,
drmach_schz_internal_ino2str(ino));
} else {
/*
* NewLink interrupt
*/
prom_printf("IO%d/P%d NewLink "
"interrupt: ino=0x%x\n", exp,
unum, ino);
}
DRMACH_PR("drmach_s1p_schizo_log_intr: "
"exp=%d, schizo=%d, pci_leaf=%c, "
"ino=0x%x, intr_map_reg=0x%lx\n",
exp, unum, (i == 0) ? 'A' : 'B', ino, reg);
}
}
}
}
/*
* See Schizo Specification, Revision 51 (May 23, 2001), Section 22.2.4
* "Safari Error Control/Log Registers", Table 22-11, page 248.
*/
#define DRMACH_SCHIZO_SAFARI_UNMAPPED_ERR (0x1ull << 4)
/*
* Check for possible error indicators prior to resuming the
* AXQ driver, which will de-assert slot1 AXQ_DOMCTRL_PAUSE.
*/
static void
drmach_slot1_pause_verify(drmach_slot1_pause_t **slot1_paused,
drmach_sr_iter_t iter)
{
int i, j;
int errflag = 0;
drmach_slot1_pause_t *slot1;
/*
* Check for logged schizo bus error and pending interrupts.
*/
for (i = 0; i < STARCAT_BDSET_MAX; i++) {
if ((slot1 = slot1_paused[i]) == NULL)
continue;
for (j = 0; j < STARCAT_SLOT1_IO_MAX; j++) {
if (slot1->schizo[j].csr_basepa == 0x0UL)
continue;
if (slot1->schizo[j].regs[iter].errlog &
DRMACH_SCHIZO_SAFARI_UNMAPPED_ERR) {
if (!errflag) {
prom_printf("DR WARNING: interrupt "
"attempt detected during "
"copy-rename (%s):\n",
(iter == DRMACH_POST_SUSPEND) ?
"post suspend" : "pre resume");
++errflag;
}
drmach_s1p_schizo_log_intr(&slot1->schizo[j],
i, j, iter);
}
}
}
/*
* Check for changes in axq l2_io_q performance counters (2nd pass only)
*/
if (iter == DRMACH_PRE_RESUME) {
for (i = 0; i < STARCAT_BDSET_MAX; i++) {
if ((slot1 = slot1_paused[i]) == NULL)
continue;
if (slot1->axq.pic_l2_io_q[DRMACH_POST_SUSPEND] !=
slot1->axq.pic_l2_io_q[DRMACH_PRE_RESUME]) {
prom_printf("DR WARNING: IO transactions "
"detected on IO%d during copy-rename: "
"AXQ l2_io_q performance counter "
"start=%d, end=%d\n", i,
slot1->axq.pic_l2_io_q[DRMACH_POST_SUSPEND],
slot1->axq.pic_l2_io_q[DRMACH_PRE_RESUME]);
}
}
}
}
struct drmach_sr_list {
dev_info_t *dip;
struct drmach_sr_list *next;
struct drmach_sr_list *prev;
};
static struct drmach_sr_ordered {
char *name;
struct drmach_sr_list *ring;
} drmach_sr_ordered[] = {
{ "iosram", NULL },
{ "address-extender-queue", NULL },
{ NULL, NULL }, /* terminator -- required */
};
static void
drmach_sr_insert(struct drmach_sr_list **lp, dev_info_t *dip)
{
struct drmach_sr_list *np;
DRMACH_PR("drmach_sr_insert: adding dip %p\n", dip);
np = (struct drmach_sr_list *)kmem_alloc(
sizeof (struct drmach_sr_list), KM_SLEEP);
ndi_hold_devi(dip);
np->dip = dip;
if (*lp == NULL) {
/* establish list */
*lp = np->next = np->prev = np;
} else {
/* place new node behind head node on ring list */
np->prev = (*lp)->prev;
np->next = *lp;
np->prev->next = np;
np->next->prev = np;
}
}
static void
drmach_sr_delete(struct drmach_sr_list **lp, dev_info_t *dip)
{
DRMACH_PR("drmach_sr_delete: searching for dip %p\n", dip);
if (*lp) {
struct drmach_sr_list *xp;
/* start search with mostly likely node */
xp = (*lp)->prev;
do {
if (xp->dip == dip) {
xp->prev->next = xp->next;
xp->next->prev = xp->prev;
if (xp == *lp)
*lp = xp->next;
if (xp == *lp)
*lp = NULL;
xp->dip = NULL;
ndi_rele_devi(dip);
kmem_free(xp, sizeof (*xp));
DRMACH_PR("drmach_sr_delete:"
" disposed sr node for dip %p", dip);
return;
}
DRMACH_PR("drmach_sr_delete: still searching\n");
xp = xp->prev;
} while (xp != (*lp)->prev);
}
/* every dip should be found during resume */
DRMACH_PR("ERROR: drmach_sr_delete: can't find dip %p", dip);
}
int
drmach_verify_sr(dev_info_t *dip, int sflag)
{
int rv;
int len;
char name[OBP_MAXDRVNAME];
if (drmach_slot1_pause_debug) {
if (sflag && drmach_slot1_pause_init) {
drmach_slot1_pause_free(drmach_slot1_paused);
drmach_slot1_pause_init = 0;
} else if (!sflag && !drmach_slot1_pause_init) {
/* schedule init for next suspend */
drmach_slot1_pause_init = 1;
}
}
rv = ddi_getproplen(DDI_DEV_T_ANY, dip, DDI_PROP_DONTPASS,
"name", &len);
if (rv == DDI_PROP_SUCCESS) {
int portid;
uint64_t reg;
struct drmach_sr_ordered *op;
rv = ddi_getlongprop_buf(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, "name", (caddr_t)name, &len);
if (rv != DDI_PROP_SUCCESS)
return (0);
if (drmach_slot1_pause_debug && sflag &&
drmach_is_slot1_pause_axq(dip, name, &portid, &reg)) {
drmach_slot1_pause_add_axq(dip, name, portid, reg,
drmach_slot1_paused);
}
for (op = drmach_sr_ordered; op->name; op++) {
if (strncmp(op->name, name, strlen(op->name)) == 0) {
if (sflag)
drmach_sr_insert(&op->ring, dip);
else
drmach_sr_delete(&op->ring, dip);
return (1);
}
}
}
return (0);
}
static void
drmach_sr_dip(dev_info_t *dip, int suspend)
{
int rv;
major_t maj;
char *name, *name_addr, *aka;
if ((name = ddi_get_name(dip)) == NULL)
name = "<null name>";
else if ((maj = ddi_name_to_major(name)) != -1)
aka = ddi_major_to_name(maj);
else
aka = "<unknown>";
if ((name_addr = ddi_get_name_addr(dip)) == NULL)
name_addr = "<null>";
prom_printf("\t%s %s@%s (aka %s)\n",
suspend ? "suspending" : "resuming",
name, name_addr, aka);
if (suspend) {
rv = devi_detach(dip, DDI_SUSPEND);
} else {
rv = devi_attach(dip, DDI_RESUME);
}
if (rv != DDI_SUCCESS) {
prom_printf("\tFAILED to %s %s@%s\n",
suspend ? "suspend" : "resume",
name, name_addr);
}
}
void
drmach_suspend_last()
{
struct drmach_sr_ordered *op;
if (drmach_slot1_pause_debug)
drmach_slot1_pause_add_io(drmach_slot1_paused);
/*
* The ordering array declares the strict sequence in which
* the named drivers are to suspended. Each element in
* the array may have a double-linked ring list of driver
* instances (dip) in the order in which they were presented
* to drmach_verify_sr. If present, walk the list in the
* forward direction to suspend each instance.
*/
for (op = drmach_sr_ordered; op->name; op++) {
if (op->ring) {
struct drmach_sr_list *rp;
rp = op->ring;
do {
drmach_sr_dip(rp->dip, 1);
rp = rp->next;
} while (rp != op->ring);
}
}
if (drmach_slot1_pause_debug) {
drmach_slot1_pause_update(drmach_slot1_paused,
DRMACH_POST_SUSPEND);
drmach_slot1_pause_verify(drmach_slot1_paused,
DRMACH_POST_SUSPEND);
}
}
void
drmach_resume_first()
{
struct drmach_sr_ordered *op = drmach_sr_ordered +
(sizeof (drmach_sr_ordered) / sizeof (drmach_sr_ordered[0]));
if (drmach_slot1_pause_debug) {
drmach_slot1_pause_update(drmach_slot1_paused,
DRMACH_PRE_RESUME);
drmach_slot1_pause_verify(drmach_slot1_paused,
DRMACH_PRE_RESUME);
}
op -= 1; /* point at terminating element */
/*
* walk ordering array and rings backwards to resume dips
* in reverse order in which they were suspended
*/
while (--op >= drmach_sr_ordered) {
if (op->ring) {
struct drmach_sr_list *rp;
rp = op->ring->prev;
do {
drmach_sr_dip(rp->dip, 0);
rp = rp->prev;
} while (rp != op->ring->prev);
}
}
}
/*
* Log a DR sysevent.
* Return value: 0 success, non-zero failure.
*/
int
drmach_log_sysevent(int board, char *hint, int flag, int verbose)
{
sysevent_t *ev;
sysevent_id_t eid;
int rv, km_flag;
sysevent_value_t evnt_val;
sysevent_attr_list_t *evnt_attr_list = NULL;
char attach_pnt[MAXNAMELEN];
km_flag = (flag == SE_SLEEP) ? KM_SLEEP : KM_NOSLEEP;
attach_pnt[0] = '\0';
if (drmach_board_name(board, attach_pnt, MAXNAMELEN)) {
rv = -1;
goto logexit;
}
if (verbose)
DRMACH_PR("drmach_log_sysevent: %s %s, flag: %d, verbose: %d\n",
attach_pnt, hint, flag, verbose);
if ((ev = sysevent_alloc(EC_DR, ESC_DR_AP_STATE_CHANGE,
SUNW_KERN_PUB"dr", km_flag)) == NULL) {
rv = -2;
goto logexit;
}
evnt_val.value_type = SE_DATA_TYPE_STRING;
evnt_val.value.sv_string = attach_pnt;
if ((rv = sysevent_add_attr(&evnt_attr_list, DR_AP_ID,
&evnt_val, km_flag)) != 0)
goto logexit;
evnt_val.value_type = SE_DATA_TYPE_STRING;
evnt_val.value.sv_string = hint;
if ((rv = sysevent_add_attr(&evnt_attr_list, DR_HINT,
&evnt_val, km_flag)) != 0) {
sysevent_free_attr(evnt_attr_list);
goto logexit;
}
(void) sysevent_attach_attributes(ev, evnt_attr_list);
/*
* Log the event but do not sleep waiting for its
* delivery. This provides insulation from syseventd.
*/
rv = log_sysevent(ev, SE_NOSLEEP, &eid);
logexit:
if (ev)
sysevent_free(ev);
if ((rv != 0) && verbose)
cmn_err(CE_WARN,
"drmach_log_sysevent failed (rv %d) for %s %s\n",
rv, attach_pnt, hint);
return (rv);
}
/*
* Initialize the mem_slice portion of a claim/unconfig/unclaim mailbox message.
* Only the valid entries are modified, so the array should be zeroed out
* initially.
*/
static void
drmach_msg_memslice_init(dr_memslice_t slice_arr[]) {
int i;
char c;
ASSERT(mutex_owned(&drmach_slice_table_lock));
for (i = 0; i < AXQ_MAX_EXP; i++) {
c = drmach_slice_table[i];
if (c & 0x20) {
slice_arr[i].valid = 1;
slice_arr[i].slice = c & 0x1f;
}
}
}
/*
* Initialize the mem_regs portion of a claim/unconfig/unclaim mailbox message.
* Only the valid entries are modified, so the array should be zeroed out
* initially.
*/
static void
drmach_msg_memregs_init(dr_memregs_t regs_arr[]) {
int rv, exp, mcnum, bank;
uint64_t madr;
drmachid_t id;
drmach_board_t *bp;
drmach_mem_t *mp;
dr_memregs_t *memregs;
/* CONSTCOND */
ASSERT(DRMACH_MC_NBANKS == (PMBANKS_PER_PORT * LMBANKS_PER_PMBANK));
for (exp = 0; exp < 18; exp++) {
rv = drmach_array_get(drmach_boards,
DRMACH_EXPSLOT2BNUM(exp, 0), &id);
ASSERT(rv == 0); /* should never be out of bounds */
if (id == NULL) {
continue;
}
memregs = &regs_arr[exp];
bp = (drmach_board_t *)id;
for (mp = bp->mem; mp != NULL; mp = mp->next) {
mcnum = mp->dev.portid & 0x3;
for (bank = 0; bank < DRMACH_MC_NBANKS; bank++) {
drmach_mem_read_madr(mp, bank, &madr);
if (madr & DRMACH_MC_VALID_MASK) {
DRMACH_PR("%d.%d.%d.madr = 0x%lx\n",
exp, mcnum, bank, madr);
memregs->madr[mcnum][bank].hi =
DRMACH_U64_TO_MCREGHI(madr);
memregs->madr[mcnum][bank].lo =
DRMACH_U64_TO_MCREGLO(madr);
}
}
}
}
}
/*
* Do not allow physical address range modification if either board on this
* expander has processors in NULL LPA mode (CBASE=CBND=NULL).
*
* A side effect of NULL proc LPA mode in Starcat SSM is that local reads will
* install the cache line as owned/dirty as a result of the RTSR transaction.
* See section 5.2.3 of the Safari spec. All processors will read the bus sync
* list before the rename after flushing local caches. When copy-rename
* requires changing the physical address ranges (i.e. smaller memory target),
* the bus sync list contains physical addresses that will not exist after the
* rename. If these cache lines are owned due to a RTSR, a system error can
* occur following the rename when these cache lines are evicted and a writeback
* is attempted.
*
* Incoming parameter represents either the copy-rename source or a candidate
* target memory board. On Starcat, only slot0 boards may have memory.
*/
int
drmach_allow_memrange_modify(drmachid_t s0id)
{
drmach_board_t *s0bp, *s1bp;
drmachid_t s1id;
int rv;
s0bp = s0id;
ASSERT(DRMACH_IS_BOARD_ID(s0id));
ASSERT(DRMACH_BNUM2SLOT(s0bp->bnum) == 0);
if (s0bp->flags & DRMACH_NULL_PROC_LPA) {
/*
* This is reason enough to fail the request, no need
* to check the device list for cpus.
*/
return (0);
}
/*
* Check for MCPU board on the same expander.
*
* The board flag DRMACH_NULL_PROC_LPA can be set for all board
* types, as it is derived at from the POST gdcd board flag
* L1SSFLG_THIS_L1_NULL_PROC_LPA, which can be set (and should be
* ignored) for boards with no processors. Since NULL proc LPA
* applies only to processors, we walk the devices array to detect
* MCPUs.
*/
rv = drmach_array_get(drmach_boards, s0bp->bnum + 1, &s1id);
s1bp = s1id;
if (rv == 0 && s1bp != NULL) {
ASSERT(DRMACH_IS_BOARD_ID(s1id));
ASSERT(DRMACH_BNUM2SLOT(s1bp->bnum) == 1);
ASSERT(DRMACH_BNUM2EXP(s0bp->bnum) ==
DRMACH_BNUM2EXP(s1bp->bnum));
if ((s1bp->flags & DRMACH_NULL_PROC_LPA) &&
s1bp->devices != NULL) {
int d_idx;
drmachid_t d_id;
rv = drmach_array_first(s1bp->devices, &d_idx, &d_id);
while (rv == 0) {
if (DRMACH_IS_CPU_ID(d_id)) {
/*
* Fail MCPU in NULL LPA mode.
*/
return (0);
}
rv = drmach_array_next(s1bp->devices, &d_idx,
&d_id);
}
}
}
return (1);
}