axq.c revision 193974072f41a843678abf5f61979c748687e66b
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/types.h>
#include <sys/conf.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/ddi_impldefs.h>
#include <sys/obpdefs.h>
#include <sys/cmn_err.h>
#include <sys/errno.h>
#include <sys/kmem.h>
#include <sys/debug.h>
#include <sys/sysmacros.h>
#include <sys/autoconf.h>
#include <sys/modctl.h>
#include <sys/sunndi.h>
#include <sys/axq.h>
#include <sys/promif.h>
#include <sys/cpuvar.h>
#include <sys/starcat.h>
#include <sys/callb.h>
#define REG_ADDR(b, o) (uint32_t *)((caddr_t)(b) + (o))
/*
* Function prototypes
*/
/* autoconfig entry point function definitions */
static int axq_attach(dev_info_t *, ddi_attach_cmd_t);
static int axq_detach(dev_info_t *, ddi_detach_cmd_t);
static int axq_getinfo(dev_info_t *, ddi_info_cmd_t, void *, void **);
/* internal axq definitions */
static void axq_init(struct axq_soft_state *);
static void axq_init_local(struct axq_local_regs *);
/* axq kstats */
static void axq_add_picN_kstats(dev_info_t *dip);
static void axq_add_kstats(struct axq_soft_state *);
static int axq_counters_kstat_update(kstat_t *, int);
/*
* Configuration data structures
*/
static struct cb_ops axq_cb_ops = {
nulldev, /* open */
nulldev, /* close */
nulldev, /* strategy */
nulldev, /* print */
nodev, /* dump */
nulldev, /* read */
nulldev, /* write */
nulldev, /* ioctl */
nodev, /* devmap */
nodev, /* mmap */
nodev, /* segmap */
nochpoll, /* poll */
ddi_prop_op, /* cb_prop_op */
0, /* streamtab */
D_MP | D_NEW, /* Driver compatibility flag */
CB_REV, /* rev */
nodev, /* cb_aread */
nodev /* cb_awrite */
};
static struct dev_ops axq_ops = {
DEVO_REV, /* rev */
0, /* refcnt */
axq_getinfo, /* getinfo */
nulldev, /* identify */
nulldev, /* probe */
axq_attach, /* attach */
axq_detach, /* detach */
nulldev, /* reset */
&axq_cb_ops, /* cb_ops */
(struct bus_ops *)0, /* bus_ops */
nulldev, /* power */
ddi_quiesce_not_supported, /* devo_quiesce */
};
/*
* AXQ globals
*/
struct axq_soft_state *axq_array[AXQ_MAX_EXP][AXQ_MAX_SLOT_PER_EXP];
krwlock_t axq_array_lock;
struct axq_local_regs axq_local;
int use_axq_iopause = 1; /* enable flag axq iopause by default */
/*
* If non-zero, iopause will be asserted during DDI_SUSPEND.
* Clients using the axq_iopause_*_all interfaces should set this to zero.
*/
int axq_suspend_iopause = 1;
/*
* loadable module support
*/
extern struct mod_ops mod_driverops;
static struct modldrv modldrv = {
&mod_driverops, /* Type of module. This one is a driver */
"AXQ driver", /* name of module */
&axq_ops, /* driver ops */
};
static struct modlinkage modlinkage = {
MODREV_1,
(void *)&modldrv,
NULL
};
static void *axq_softp;
/*
* AXQ Performance counters
* We statically declare a array of the known
* AXQ event-names and event masks. The number
* of events in this array is AXQ_NUM_EVENTS.
*/
static axq_event_mask_t axq_events[AXQ_NUM_EVENTS] = {
{"count_clk", COUNT_CLK}, {"freeze_cnt", FREEZE_CNT},
{"ha_input_fifo", HA_INPUT_FIFO}, {"ha_intr_info", HA_INTR_INFO},
{"ha_pio_fifo", HA_PIO_FIFO}, {"ha_adr_fifo_lk3", HA_ADR_FIFO_LK3},
{"ha_adr_fifo_lk2", HA_ADR_FIFO_LK2},
{"ha_adr_fifo_lk1", HA_ADR_FIFO_LK1},
{"ha_adr_fifo_lk0", HA_ADR_FIFO_LK0},
{"ha_dump_q", HA_DUMP_Q},
{"ha_rd_f_stb_q", HA_RD_F_STB_Q},
{"ha_dp_wr_q", HA_DP_WR_Q},
{"ha_int_q", HA_INT_Q},
{"ha_wrb_q", HA_WRB_Q},
{"ha_wr_mp_q", HA_WR_MP_Q},
{"ha_wrtag_q", HA_WRTAG_Q},
{"ha_wt_wait_fifo", HA_WT_WAIT_FIFO},
{"ha_wrb_stb_fifo", HA_WRB_STB_FIFO},
{"ha_ap0_q", HA_AP0_Q},
{"ha_ap1_q", HA_AP1_Q},
{"ha_new_wr_q", HA_NEW_WR_Q},
{"ha_dp_rd_q", HA_DP_RD_Q},
{"ha_unlock_q", HA_UNLOCK_Q},
{"ha_cdc_upd_q", HA_CDC_UPD_Q},
{"ha_ds_q", HA_DS_Q},
{"ha_unlk_wait_q", HA_UNLK_WAIT_Q},
{"ha_rd_mp_q", HA_RD_MP_Q},
{"l2_io_q", L2_IO_Q},
{"l2_sb_q", L2_SB_Q},
{"l2_ra_q", L2_RA_Q},
{"l2_ha_q", L2_HA_Q},
{"l2_sa_q", L2_SA_Q},
{"ra_wait_fifo", RA_WAIT_FIFO},
{"ra_wrb_inv_fifo", RA_WRB_INV_FIFO},
{"ra_wrb_fifo", RA_WRB_FIFO},
{"ra_cc_ptr_fifo", RA_CC_PTR_FIFO},
{"ra_io_ptr_fifo", RA_IO_PTR_FIFO},
{"ra_int_ptr_fifo", RA_INT_PTR_FIFO},
{"ra_rp_q", RA_RP_Q},
{"ra_wrb_rp_q", RA_WRB_RP_Q},
{"ra_dp_q", RA_DP_Q},
{"ra_dp_stb_q", RA_DP_STB_Q},
{"ra_gtarg_q", RA_GTARG_Q},
{"sdc_recv_q", SDC_RECV_Q},
{"sdc_redir_io_q", SDC_REDIR_IO_Q},
{"sdc_redir_sb_q", SDC_REDIR_SB_Q},
{"sdc_outb_io_q", SDC_OUTB_IO_Q},
{"sdc_outb_sb_q", SDC_OUTB_SB_Q},
{"sa_add1_input_q", SA_ADD1_INPUT_Q},
{"sa_add2_input_q", SA_ADD2_INPUT_Q},
{"sa_inv_q", SA_INV_Q},
{"sa_no_inv_q", SA_NO_INV_Q},
{"sa_int_dp_q", SA_INT_DP_Q},
{"sa_dp_q", SA_DP_Q},
{"sl_wrtag_q", SL_WRTAG_Q},
{"sl_rto_dp_q", SL_RTO_DP_Q},
{"syreg_input_q", SYSREG_INPUT_Q},
{"sdi_sys_status1", SDI_SYS_STATUS1},
{"sdi_sys_status0", SDI_SYS_STATUS0},
{"cdc_hits", CDC_HITS},
{"total_cdc_read", TOTAL_CDC_READ},
{"ha_watranid_sd", HA_WATRANID_SD},
{"ha_stb_sd", HA_STB_SD},
{"ha_l2_irq_sd", HA_L2_IRQ_SD},
{"ha_sl_wrtag_sd", HA_SL_WRTAG_SD},
{"aa_home_cc_full", AA_HOME_CC_FULL},
{"aa_home_io_full", AA_HOME_IO_FULL},
{"aa_slave_full", AA_SLAVE_FULL},
{"aa_rp_full", AA_RP_FULL}
};
static kstat_t *axq_picN_ksp[AXQ_NUM_PICS]; /* picN kstats */
static int axq_attachcnt = 0; /* # of instances attached */
static kmutex_t axq_attachcnt_lock; /* lock for attachcnt */
static int axq_map_phys(dev_info_t *, struct regspec *, caddr_t *,
ddi_device_acc_attr_t *, ddi_acc_handle_t *);
static void axq_unmap_phys(ddi_acc_handle_t *);
int starcat_axq_pio_workaround(dev_info_t *);
static int axq_slot1_idle(struct axq_soft_state *);
static boolean_t axq_panic_callb(void *, int);
static callb_id_t axq_panic_cb_id;
/*
* These are the module initialization routines.
*/
int
_init(void)
{
int error;
if ((error = ddi_soft_state_init(&axq_softp,
sizeof (struct axq_soft_state), 1)) != 0)
return (error);
rw_init(&axq_array_lock, NULL, RW_DEFAULT, NULL);
mutex_init(&axq_local.axq_local_lock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&axq_attachcnt_lock, NULL, MUTEX_DRIVER, NULL);
axq_local.initflag = 0;
if ((error = mod_install(&modlinkage)) != 0) {
ddi_soft_state_fini(&axq_softp);
mutex_destroy(&axq_attachcnt_lock);
mutex_destroy(&axq_local.axq_local_lock);
rw_destroy(&axq_array_lock);
return (error);
}
axq_panic_cb_id = callb_add(axq_panic_callb, (void *)NULL,
CB_CL_PANIC, "axq_panic");
return (0);
}
int
_fini(void)
{
int error;
if ((error = mod_remove(&modlinkage)) != 0)
return (error);
ddi_soft_state_fini(&axq_softp);
mutex_destroy(&axq_attachcnt_lock);
mutex_destroy(&axq_local.axq_local_lock);
rw_destroy(&axq_array_lock);
(void) callb_delete(axq_panic_cb_id);
return (0);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
static int
axq_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
{
int instance;
struct axq_soft_state *softsp;
ddi_device_acc_attr_t attr;
extern uint64_t va_to_pa(void *);
instance = ddi_get_instance(devi);
switch (cmd) {
case DDI_ATTACH:
break;
case DDI_RESUME:
/*
* Reenable the axq io pause if it is
* employed. See the DDI_SUSPEND comments
*/
softsp = ddi_get_soft_state(axq_softp, instance);
if (softsp->slotnum && softsp->paused && use_axq_iopause &&
axq_suspend_iopause) {
*softsp->axq_domain_ctrl &= ~AXQ_DOMCTRL_PAUSE;
softsp->paused = 0;
}
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
if (ddi_soft_state_zalloc(axq_softp, instance) != DDI_SUCCESS)
return (DDI_FAILURE);
softsp = ddi_get_soft_state(axq_softp, instance);
/* Set the dip in the soft state */
softsp->dip = devi;
/* Get the "portid" property */
if ((softsp->portid = (int)ddi_getprop(DDI_DEV_T_ANY, softsp->dip,
DDI_PROP_DONTPASS, "portid", -1)) == -1) {
cmn_err(CE_WARN, "Unable to retrieve safari portid"
"property.");
goto bad;
}
softsp->expid = softsp->portid >> 5;
/*
* derive the slot # from the portid - for starcat, it is
* either 0 or 1 based on the lsb of the axq portid.
*/
softsp->slotnum = softsp->portid & 0x1;
/*
* map in the regs. There are two regspecs - one
* in safari config space and the other in local space.
*/
attr.devacc_attr_version = DDI_DEVICE_ATTR_V0;
attr.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
attr.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
if (ddi_regs_map_setup(softsp->dip, 0, &softsp->address, 0, 0,
&attr, &softsp->ac0) != DDI_SUCCESS) {
cmn_err(CE_WARN, "%s%d: unable to map reg set 0\n",
ddi_get_name(softsp->dip),
ddi_get_instance(softsp->dip));
goto bad;
}
/*
* This is a hack for support DR copy rename scripting
* Get the physical address of the start of the
* AXQ config space and save it.
*/
softsp->axq_phyaddr = va_to_pa((caddr_t)softsp->address);
axq_init(softsp);
/*
* Map in the regs for local space access
* This is global for all axq instances.
* Make sure that some axq instance does
* it for the rest of the gang..
* Note that this mapping is never removed.
*/
mutex_enter(&axq_local.axq_local_lock);
if (!axq_local.initflag) {
/* initialize and map in the local space */
if (ddi_regs_map_setup(softsp->dip, 1,
&axq_local.laddress, 0, 0,
&attr, &axq_local.ac) != DDI_SUCCESS) {
cmn_err(CE_WARN, "%s%d: unable to map reg set 1\n",
ddi_get_name(softsp->dip),
ddi_get_instance(softsp->dip));
ddi_regs_map_free(&softsp->ac0);
mutex_exit(&axq_local.axq_local_lock);
goto bad;
}
axq_init_local(&axq_local);
axq_local.initflag = 1;
}
mutex_exit(&axq_local.axq_local_lock);
mutex_init(&softsp->axq_lock, NULL, MUTEX_DRIVER, NULL);
/* update the axq array for this new instance */
rw_enter(&axq_array_lock, RW_WRITER);
ASSERT(axq_array[softsp->expid][softsp->slotnum] == NULL);
axq_array[softsp->expid][softsp->slotnum] = softsp;
rw_exit(&axq_array_lock);
axq_add_kstats(softsp);
ddi_report_dev(devi);
return (DDI_SUCCESS);
bad:
ddi_soft_state_free(axq_softp, instance);
return (DDI_FAILURE);
}
static void
axq_init(struct axq_soft_state *softsp)
{
int i;
/*
* Setup the AXQ registers
* Some offsets and availability are dependent on the slot type
*/
if (softsp->slotnum == 0) {
/* This is a slot type 0 AXQ */
softsp->axq_domain_ctrl = REG_ADDR(softsp->address,
AXQ_SLOT0_DOMCTRL);
softsp->axq_cdc_addrtest = REG_ADDR(softsp->address,
AXQ_SLOT0_CDC_ADR_TEST);
softsp->axq_cdc_ctrltest = REG_ADDR(softsp->address,
AXQ_SLOT0_CDC_CTL_TEST);
softsp->axq_cdc_datawrite0 = REG_ADDR(softsp->address,
AXQ_SLOT0_CDC_DATA_WR0);
softsp->axq_cdc_datawrite1 = REG_ADDR(softsp->address,
AXQ_SLOT0_CDC_DATA_WR1);
softsp->axq_cdc_datawrite2 = REG_ADDR(softsp->address,
AXQ_SLOT0_CDC_DATA_WR2);
softsp->axq_cdc_datawrite3 = REG_ADDR(softsp->address,
AXQ_SLOT0_CDC_DATA_WR3);
softsp->axq_cdc_counter = REG_ADDR(softsp->address,
AXQ_SLOT0_CDC_CNT_TEST);
softsp->axq_cdc_readdata0 = REG_ADDR(softsp->address,
AXQ_SLOT0_CDC_RD_DATA0);
softsp->axq_cdc_readdata1 = REG_ADDR(softsp->address,
AXQ_SLOT0_CDC_RD_DATA1);
softsp->axq_cdc_readdata2 = REG_ADDR(softsp->address,
AXQ_SLOT0_CDC_RD_DATA2);
softsp->axq_cdc_readdata3 = REG_ADDR(softsp->address,
AXQ_SLOT0_CDC_RD_DATA3);
softsp->axq_pcr = REG_ADDR(softsp->address,
AXQ_SLOT0_PERFCNT_SEL);
softsp->axq_pic0 = REG_ADDR(softsp->address,
AXQ_SLOT0_PERFCNT0);
softsp->axq_pic1 = REG_ADDR(softsp->address,
AXQ_SLOT0_PERFCNT1);
softsp->axq_pic2 = REG_ADDR(softsp->address,
AXQ_SLOT0_PERFCNT2);
softsp->axq_nasm = REG_ADDR(softsp->address, AXQ_SLOT0_NASM);
} else {
/* slot type 1 AXQ */
softsp->axq_domain_ctrl = REG_ADDR(softsp->address,
AXQ_SLOT1_DOMCTRL);
softsp->axq_pcr = REG_ADDR(softsp->address,
AXQ_SLOT1_PERFCNT_SEL);
softsp->axq_pic0 = REG_ADDR(softsp->address,
AXQ_SLOT1_PERFCNT0);
softsp->axq_pic1 = REG_ADDR(softsp->address,
AXQ_SLOT1_PERFCNT1);
softsp->axq_pic2 = REG_ADDR(softsp->address,
AXQ_SLOT1_PERFCNT2);
softsp->axq_nasm = REG_ADDR(softsp->address, AXQ_SLOT1_NASM);
}
/* setup CASM slots */
for (i = 0; i < AXQ_MAX_EXP; i++) {
softsp->axq_casm_slot[i] = REG_ADDR(softsp->address,
(AXQ_CASM_SLOT_START + AXQ_REGOFF(i)));
}
/* setup SDI timeout register accesses */
softsp->axq_sdi_timeout_rd = REG_ADDR(softsp->address,
AXQ_SLOT_SDI_TIMEOUT_RD);
softsp->axq_sdi_timeout_rdclr = REG_ADDR(softsp->address,
AXQ_SLOT_SDI_TIMEOUT_RDCLR);
/*
* Save the CDC state (enabled or disabled)
* as originally setup by Post.
*/
if (softsp->slotnum == 0) {
softsp->axq_cdc_state = *softsp->axq_cdc_ctrltest &
AXQ_CDC_DIS;
}
#ifndef _AXQ_LOCAL_ACCESS_SUPPORTED
/*
* Setup cpu2ssc intr register in explicit expander
* space. Local space addressing for this is broken,
* we'll use explicit addressing for now.
*/
softsp->axq_cpu2ssc_intr = REG_ADDR(softsp->address,
AXQ_SLOT_CPU2SSC_INTR);
#endif /* _AXQ_LOCAL_ACCESS_SUPPORTED */
}
static void
axq_init_local(struct axq_local_regs *localregs)
{
/*
* local access to cpu2ssc intr register will
* be the only one that may work properly in the
* next revision of the AXQ asics.
* Set it up here for now.
*/
localregs->axq_cpu2ssc_intr = REG_ADDR(localregs->laddress,
AXQ_SLOT_CPU2SSC_INTR);
}
/* ARGSUSED */
static int
axq_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
{
int instance;
int i;
struct axq_soft_state *softsp;
processorid_t cpuid;
/* get the instance of this devi */
instance = ddi_get_instance(devi);
/* get the soft state pointer for this device node */
softsp = ddi_get_soft_state(axq_softp, instance);
switch (cmd) {
case DDI_SUSPEND:
/*
* Depending on the variable "use_axq_iopause"
* we set the axq iopause bit as a paranoid
* safety net. This is assuming all the devices
* associated with the slot are already suspended.
* Care must be taken to not set iopause when CPUs
* are known to be present on the slot 1 board,
* i.e. MCPU board type.
* This io pause bit only applies to slot 1 axq,
*/
if (softsp->slotnum && use_axq_iopause && axq_suspend_iopause) {
/*
* Do not enable AXQ_DOMCTRL_PAUSE if CPUs are
* known to be present in slot 1.
*/
mutex_enter(&cpu_lock);
for (i = 0; i < STARCAT_SLOT1_CPU_MAX; i++) {
cpuid = MAKE_CPUID(softsp->expid,
softsp->slotnum, i);
if (cpu[cpuid]) {
mutex_exit(&cpu_lock);
return (DDI_SUCCESS);
}
}
mutex_exit(&cpu_lock);
/*
* Make sure that there is no outstanding
* I/O activity by reading the domain ctrl reg.
* A non-zero lsb indicates no I/O activity.
*/
if (axq_slot1_idle(softsp) == DDI_FAILURE) {
cmn_err(CE_WARN, "%s%d: busy! suspend failed",
ddi_get_name(softsp->dip),
ddi_get_instance(softsp->dip));
return (DDI_FAILURE);
}
*softsp->axq_domain_ctrl |= AXQ_DOMCTRL_PAUSE;
softsp->paused = 1;
}
return (DDI_SUCCESS);
case DDI_DETACH:
rw_enter(&axq_array_lock, RW_WRITER);
ASSERT(axq_array[softsp->expid][softsp->slotnum]
!= NULL);
axq_array[softsp->expid][softsp->slotnum] = NULL;
rw_exit(&axq_array_lock);
ddi_regs_map_free(&softsp->ac0);
/*
* remove counter kstats for this device
*/
if (softsp->axq_counters_ksp != (kstat_t *)NULL) {
kstat_delete(softsp->axq_counters_ksp);
}
/*
* See if we are the last instance to detach.
* If so, we need to remove the picN kstats
*/
mutex_enter(&axq_attachcnt_lock);
if (--axq_attachcnt == 0) {
for (i = 0; i < AXQ_NUM_PICS; i++) {
if (axq_picN_ksp[i] != (kstat_t *)NULL) {
kstat_delete(axq_picN_ksp[i]);
axq_picN_ksp[i] = NULL;
}
}
}
mutex_exit(&axq_attachcnt_lock);
ddi_soft_state_free(axq_softp, instance);
return (DDI_SUCCESS);
default:
return (DDI_FAILURE);
}
}
/* ARGSUSED0 */
static int
axq_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **result)
{
dev_t dev = (dev_t)arg;
struct axq_soft_state *softsp;
int instance, ret;
instance = getminor(dev);
switch (infocmd) {
case DDI_INFO_DEVT2DEVINFO:
softsp = (struct axq_soft_state *)
ddi_get_soft_state(axq_softp, instance);
if (softsp == NULL) {
ret = DDI_FAILURE;
} else {
*result = softsp->dip;
ret = DDI_SUCCESS;
}
break;
case DDI_INFO_DEVT2INSTANCE:
*result = (void *)(uintptr_t)instance;
ret = DDI_SUCCESS;
break;
default:
ret = DDI_FAILURE;
break;
}
return (ret);
}
/*
* Flush the CDC Sram of the slot0 axq
* indicated by the expid argument
*/
int
axq_cdc_flush(uint32_t expid, int held, int disabled)
{
struct axq_soft_state *softsp;
uint32_t axq_ctrl_test_save0;
uint32_t tmpval;
int retval = 0;
int i;
if (!held)
rw_enter(&axq_array_lock, RW_READER);
ASSERT(axq_array[expid][SLOT0_AXQ] != NULL);
softsp = axq_array[expid][SLOT0_AXQ];
mutex_enter(&softsp->axq_lock);
/* save the value of the ctrl test reg */
axq_ctrl_test_save0 = *softsp->axq_cdc_ctrltest;
/* disable sram and setup the ctrl test reg for flushing */
tmpval = axq_ctrl_test_save0 & (AXQ_CDC_DATA_ECC_CHK_EN |
AXQ_CDC_ADR_PAR_CHK_EN |
AXQ_CDC_DATA_ECC_GEN_EN |
AXQ_CDC_ADR_PAR_GEN_EN);
*softsp->axq_cdc_ctrltest = tmpval | AXQ_CDC_TMODE_WR
| AXQ_CDC_DATA2PAR_MUX_SEL_DATA
| AXQ_CDC_ADR2SRAM_MUX_SEL_TEST
| AXQ_CDC_ADR_INCR_XOR_CTRL
| AXQ_CDC_DIS;
/* Enable CDC test in the CDC Address test reg */
*softsp->axq_cdc_addrtest = AXQ_CDC_ADR_TEST_EN;
/* clear the CDC Data write regs */
*softsp->axq_cdc_datawrite0 = *softsp->axq_cdc_datawrite1 = 0;
*softsp->axq_cdc_datawrite2 = *softsp->axq_cdc_datawrite3 = 0;
/*
* write in the size of the sram to clear
* into the CDC Counter test reg
*/
*softsp->axq_cdc_counter = AXQ_CDC_SRAM_SIZE;
/* wait for flush to complete */
for (i = 0; i < AXQ_CDC_FLUSH_WAIT; i++) {
DELAY(3000); /* should take only 1750 usecs */
if (((*softsp->axq_cdc_counter) &
AXQ_CDC_CNT_TEST_DONE) != 0) {
break;
}
}
if (i >= AXQ_CDC_FLUSH_WAIT) {
retval = DDI_FAILURE;
cmn_err(CE_WARN, "axq_cdc_flush failed on expander %d",
expid);
}
/*
* Disable test mode in CDC address test reg
*/
*softsp->axq_cdc_addrtest = 0;
/*
* If "disabled" option is requested, leave
* the CDC disabled.
*/
if (disabled) {
axq_ctrl_test_save0 |= AXQ_CDC_DIS;
*softsp->axq_cdc_ctrltest = axq_ctrl_test_save0;
} else {
*softsp->axq_cdc_ctrltest = axq_ctrl_test_save0;
}
mutex_exit(&softsp->axq_lock);
if (!held)
rw_exit(&axq_array_lock);
return (retval);
}
/*
* Flush all the CDC srams for all the AXQs in
* the local domain.
*/
int
axq_cdc_flush_all()
{
int retval;
int i;
rw_enter(&axq_array_lock, RW_READER);
for (i = 0; i < AXQ_MAX_EXP; i++) {
if (axq_array[i][SLOT0_AXQ] != NULL) {
retval = axq_cdc_flush(i, 1, 0);
if (retval != DDI_SUCCESS) break;
}
}
rw_exit(&axq_array_lock);
return (retval);
}
/*
* Disable and flush all CDC srams for all the AXQs
* in the local domain.
*/
int
axq_cdc_disable_flush_all()
{
int retval;
int i;
rw_enter(&axq_array_lock, RW_READER);
/*
* Disable and flush all the CDC srams
*/
for (i = 0; i < AXQ_MAX_EXP; i++) {
if (axq_array[i][SLOT0_AXQ] != NULL) {
retval = axq_cdc_flush(i, 1, 1);
if (retval != DDI_SUCCESS) break;
}
}
rw_exit(&axq_array_lock);
if (retval != DDI_SUCCESS) {
axq_cdc_enable_all();
}
return (retval);
}
/*
* Enable the CDC srams for all the AXQs in the
* the local domain. This routine is used in
* conjunction with axq_cdc_disable_flush_all().
*/
void
axq_cdc_enable_all()
{
struct axq_soft_state *softsp;
int i;
rw_enter(&axq_array_lock, RW_READER);
/*
* Enable all the CDC sram
*/
for (i = 0; i < AXQ_MAX_EXP; i++) {
if ((softsp = axq_array[i][SLOT0_AXQ]) != NULL) {
mutex_enter(&softsp->axq_lock);
if (softsp->axq_cdc_state != AXQ_CDC_DIS) {
*softsp->axq_cdc_ctrltest &= ~AXQ_CDC_DIS;
}
mutex_exit(&softsp->axq_lock);
}
}
rw_exit(&axq_array_lock);
}
/*
* Interface for DR to enable slot1 iopause after cpus have been idled.
* Precondition is for all devices to have been suspended (including axq).
* This routine avoids locks as it is called by DR with cpus paused.
*/
int
axq_iopause_enable_all(uint32_t *errexp)
{
int i, j;
int retval = DDI_SUCCESS;
processorid_t cpuid;
struct axq_soft_state *softsp;
DELAY(1000);
for (i = 0; i < AXQ_MAX_EXP; i++) {
if ((softsp = axq_array[i][SLOT1_AXQ]) != NULL &&
use_axq_iopause) {
/*
* Do not enable if cpus configured in slot1.
* Unconfigured cpus should be idle in nc space.
*/
for (j = 0; j < STARCAT_SLOT1_CPU_MAX; j++) {
cpuid = MAKE_CPUID(softsp->expid,
softsp->slotnum, j);
if (cpu[cpuid]) {
break;
}
}
if (j < STARCAT_SLOT1_CPU_MAX) {
continue;
}
retval = axq_slot1_idle(softsp);
if (retval == DDI_FAILURE) {
break;
}
*softsp->axq_domain_ctrl |= AXQ_DOMCTRL_PAUSE;
softsp->paused = 1;
}
}
if (retval != DDI_SUCCESS) {
ASSERT(errexp);
*errexp = i;
axq_iopause_disable_all();
}
return (retval);
}
/*
* De-assert axq iopause on all slot1 boards. This routine avoids locks
* as it is called by DR with cpus paused.
*/
void
axq_iopause_disable_all()
{
int i;
struct axq_soft_state *softsp;
for (i = 0; i < AXQ_MAX_EXP; i++) {
if ((softsp = axq_array[i][SLOT1_AXQ]) != NULL &&
softsp->paused) {
*softsp->axq_domain_ctrl &= ~AXQ_DOMCTRL_PAUSE;
softsp->paused = 0;
}
}
}
/*
* Attempt to wait for slot1 activity to go idle.
*/
static int
axq_slot1_idle(struct axq_soft_state *softsp)
{
int i;
ASSERT(softsp->slotnum == SLOT1_AXQ);
for (i = 0; i < 10; i++) {
if ((*(softsp->axq_domain_ctrl) & AXQ_DOMCTRL_BUSY) != 0) {
return (DDI_SUCCESS);
}
DELAY(50);
}
return (DDI_FAILURE);
}
/*
* Read a particular NASM entry
*/
int
axq_nasm_read(uint32_t expid, uint32_t slot, uint32_t nasm_entry,
uint32_t *data)
{
axq_nasm_read_u aread;
axq_nasm_write_u awrite;
struct axq_soft_state *softsp;
if (slot > AXQ_MAX_SLOT_PER_EXP ||
expid > AXQ_MAX_EXP ||
nasm_entry > AXQ_NASM_SIZE) {
return (DDI_FAILURE);
}
awrite.bit.rw = 0; /* read operation */
awrite.bit.addr = nasm_entry;
awrite.bit.data = 0;
rw_enter(&axq_array_lock, RW_READER);
softsp = axq_array[expid][slot];
if (softsp == NULL) {
rw_exit(&axq_array_lock);
return (DDI_FAILURE);
}
mutex_enter(&softsp->axq_lock);
*(softsp->axq_nasm) = awrite.val;
aread.val = *(softsp->axq_nasm);
mutex_exit(&softsp->axq_lock);
rw_exit(&axq_array_lock);
if (aread.bit.valid) {
*data = aread.bit.data;
return (DDI_SUCCESS);
}
return (DDI_FAILURE);
}
/*
* Write a particular NASM entry
*/
static int
axq_nasm_write_one(uint32_t expid, uint32_t slot, uint32_t nasm_entry,
uint32_t data)
{
axq_nasm_write_u awrite;
struct axq_soft_state *softsp;
/*
* Note: need to make sure axq_array_lock held first, so that a
* paused thread is not holding softsp->axq_lock, which could
* result in deadlock.
*/
ASSERT(RW_LOCK_HELD(&axq_array_lock));
if (slot > AXQ_MAX_SLOT_PER_EXP ||
expid > AXQ_MAX_EXP ||
nasm_entry > AXQ_NASM_SIZE) {
return (DDI_FAILURE);
}
awrite.bit.rw = 1; /* write operation */
awrite.bit.addr = nasm_entry;
awrite.bit.data = data;
softsp = axq_array[expid][slot];
if (softsp == NULL) {
return (DDI_FAILURE);
}
mutex_enter(&softsp->axq_lock);
*(softsp->axq_nasm) = awrite.val;
mutex_exit(&softsp->axq_lock);
return (DDI_SUCCESS);
}
int
axq_nasm_write(uint32_t expid, uint32_t slot, uint32_t nasm_entry,
uint32_t data)
{
int rc;
rw_enter(&axq_array_lock, RW_READER);
rc = axq_nasm_write_one(expid, slot, nasm_entry, data);
rw_exit(&axq_array_lock);
return (rc);
}
/*
* Write a particular NASM entry for all the
* axqs in the domain
* Note: other CPUs are paused when this function called.
*/
int
axq_nasm_write_all(uint32_t nasm_entry, uint32_t data)
{
int i;
int rc;
ASSERT(RW_WRITE_HELD(&axq_array_lock));
for (i = 0; i < AXQ_MAX_EXP; i++) {
if (axq_array[i][SLOT0_AXQ] != NULL) {
rc = axq_nasm_write_one(i, SLOT0_AXQ, nasm_entry,
data);
if (rc != DDI_SUCCESS) {
return (DDI_FAILURE);
}
}
if (axq_array[i][SLOT1_AXQ] != NULL) {
rc = axq_nasm_write_one(i, SLOT1_AXQ, nasm_entry,
data);
if (rc != DDI_SUCCESS) {
return (DDI_FAILURE);
}
}
}
return (DDI_SUCCESS);
}
/*
* Take write lock for axq_nasm_write_all() outside
* critical section where other CPUs are paused.
*/
void
axq_array_rw_enter(void)
{
rw_enter(&axq_array_lock, RW_WRITER);
}
/*
* Release write lock for axq_nasm_write_all() outside
* critical section where other CPUs are paused.
*/
void
axq_array_rw_exit(void)
{
rw_exit(&axq_array_lock);
}
/*
* Read a particular CASM entry
*/
uint32_t
axq_casm_read(uint32_t expid, uint32_t slot, int casmslot)
{
struct axq_soft_state *softsp;
uint32_t retval;
rw_enter(&axq_array_lock, RW_READER);
ASSERT(axq_array[expid][slot] != NULL);
ASSERT(casmslot >= 0 && casmslot < AXQ_MAX_EXP);
softsp = axq_array[expid][slot];
mutex_enter(&softsp->axq_lock);
retval = *(softsp->axq_casm_slot[casmslot]);
mutex_exit(&softsp->axq_lock);
rw_exit(&axq_array_lock);
return (retval);
}
/*
* Write a particular CASM entry
*/
int
axq_casm_write(uint32_t expid, uint32_t slot, int casmslot,
uint32_t value)
{
struct axq_soft_state *softsp;
int retval;
rw_enter(&axq_array_lock, RW_READER);
ASSERT(axq_array[expid][slot] != NULL);
ASSERT(casmslot >= 0 && casmslot < AXQ_MAX_EXP);
softsp = axq_array[expid][slot];
mutex_enter(&softsp->axq_lock);
/*
* first read the casm slot in question
* it should be non-zero to indicate that
* we have write permission to update it.
* Note that if we write it without valid
* permission, we can get an exception.
*/
if (*(softsp->axq_casm_slot[casmslot])) {
*(softsp->axq_casm_slot[casmslot]) = value;
retval = DDI_SUCCESS;
} else {
retval = DDI_FAILURE;
}
mutex_exit(&softsp->axq_lock);
rw_exit(&axq_array_lock);
return (retval);
}
/*
* Write a particular CASM entry for all the
* axqs in the domain
*/
int
axq_casm_write_all(int casmslot, uint32_t value)
{
int i;
struct axq_soft_state *softsp;
/*
* Since we are updating all the AXQs,
* it will be easier to simply grab
* exclusive access to the AXQs by obtaining
* the RW_WRITER access to the axq_array.
*/
rw_enter(&axq_array_lock, RW_WRITER);
/*
* Paranoid check: run thru all the avail AXQs
* and make sure we can write into that slot in question
* We check it by reading the slot and it should be
* non-zero.
*/
for (i = 0; i < AXQ_MAX_EXP; i++) {
if ((softsp = axq_array[i][SLOT0_AXQ]) != NULL) {
if (*(softsp->axq_casm_slot[casmslot])
== 0) {
break;
}
}
if ((softsp = axq_array[i][SLOT1_AXQ]) != NULL) {
if (*(softsp->axq_casm_slot[casmslot])
== 0) {
break;
}
}
}
if (i < AXQ_MAX_EXP) {
/*
* We have no write permission for some AXQ
* for the CASM slot in question. Flag it
* as an error
*/
rw_exit(&axq_array_lock);
return (DDI_FAILURE);
}
/*
* everything looks good - do the update
*/
for (i = 0; i < AXQ_MAX_EXP; i++) {
if ((softsp = axq_array[i][SLOT0_AXQ]) != NULL) {
*softsp->axq_casm_slot[casmslot] = value;
}
if ((softsp = axq_array[i][SLOT1_AXQ]) != NULL) {
*softsp->axq_casm_slot[casmslot] = value;
}
}
rw_exit(&axq_array_lock);
return (DDI_SUCCESS);
}
/*
* Construct a script of <physicaladdr, data> tuple pairs that
* reprogram the all the AXQs in the local domain to swap the
* contents of casmslot0 with casmslot1.
*/
int
axq_do_casm_rename_script(uint64_t **script_elm, int casmslot0,
int casmslot1)
{
struct axq_soft_state *softsp;
int i, slot;
uint32_t val0, val1;
uint64_t *s_elm = *script_elm;
uint64_t paddr;
/*
* There should be some global locking at the
* DR level to do this - since this is one of
* the sequence of steps in copyrename.
* For now, we grab the RW_WRITER lock for
* script construction.
*/
rw_enter(&axq_array_lock, RW_WRITER);
/*
* Construct the <physicaladdr, data> tuple pairs
* for reprogramming the AXQs so that the value in
* casmslot0 is swapped with the content in casmslot1.
* Paranoid check: We make sure that we can write to
* both slots in all the AXQs by reading the slots and
* they should be non-zero.
*/
for (slot = SLOT0_AXQ; slot <= SLOT1_AXQ; slot++) {
for (i = 0; i < AXQ_MAX_EXP; i++) {
if ((softsp = axq_array[i][slot]) != NULL) {
paddr = softsp->axq_phyaddr;
val0 = *(softsp->axq_casm_slot[casmslot0]);
val1 = *(softsp->axq_casm_slot[casmslot1]);
if (val0 != 0 && val1 != 0) {
*s_elm++ = paddr + AXQ_CASM_SLOT_START +
AXQ_REGOFF(casmslot0);
*s_elm++ = val1;
*s_elm++ = paddr + AXQ_CASM_SLOT_START +
AXQ_REGOFF(casmslot1);
*s_elm++ = val0;
} else {
/*
* Somehow we can't access one of
* the casm slot - quit.
*/
break;
}
}
}
if (i < AXQ_MAX_EXP) break;
}
rw_exit(&axq_array_lock);
if (slot > SLOT1_AXQ) {
/* successful */
*script_elm = s_elm;
return (DDI_SUCCESS);
} else {
return (DDI_FAILURE);
}
}
/*
* Send an interrupt to the SSC passing
* a 8 bit cookie value
*/
int
axq_cpu2ssc_intr(uint8_t cookie)
{
int retval, i;
volatile uint32_t *intr_reg;
#ifndef _AXQ_LOCAL_SPACE_SUPPORTED
/* Local space access not available */
int exp, slot;
rw_enter(&axq_array_lock, RW_READER);
/* Make sure the current cpu is not switched out */
kpreempt_disable();
/*
* Compute the exp# and slot# of the current cpu
* so that we know which AXQ cpu2ssc intr reg to
* use.
*/
exp = CPU->cpu_id >> 5;
slot = (CPU->cpu_id >> 3) & 0x1;
intr_reg = axq_array[exp][slot]->axq_cpu2ssc_intr;
#else
/* use local space */
intr_reg = axq_local.axq_cpu2ssc_intr;
#endif /* _AXQ_LOCAL_SPACE_SUPPORTED */
ASSERT(intr_reg != 0);
retval = DDI_FAILURE;
for (i = 0; i < AXQ_INTR_PEND_WAIT; i++) {
if (!(*intr_reg & AXQ_CPU2SSC_INTR_PEND)) {
*intr_reg = cookie;
retval = DDI_SUCCESS;
break;
}
DELAY(200);
}
#ifndef _AXQ_LOCAL_SPACE_SUPPORTED
kpreempt_enable();
rw_exit(&axq_array_lock);
#endif
return (retval);
}
/*
* Read the SDI timeout register (SRD use)
* This routine accepts a clear flag to indicate
* whether the register should be cleared after
* the read.
*/
uint32_t
axq_read_sdi_timeout_reg(uint32_t expid, uint32_t slot, int clearflag)
{
struct axq_soft_state *softsp;
uint32_t retval;
rw_enter(&axq_array_lock, RW_READER);
ASSERT(axq_array[expid][slot] != NULL);
softsp = axq_array[expid][slot];
mutex_enter(&softsp->axq_lock);
if (clearflag) {
/* read and then clear register */
retval = *softsp->axq_sdi_timeout_rdclr;
} else {
retval = *softsp->axq_sdi_timeout_rd;
}
mutex_exit(&softsp->axq_lock);
rw_exit(&axq_array_lock);
return (retval);
}
/*
* Routine to create a kstat for each %pic that
* the AXQ has (there are 3 of them). These read-only
* kstats export event names that the respective %pic
* supports. Pic0 and Pic1 are similar and they both have
* a 128-input mux. Pic2 counts the clock and can set up
* to count or freeze.
* Note that all AXQ instances use the same events, we only
* need to create one set of the picN kstats.
*/
static void
axq_add_picN_kstats(dev_info_t *dip)
{
struct kstat_named *axq_pic_named_data;
int event, pic;
int instance = ddi_get_instance(dip);
int pic_shift = 0;
/*
* Create the picN kstat for Pic0 and Pic1
* Both have similar set of events. Add one
* extra event for the clear_event mask.
*/
for (pic = 0; pic < AXQ_NUM_PICS; pic++) {
char pic_name[20];
int num_events, i;
(void) sprintf(pic_name, "pic%d", pic);
num_events = (pic <= 1) ? AXQ_PIC0_1_NUM_EVENTS :
AXQ_PIC2_NUM_EVENTS;
if ((axq_picN_ksp[pic] = kstat_create("axq",
instance, pic_name, "bus", KSTAT_TYPE_NAMED,
num_events + 1, NULL)) == NULL) {
cmn_err(CE_WARN, "axq %s: kstat_create failed",
pic_name);
/* remove pic kstats that was created earlier */
for (i = 0; i < pic; i++) {
kstat_delete(axq_picN_ksp[i]);
axq_picN_ksp[i] = NULL;
}
return;
}
axq_pic_named_data =
(struct kstat_named *)(axq_picN_ksp[pic]->ks_data);
pic_shift = pic * AXQ_PIC_SHIFT;
/*
* for each picN event, write a kstat record of
* name = EVENT & value.ui64 = PCR_MASK.
*/
for (event = 0; event < num_events; event++) {
/* pcr_mask */
axq_pic_named_data[event].value.ui64 =
axq_events[event].pcr_mask << pic_shift;
/* event name */
kstat_named_init(&axq_pic_named_data[event],
axq_events[event].event_name,
KSTAT_DATA_UINT64);
}
/*
* Add the clear pic event and mask as the last
* record in the kstat.
*/
axq_pic_named_data[num_events].value.ui64 =
(uint32_t)~(AXQ_PIC_CLEAR_MASK << pic_shift);
kstat_named_init(&axq_pic_named_data[num_events],
"clear_pic", KSTAT_DATA_UINT64);
kstat_install(axq_picN_ksp[pic]);
}
}
static void
axq_add_kstats(struct axq_soft_state *softsp)
{
struct kstat *axq_counters_ksp;
struct kstat_named *axq_counters_named_data;
/*
* Create the picN kstats if we are the first instance
* to attach. We use axq_attachcnt as a count of how
* many instances have attached. This is protected by
* a lock.
*/
mutex_enter(&axq_attachcnt_lock);
if (axq_attachcnt++ == 0)
axq_add_picN_kstats(softsp->dip);
mutex_exit(&axq_attachcnt_lock);
/*
* A "counter" kstat is created for each axq
* instance that provides access to the %pcr and %pic
* registers for that instance.
*
* The size of this kstat is AXQ_NUM_PICS + 1 for %pcr
*/
if ((axq_counters_ksp = kstat_create("axq",
ddi_get_instance(softsp->dip), "counters",
"bus", KSTAT_TYPE_NAMED, AXQ_NUM_PICS + 1,
KSTAT_FLAG_WRITABLE)) == NULL) {
cmn_err(CE_WARN, "axq%d counters: kstat_create"
" failed", ddi_get_instance(softsp->dip));
return;
}
axq_counters_named_data =
(struct kstat_named *)(axq_counters_ksp->ks_data);
/* initialize the named kstats */
kstat_named_init(&axq_counters_named_data[0],
"pcr", KSTAT_DATA_UINT32);
kstat_named_init(&axq_counters_named_data[1],
"pic0", KSTAT_DATA_UINT32);
kstat_named_init(&axq_counters_named_data[2],
"pic1", KSTAT_DATA_UINT32);
kstat_named_init(&axq_counters_named_data[3],
"pic2", KSTAT_DATA_UINT32);
axq_counters_ksp->ks_update = axq_counters_kstat_update;
axq_counters_ksp->ks_private = (void *)softsp;
kstat_install(axq_counters_ksp);
/* update the softstate */
softsp->axq_counters_ksp = axq_counters_ksp;
}
static int
axq_counters_kstat_update(kstat_t *ksp, int rw)
{
struct kstat_named *axq_counters_data;
struct axq_soft_state *softsp;
axq_counters_data = (struct kstat_named *)ksp->ks_data;
softsp = (struct axq_soft_state *)ksp->ks_private;
if (rw == KSTAT_WRITE) {
/*
* Write the pcr value to the softsp->axq_pcr.
* The pic register is read-only so we don't
* attempt to write to it.
*/
*softsp->axq_pcr = (uint32_t)axq_counters_data[0].value.ui64;
} else {
/*
* Read %pcr and %pic register values and write them
* into counters kstat.
*
*/
/* pcr */
axq_counters_data[0].value.ui64 = (uint64_t)
(*softsp->axq_pcr);
/* pic0 */
axq_counters_data[1].value.ui64 = (uint64_t)
(*softsp->axq_pic0);
/* pic1 */
axq_counters_data[2].value.ui64 = (uint64_t)
*softsp->axq_pic1;
/* pic2 */
axq_counters_data[3].value.ui64 = (uint64_t)
*softsp->axq_pic2;
}
return (0);
}
struct gptwo_phys_spec {
uint_t gptwo_phys_hi; /* child's address, hi word */
uint_t gptwo_phys_low; /* child's address, low word */
uint_t gptwo_size_hi; /* high word of size field */
uint_t gptwo_size_low; /* low word of size field */
};
int axq_pio_workaround_disable = 0;
int axq_pio_limit = 3;
int
starcat_axq_pio_workaround(dev_info_t *dip)
{
dev_info_t *axq_dip, *cdip, *pdip;
int portid, axq_portid;
char *name;
int size, circ;
uint_t *base_addr, *io_domain_control_addr;
int32_t io_domain_control;
ddi_device_acc_attr_t acc;
ddi_acc_handle_t handle;
struct gptwo_phys_spec *gptwo_spec;
struct regspec phys_spec;
if (axq_pio_workaround_disable)
return (0);
/*
* Get the portid for the PCI (Schizo) device).
*/
if ((portid = ddi_getprop(DDI_DEV_T_ANY, dip, 0, "portid", -1)) < 0) {
cmn_err(CE_WARN, "%s: no portid\n", ddi_get_name(dip));
return (0);
}
/*
* Calculate the portid for the Slot 1 AXQ. The portid for
* Schizo 0 EEEEE11100
* Schizo 1 EEEEE11101
* AXQ 0 EEEEE11110
* AXQ 1 EEEEE11111
* where EEEEE is the 5 bit expander number. So the portid for
* AXQ 1 can be easily calculated by oring a 3 to the portid of
* Schizo 0 or 1.
*/
axq_portid = portid | 3;
/*
* Look for AXQ nodes that have the portid we calculated.
*/
axq_dip = NULL;
pdip = ddi_root_node();
ndi_devi_enter(pdip, &circ);
for (cdip = ddi_get_child(pdip); cdip != NULL;
cdip = ddi_get_next_sibling(cdip)) {
if (ddi_getlongprop(DDI_DEV_T_ANY, cdip,
DDI_PROP_DONTPASS, "name", (caddr_t)&name, &size)
!= DDI_PROP_SUCCESS) {
continue;
}
if (strcmp(name, "address-extender-queue") != 0) {
kmem_free(name, size);
continue;
}
/*
* Found an AXQ node.
*/
kmem_free(name, size);
portid = ddi_getprop(DDI_DEV_T_ANY, cdip, 0, "portid", -1);
if (portid == axq_portid) {
/*
* We found the correct AXQ node.
*/
ndi_hold_devi(cdip);
axq_dip = cdip;
break;
}
}
ndi_devi_exit(pdip, circ);
if (axq_dip == NULL) {
cmn_err(CE_WARN, "can't find axq node with portid=0x%x\n",
axq_portid);
return (0);
}
if (ddi_getlongprop(DDI_DEV_T_ANY, axq_dip, DDI_PROP_DONTPASS, "reg",
(caddr_t)&gptwo_spec, &size) != DDI_PROP_SUCCESS) {
cmn_err(CE_WARN, "%s: no regspec\n", ddi_get_name(axq_dip));
ndi_rele_devi(axq_dip);
return (0);
}
phys_spec.regspec_bustype = gptwo_spec->gptwo_phys_hi;
phys_spec.regspec_addr = gptwo_spec->gptwo_phys_low;
phys_spec.regspec_size = gptwo_spec->gptwo_size_low;
acc.devacc_attr_version = DDI_DEVICE_ATTR_V0;
acc.devacc_attr_dataorder = DDI_STRICTORDER_ACC;
acc.devacc_attr_endian_flags = DDI_NEVERSWAP_ACC;
if (axq_map_phys(axq_dip, &phys_spec, (caddr_t *)&base_addr,
&acc, &handle)) {
cmn_err(CE_WARN, "%s: map phys failed\n",
ddi_get_name(axq_dip));
kmem_free(gptwo_spec, size);
ndi_rele_devi(axq_dip);
return (0);
}
kmem_free(gptwo_spec, size);
io_domain_control_addr = REG_ADDR(base_addr, AXQ_SLOT1_DOMCTRL);
if (ddi_peek32(axq_dip, (int32_t *)io_domain_control_addr,
(int32_t *)&io_domain_control)) {
cmn_err(CE_WARN, "%s: peek failed\n", ddi_get_name(axq_dip));
ndi_rele_devi(axq_dip);
return (0);
}
axq_unmap_phys(&handle);
ndi_rele_devi(axq_dip);
/*
* If bit 6 of the IO Domain Control Register is a one,
* then this AXQ version does not have the PIO Limit problem.
*/
if (io_domain_control & AXQ_DOMCTRL_PIOFIX)
return (0);
return (axq_pio_limit);
}
static int
axq_map_phys(dev_info_t *dip, struct regspec *phys_spec,
caddr_t *addrp, ddi_device_acc_attr_t *accattrp,
ddi_acc_handle_t *handlep)
{
ddi_map_req_t mr;
ddi_acc_hdl_t *hp;
int result;
struct regspec *ph;
*handlep = impl_acc_hdl_alloc(KM_SLEEP, NULL);
hp = impl_acc_hdl_get(*handlep);
hp->ah_vers = VERS_ACCHDL;
hp->ah_dip = dip;
hp->ah_rnumber = 0;
hp->ah_offset = 0;
hp->ah_len = 0;
hp->ah_acc = *accattrp;
ph = kmem_zalloc(sizeof (struct regspec), KM_SLEEP);
*ph = *phys_spec;
hp->ah_bus_private = ph; /* cache a copy of the reg spec */
mr.map_op = DDI_MO_MAP_LOCKED;
mr.map_type = DDI_MT_REGSPEC;
mr.map_obj.rp = phys_spec;
mr.map_prot = PROT_READ | PROT_WRITE;
mr.map_flags = DDI_MF_KERNEL_MAPPING;
mr.map_handlep = hp;
mr.map_vers = DDI_MAP_VERSION;
result = ddi_map(dip, &mr, 0, 0, addrp);
if (result != DDI_SUCCESS) {
impl_acc_hdl_free(*handlep);
*handlep = NULL;
} else {
hp->ah_addr = *addrp;
}
return (result);
}
static void
axq_unmap_phys(ddi_acc_handle_t *handlep)
{
ddi_map_req_t mr;
ddi_acc_hdl_t *hp;
struct regspec *ph;
hp = impl_acc_hdl_get(*handlep);
ASSERT(hp);
ph = hp->ah_bus_private;
mr.map_op = DDI_MO_UNMAP;
mr.map_type = DDI_MT_REGSPEC;
mr.map_obj.rp = ph;
mr.map_prot = PROT_READ | PROT_WRITE;
mr.map_flags = DDI_MF_KERNEL_MAPPING;
mr.map_handlep = hp;
mr.map_vers = DDI_MAP_VERSION;
(void) ddi_map(hp->ah_dip, &mr, hp->ah_offset,
hp->ah_len, &hp->ah_addr);
impl_acc_hdl_free(*handlep);
kmem_free(ph, sizeof (struct regspec)); /* Free the cached copy */
*handlep = NULL;
}
/* ARGSUSED */
static boolean_t
axq_panic_callb(void *arg, int code)
{
axq_iopause_disable_all();
return (B_TRUE);
}