opl.c revision 56f33205c9ed776c3c909e07d52e94610a675740
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2010 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#include <sys/cpuvar.h>
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/promif.h>
#include <sys/platform_module.h>
#include <sys/cmn_err.h>
#include <sys/errno.h>
#include <sys/machsystm.h>
#include <sys/bootconf.h>
#include <sys/nvpair.h>
#include <sys/kobj.h>
#include <sys/mem_cage.h>
#include <sys/opl.h>
#include <sys/scfd/scfostoescf.h>
#include <sys/cpu_sgnblk_defs.h>
#include <sys/utsname.h>
#include <sys/ddi.h>
#include <sys/sunndi.h>
#include <sys/lgrp.h>
#include <sys/memnode.h>
#include <sys/sysmacros.h>
#include <sys/time.h>
#include <sys/cpu.h>
#include <sys/dumphdr.h>
#include <vm/vm_dep.h>
int (*opl_get_mem_unum)(int, uint64_t, char *, int, int *);
int (*opl_get_mem_sid)(char *unum, char *buf, int buflen, int *lenp);
int (*opl_get_mem_offset)(uint64_t paddr, uint64_t *offp);
int (*opl_get_mem_addr)(char *unum, char *sid,
uint64_t offset, uint64_t *paddr);
/* Memory for fcode claims. 16k times # maximum possible IO units */
#define EFCODE_SIZE (OPL_MAX_BOARDS * OPL_MAX_IO_UNITS_PER_BOARD * 0x4000)
int efcode_size = EFCODE_SIZE;
#define OPL_MC_MEMBOARD_SHIFT 38 /* Boards on 256BG boundary */
/* Set the maximum number of boards for DR */
int opl_boards = OPL_MAX_BOARDS;
void sgn_update_all_cpus(ushort_t, uchar_t, uchar_t);
extern int tsb_lgrp_affinity;
int opl_tsb_spares = (OPL_MAX_BOARDS) * (OPL_MAX_PCICH_UNITS_PER_BOARD) *
(OPL_MAX_TSBS_PER_PCICH);
pgcnt_t opl_startup_cage_size = 0;
/*
* The length of the delay in seconds in communication with XSCF after
* which the warning message will be logged.
*/
uint_t xscf_connect_delay = 60 * 15;
static opl_model_info_t opl_models[] = {
{ "FF1", OPL_MAX_BOARDS_FF1, FF1, STD_DISPATCH_TABLE },
{ "FF2", OPL_MAX_BOARDS_FF2, FF2, STD_DISPATCH_TABLE },
{ "DC1", OPL_MAX_BOARDS_DC1, DC1, STD_DISPATCH_TABLE },
{ "DC2", OPL_MAX_BOARDS_DC2, DC2, EXT_DISPATCH_TABLE },
{ "DC3", OPL_MAX_BOARDS_DC3, DC3, EXT_DISPATCH_TABLE },
{ "IKKAKU", OPL_MAX_BOARDS_IKKAKU, IKKAKU, STD_DISPATCH_TABLE },
};
static int opl_num_models = sizeof (opl_models)/sizeof (opl_model_info_t);
/*
* opl_cur_model
*/
static opl_model_info_t *opl_cur_model = NULL;
static struct memlist *opl_memlist_per_board(struct memlist *ml);
static void post_xscf_msg(char *, int);
static void pass2xscf_thread();
/*
* Note FF/DC out-of-order instruction engine takes only a
* single cycle to execute each spin loop
* for comparison, Panther takes 6 cycles for same loop
* OPL_BOFF_SPIN = base spin loop, roughly one memory reference time
* OPL_BOFF_TM = approx nsec for OPL sleep instruction (1600 for OPL-C)
* OPL_BOFF_SLEEP = approx number of SPIN iterations to equal one sleep
* OPL_BOFF_MAX_SCALE - scaling factor for max backoff based on active cpus
* Listed values tuned for 2.15GHz to 2.64GHz systems
* Value may change for future systems
*/
#define OPL_BOFF_SPIN 7
#define OPL_BOFF_SLEEP 4
#define OPL_BOFF_TM 1600
#define OPL_BOFF_MAX_SCALE 8
#define OPL_CLOCK_TICK_THRESHOLD 128
#define OPL_CLOCK_TICK_NCPUS 64
extern int clock_tick_threshold;
extern int clock_tick_ncpus;
int
set_platform_max_ncpus(void)
{
return (OPL_MAX_CPU_PER_BOARD * OPL_MAX_BOARDS);
}
int
set_platform_tsb_spares(void)
{
return (MIN(opl_tsb_spares, MAX_UPA));
}
static void
set_model_info()
{
extern int ts_dispatch_extended;
char name[MAXSYSNAME];
int i;
/*
* Get model name from the root node.
*
* We are using the prom device tree since, at this point,
* the Solaris device tree is not yet setup.
*/
(void) prom_getprop(prom_rootnode(), "model", (caddr_t)name);
for (i = 0; i < opl_num_models; i++) {
if (strncmp(name, opl_models[i].model_name, MAXSYSNAME) == 0) {
opl_cur_model = &opl_models[i];
break;
}
}
/*
* If model not matched, it's an unknown model.
* Just return. It will default to standard dispatch tables.
*/
if (i == opl_num_models)
return;
if ((opl_cur_model->model_cmds & EXT_DISPATCH_TABLE) &&
(ts_dispatch_extended == -1)) {
/*
* Based on a platform model, select a dispatch table.
* Only DC2 and DC3 systems uses the alternate/extended
* TS dispatch table.
* IKKAKU, FF1, FF2 and DC1 systems use standard dispatch
* tables.
*/
ts_dispatch_extended = 1;
}
}
static void
set_max_mmu_ctxdoms()
{
extern uint_t max_mmu_ctxdoms;
int max_boards;
/*
* From the model, get the maximum number of boards
* supported and set the value accordingly. If the model
* could not be determined or recognized, we assume the max value.
*/
if (opl_cur_model == NULL)
max_boards = OPL_MAX_BOARDS;
else
max_boards = opl_cur_model->model_max_boards;
/*
* On OPL, cores and MMUs are one-to-one.
*/
max_mmu_ctxdoms = OPL_MAX_CORE_UNITS_PER_BOARD * max_boards;
}
#pragma weak mmu_init_large_pages
void
set_platform_defaults(void)
{
extern char *tod_module_name;
extern void cpu_sgn_update(ushort_t, uchar_t, uchar_t, int);
extern void mmu_init_large_pages(size_t);
/* Set the CPU signature function pointer */
cpu_sgn_func = cpu_sgn_update;
/* Set appropriate tod module for OPL platform */
ASSERT(tod_module_name == NULL);
tod_module_name = "todopl";
if ((mmu_page_sizes == max_mmu_page_sizes) &&
(mmu_ism_pagesize != DEFAULT_ISM_PAGESIZE)) {
if (&mmu_init_large_pages)
mmu_init_large_pages(mmu_ism_pagesize);
}
tsb_lgrp_affinity = 1;
set_max_mmu_ctxdoms();
/* set OPL threshold for compressed dumps */
dump_plat_mincpu = DUMP_PLAT_SUN4U_OPL_MINCPU;
}
/*
* Convert logical a board number to a physical one.
*/
#define LSBPROP "board#"
#define PSBPROP "physical-board#"
int
opl_get_physical_board(int id)
{
dev_info_t *root_dip, *dip = NULL;
char *dname = NULL;
int circ;
pnode_t pnode;
char pname[MAXSYSNAME] = {0};
int lsb_id; /* Logical System Board ID */
int psb_id; /* Physical System Board ID */
/*
* This function is called on early stage of bootup when the
* kernel device tree is not initialized yet, and also
* later on when the device tree is up. We want to try
* the fast track first.
*/
root_dip = ddi_root_node();
if (root_dip) {
/* Get from devinfo node */
ndi_devi_enter(root_dip, &circ);
for (dip = ddi_get_child(root_dip); dip;
dip = ddi_get_next_sibling(dip)) {
dname = ddi_node_name(dip);
if (strncmp(dname, "pseudo-mc", 9) != 0)
continue;
if ((lsb_id = (int)ddi_getprop(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, LSBPROP, -1)) == -1)
continue;
if (id == lsb_id) {
if ((psb_id = (int)ddi_getprop(DDI_DEV_T_ANY,
dip, DDI_PROP_DONTPASS, PSBPROP, -1))
== -1) {
ndi_devi_exit(root_dip, circ);
return (-1);
} else {
ndi_devi_exit(root_dip, circ);
return (psb_id);
}
}
}
ndi_devi_exit(root_dip, circ);
}
/*
* We do not have the kernel device tree, or we did not
* find the node for some reason (let's say the kernel
* device tree was modified), let's try the OBP tree.
*/
pnode = prom_rootnode();
for (pnode = prom_childnode(pnode); pnode;
pnode = prom_nextnode(pnode)) {
if ((prom_getprop(pnode, "name", (caddr_t)pname) == -1) ||
(strncmp(pname, "pseudo-mc", 9) != 0))
continue;
if (prom_getprop(pnode, LSBPROP, (caddr_t)&lsb_id) == -1)
continue;
if (id == lsb_id) {
if (prom_getprop(pnode, PSBPROP,
(caddr_t)&psb_id) == -1) {
return (-1);
} else {
return (psb_id);
}
}
}
return (-1);
}
/*
* For OPL it's possible that memory from two or more successive boards
* will be contiguous across the boards, and therefore represented as a
* single chunk.
* This function splits such chunks down the board boundaries.
*/
static struct memlist *
opl_memlist_per_board(struct memlist *ml)
{
uint64_t ssize, low, high, boundary;
struct memlist *head, *tail, *new;
ssize = (1ull << OPL_MC_MEMBOARD_SHIFT);
head = tail = NULL;
for (; ml; ml = ml->ml_next) {
low = (uint64_t)ml->ml_address;
high = low+(uint64_t)(ml->ml_size);
while (low < high) {
boundary = roundup(low+1, ssize);
boundary = MIN(high, boundary);
new = kmem_zalloc(sizeof (struct memlist), KM_SLEEP);
new->ml_address = low;
new->ml_size = boundary - low;
if (head == NULL)
head = new;
if (tail) {
tail->ml_next = new;
new->ml_prev = tail;
}
tail = new;
low = boundary;
}
}
return (head);
}
void
set_platform_cage_params(void)
{
extern pgcnt_t total_pages;
extern struct memlist *phys_avail;
struct memlist *ml, *tml;
if (kernel_cage_enable) {
pgcnt_t preferred_cage_size;
preferred_cage_size = MAX(opl_startup_cage_size,
total_pages / 256);
ml = opl_memlist_per_board(phys_avail);
/*
* Note: we are assuming that post has load the
* whole show in to the high end of memory. Having
* taken this leap, we copy the whole of phys_avail
* the glist and arrange for the cage to grow
* downward (descending pfns).
*/
kcage_range_init(ml, KCAGE_DOWN, preferred_cage_size);
/* free the memlist */
do {
tml = ml->ml_next;
kmem_free(ml, sizeof (struct memlist));
ml = tml;
} while (ml != NULL);
}
if (kcage_on)
cmn_err(CE_NOTE, "!DR Kernel Cage is ENABLED");
else
cmn_err(CE_NOTE, "!DR Kernel Cage is DISABLED");
}
/*ARGSUSED*/
int
plat_cpu_poweron(struct cpu *cp)
{
int (*opl_cpu_poweron)(struct cpu *) = NULL;
opl_cpu_poweron =
(int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweron", 0);
if (opl_cpu_poweron == NULL)
return (ENOTSUP);
else
return ((opl_cpu_poweron)(cp));
}
/*ARGSUSED*/
int
plat_cpu_poweroff(struct cpu *cp)
{
int (*opl_cpu_poweroff)(struct cpu *) = NULL;
opl_cpu_poweroff =
(int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweroff", 0);
if (opl_cpu_poweroff == NULL)
return (ENOTSUP);
else
return ((opl_cpu_poweroff)(cp));
}
int
plat_max_boards(void)
{
/*
* If the model cannot be determined, default to the max value.
* Otherwise, Ikkaku model only supports 1 system board.
*/
if ((opl_cur_model != NULL) && (opl_cur_model->model_type == IKKAKU))
return (OPL_MAX_BOARDS_IKKAKU);
else
return (OPL_MAX_BOARDS);
}
int
plat_max_cpu_units_per_board(void)
{
return (OPL_MAX_CPU_PER_BOARD);
}
int
plat_max_mem_units_per_board(void)
{
return (OPL_MAX_MEM_UNITS_PER_BOARD);
}
int
plat_max_io_units_per_board(void)
{
return (OPL_MAX_IO_UNITS_PER_BOARD);
}
int
plat_max_cmp_units_per_board(void)
{
return (OPL_MAX_CMP_UNITS_PER_BOARD);
}
int
plat_max_core_units_per_board(void)
{
return (OPL_MAX_CORE_UNITS_PER_BOARD);
}
int
plat_pfn_to_mem_node(pfn_t pfn)
{
return (pfn >> mem_node_pfn_shift);
}
/* ARGSUSED */
void
plat_build_mem_nodes(prom_memlist_t *list, size_t nelems)
{
size_t elem;
pfn_t basepfn;
pgcnt_t npgs;
uint64_t boundary, ssize;
uint64_t low, high;
/*
* OPL mem slices are always aligned on a 256GB boundary.
*/
mem_node_pfn_shift = OPL_MC_MEMBOARD_SHIFT - MMU_PAGESHIFT;
mem_node_physalign = 0;
/*
* Boot install lists are arranged <addr, len>, <addr, len>, ...
*/
ssize = (1ull << OPL_MC_MEMBOARD_SHIFT);
for (elem = 0; elem < nelems; list++, elem++) {
low = list->addr;
high = low + list->size;
while (low < high) {
boundary = roundup(low+1, ssize);
boundary = MIN(high, boundary);
basepfn = btop(low);
npgs = btop(boundary - low);
mem_node_add_slice(basepfn, basepfn + npgs - 1);
low = boundary;
}
}
}
/*
* Find the CPU associated with a slice at boot-time.
*/
void
plat_fill_mc(pnode_t nodeid)
{
int board;
int memnode;
struct {
uint64_t addr;
uint64_t size;
} mem_range;
if (prom_getprop(nodeid, "board#", (caddr_t)&board) < 0) {
panic("Can not find board# property in mc node %x", nodeid);
}
if (prom_getprop(nodeid, "sb-mem-ranges", (caddr_t)&mem_range) < 0) {
panic("Can not find sb-mem-ranges property in mc node %x",
nodeid);
}
memnode = mem_range.addr >> OPL_MC_MEMBOARD_SHIFT;
plat_assign_lgrphand_to_mem_node(board, memnode);
}
/*
* Return the platform handle for the lgroup containing the given CPU
*
* For OPL, lgroup platform handle == board #.
*/
extern int mpo_disabled;
extern lgrp_handle_t lgrp_default_handle;
lgrp_handle_t
plat_lgrp_cpu_to_hand(processorid_t id)
{
lgrp_handle_t plathand;
/*
* Return the real platform handle for the CPU until
* such time as we know that MPO should be disabled.
* At that point, we set the "mpo_disabled" flag to true,
* and from that point on, return the default handle.
*
* By the time we know that MPO should be disabled, the
* first CPU will have already been added to a leaf
* lgroup, but that's ok. The common lgroup code will
* double check that the boot CPU is in the correct place,
* and in the case where mpo should be disabled, will move
* it to the root if necessary.
*/
if (mpo_disabled) {
/* If MPO is disabled, return the default (UMA) handle */
plathand = lgrp_default_handle;
} else
plathand = (lgrp_handle_t)LSB_ID(id);
return (plathand);
}
/*
* Platform specific lgroup initialization
*/
void
plat_lgrp_init(void)
{
extern uint32_t lgrp_expand_proc_thresh;
extern uint32_t lgrp_expand_proc_diff;
const uint_t m = LGRP_LOADAVG_THREAD_MAX;
/*
* Set tuneables for the OPL architecture
*
* lgrp_expand_proc_thresh is the threshold load on the set of
* lgroups a process is currently using on before considering
* adding another lgroup to the set. For Oly-C and Jupiter
* systems, there are four sockets per lgroup. Setting
* lgrp_expand_proc_thresh to add lgroups when the load reaches
* four threads will spread the load when it exceeds one thread
* per socket, optimizing memory bandwidth and L2 cache space.
*
* lgrp_expand_proc_diff determines how much less another lgroup
* must be loaded before shifting the start location of a thread
* to it.
*
* lgrp_loadavg_tolerance is the threshold where two lgroups are
* considered to have different loads. It is set to be less than
* 1% so that even a small residual load will be considered different
* from no residual load.
*
* We note loadavg values are not precise.
* Every 1/10 of a second loadavg values are reduced by 5%.
* This adjustment can come in the middle of the lgroup selection
* process, and for larger parallel apps with many threads can
* frequently occur between the start of the second thread
* placement and the finish of the last thread placement.
* We also must be careful to not use too small of a threshold
* since the cumulative decay for 1 second idle time is 40%.
* That is, the residual load from completed threads will still
* be 60% one second after the proc goes idle or 8% after 5 seconds.
*
* To allow for lag time in loadavg calculations
* remote thresh = 3.75 * LGRP_LOADAVG_THREAD_MAX
* local thresh = 0.75 * LGRP_LOADAVG_THREAD_MAX
* tolerance = 0.0078 * LGRP_LOADAVG_THREAD_MAX
*
* The load placement algorithms consider LGRP_LOADAVG_THREAD_MAX
* as the equivalent of a load of 1. To make the code more compact,
* we set m = LGRP_LOADAVG_THREAD_MAX.
*/
lgrp_expand_proc_thresh = (m * 3) + (m >> 1) + (m >> 2);
lgrp_expand_proc_diff = (m >> 1) + (m >> 2);
lgrp_loadavg_tolerance = (m >> 7);
}
/*
* Platform notification of lgroup (re)configuration changes
*/
/*ARGSUSED*/
void
plat_lgrp_config(lgrp_config_flag_t evt, uintptr_t arg)
{
update_membounds_t *umb;
lgrp_config_mem_rename_t lmr;
int sbd, tbd;
lgrp_handle_t hand, shand, thand;
int mnode, snode, tnode;
pfn_t start, end;
if (mpo_disabled)
return;
switch (evt) {
case LGRP_CONFIG_MEM_ADD:
/*
* Establish the lgroup handle to memnode translation.
*/
umb = (update_membounds_t *)arg;
hand = umb->u_board;
mnode = plat_pfn_to_mem_node(umb->u_base >> MMU_PAGESHIFT);
plat_assign_lgrphand_to_mem_node(hand, mnode);
break;
case LGRP_CONFIG_MEM_DEL:
/*
* Special handling for possible memory holes.
*/
umb = (update_membounds_t *)arg;
hand = umb->u_board;
if ((mnode = plat_lgrphand_to_mem_node(hand)) != -1) {
if (mem_node_config[mnode].exists) {
start = mem_node_config[mnode].physbase;
end = mem_node_config[mnode].physmax;
mem_node_del_slice(start, end);
}
}
break;
case LGRP_CONFIG_MEM_RENAME:
/*
* During a DR copy-rename operation, all of the memory
* on one board is moved to another board -- but the
* addresses/pfns and memnodes don't change. This means
* the memory has changed locations without changing identity.
*
* Source is where we are copying from and target is where we
* are copying to. After source memnode is copied to target
* memnode, the physical addresses of the target memnode are
* renamed to match what the source memnode had. Then target
* memnode can be removed and source memnode can take its
* place.
*
* To do this, swap the lgroup handle to memnode mappings for
* the boards, so target lgroup will have source memnode and
* source lgroup will have empty target memnode which is where
* its memory will go (if any is added to it later).
*
* Then source memnode needs to be removed from its lgroup
* and added to the target lgroup where the memory was living
* but under a different name/memnode. The memory was in the
* target memnode and now lives in the source memnode with
* different physical addresses even though it is the same
* memory.
*/
sbd = arg & 0xffff;
tbd = (arg & 0xffff0000) >> 16;
shand = sbd;
thand = tbd;
snode = plat_lgrphand_to_mem_node(shand);
tnode = plat_lgrphand_to_mem_node(thand);
/*
* Special handling for possible memory holes.
*/
if (tnode != -1 && mem_node_config[tnode].exists) {
start = mem_node_config[tnode].physbase;
end = mem_node_config[tnode].physmax;
mem_node_del_slice(start, end);
}
plat_assign_lgrphand_to_mem_node(thand, snode);
plat_assign_lgrphand_to_mem_node(shand, tnode);
lmr.lmem_rename_from = shand;
lmr.lmem_rename_to = thand;
/*
* Remove source memnode of copy rename from its lgroup
* and add it to its new target lgroup
*/
lgrp_config(LGRP_CONFIG_MEM_RENAME, (uintptr_t)snode,
(uintptr_t)&lmr);
break;
default:
break;
}
}
/*
* Return latency between "from" and "to" lgroups
*
* This latency number can only be used for relative comparison
* between lgroups on the running system, cannot be used across platforms,
* and may not reflect the actual latency. It is platform and implementation
* specific, so platform gets to decide its value. It would be nice if the
* number was at least proportional to make comparisons more meaningful though.
* NOTE: The numbers below are supposed to be load latencies for uncached
* memory divided by 10.
*
*/
int
plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
{
/*
* Return min remote latency when there are more than two lgroups
* (root and child) and getting latency between two different lgroups
* or root is involved
*/
if (lgrp_optimizations() && (from != to ||
from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE))
return (42);
else
return (35);
}
/*
* Return platform handle for root lgroup
*/
lgrp_handle_t
plat_lgrp_root_hand(void)
{
if (mpo_disabled)
return (lgrp_default_handle);
return (LGRP_DEFAULT_HANDLE);
}
/*ARGSUSED*/
void
plat_freelist_process(int mnode)
{
}
void
load_platform_drivers(void)
{
(void) i_ddi_attach_pseudo_node("dr");
}
/*
* No platform drivers on this platform
*/
char *platform_module_list[] = {
(char *)0
};
/*ARGSUSED*/
void
plat_tod_fault(enum tod_fault_type tod_bad)
{
}
/*ARGSUSED*/
void
cpu_sgn_update(ushort_t sgn, uchar_t state, uchar_t sub_state, int cpuid)
{
static void (*scf_panic_callback)(int);
static void (*scf_shutdown_callback)(int);
/*
* This is for notifing system panic/shutdown to SCF.
* In case of shutdown and panic, SCF call back
* function should be called.
* <SCF call back functions>
* scf_panic_callb() : panicsys()->panic_quiesce_hw()
* scf_shutdown_callb(): halt() or power_down() or reboot_machine()
* cpuid should be -1 and state should be SIGST_EXIT.
*/
if (state == SIGST_EXIT && cpuid == -1) {
/*
* find the symbol for the SCF panic callback routine in driver
*/
if (scf_panic_callback == NULL)
scf_panic_callback = (void (*)(int))
modgetsymvalue("scf_panic_callb", 0);
if (scf_shutdown_callback == NULL)
scf_shutdown_callback = (void (*)(int))
modgetsymvalue("scf_shutdown_callb", 0);
switch (sub_state) {
case SIGSUBST_PANIC:
if (scf_panic_callback == NULL) {
cmn_err(CE_NOTE, "!cpu_sgn_update: "
"scf_panic_callb not found\n");
return;
}
scf_panic_callback(SIGSUBST_PANIC);
break;
case SIGSUBST_HALT:
if (scf_shutdown_callback == NULL) {
cmn_err(CE_NOTE, "!cpu_sgn_update: "
"scf_shutdown_callb not found\n");
return;
}
scf_shutdown_callback(SIGSUBST_HALT);
break;
case SIGSUBST_ENVIRON:
if (scf_shutdown_callback == NULL) {
cmn_err(CE_NOTE, "!cpu_sgn_update: "
"scf_shutdown_callb not found\n");
return;
}
scf_shutdown_callback(SIGSUBST_ENVIRON);
break;
case SIGSUBST_REBOOT:
if (scf_shutdown_callback == NULL) {
cmn_err(CE_NOTE, "!cpu_sgn_update: "
"scf_shutdown_callb not found\n");
return;
}
scf_shutdown_callback(SIGSUBST_REBOOT);
break;
}
}
}
/*ARGSUSED*/
int
plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id,
int flt_in_memory, ushort_t flt_status,
char *buf, int buflen, int *lenp)
{
/*
* check if it's a Memory error.
*/
if (flt_in_memory) {
if (opl_get_mem_unum != NULL) {
return (opl_get_mem_unum(synd_code, flt_addr, buf,
buflen, lenp));
} else {
return (ENOTSUP);
}
} else {
return (ENOTSUP);
}
}
/*ARGSUSED*/
int
plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
{
int ret = 0;
int sb;
int plen;
sb = opl_get_physical_board(LSB_ID(cpuid));
if (sb == -1) {
return (ENXIO);
}
/*
* opl_cur_model is assigned here
*/
if (opl_cur_model == NULL) {
set_model_info();
/*
* if not matched, return
*/
if (opl_cur_model == NULL)
return (ENODEV);
}
ASSERT((opl_cur_model - opl_models) == (opl_cur_model->model_type));
switch (opl_cur_model->model_type) {
case FF1:
plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_A",
CHIP_ID(cpuid) / 2);
break;
case FF2:
plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_B",
(CHIP_ID(cpuid) / 2) + (sb * 2));
break;
case DC1:
case DC2:
case DC3:
plen = snprintf(buf, buflen, "/%s%02d/CPUM%d", "CMU", sb,
CHIP_ID(cpuid));
break;
case IKKAKU:
plen = snprintf(buf, buflen, "/%s", "MBU_A");
break;
default:
/* This should never happen */
return (ENODEV);
}
if (plen >= buflen) {
ret = ENOSPC;
} else {
if (lenp)
*lenp = strlen(buf);
}
return (ret);
}
void
plat_nodename_set(void)
{
post_xscf_msg((char *)&utsname, sizeof (struct utsname));
}
caddr_t efcode_vaddr = NULL;
/*
* Preallocate enough memory for fcode claims.
*/
caddr_t
efcode_alloc(caddr_t alloc_base)
{
caddr_t efcode_alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
MMU_PAGESIZE);
caddr_t vaddr;
/*
* allocate the physical memory for the Oberon fcode.
*/
if ((vaddr = (caddr_t)BOP_ALLOC(bootops, efcode_alloc_base,
efcode_size, MMU_PAGESIZE)) == NULL)
cmn_err(CE_PANIC, "Cannot allocate Efcode Memory");
efcode_vaddr = vaddr;
return (efcode_alloc_base + efcode_size);
}
caddr_t
plat_startup_memlist(caddr_t alloc_base)
{
caddr_t tmp_alloc_base;
tmp_alloc_base = efcode_alloc(alloc_base);
tmp_alloc_base =
(caddr_t)roundup((uintptr_t)tmp_alloc_base, ecache_alignsize);
return (tmp_alloc_base);
}
/* need to forward declare these */
static void plat_lock_delay(uint_t);
void
startup_platform(void)
{
if (clock_tick_threshold == 0)
clock_tick_threshold = OPL_CLOCK_TICK_THRESHOLD;
if (clock_tick_ncpus == 0)
clock_tick_ncpus = OPL_CLOCK_TICK_NCPUS;
mutex_lock_delay = plat_lock_delay;
mutex_cap_factor = OPL_BOFF_MAX_SCALE;
}
static uint_t
get_mmu_id(processorid_t cpuid)
{
int pb = opl_get_physical_board(LSB_ID(cpuid));
if (pb == -1) {
cmn_err(CE_PANIC,
"opl_get_physical_board failed (cpu %d LSB %u)",
cpuid, LSB_ID(cpuid));
}
return (pb * OPL_MAX_COREID_PER_BOARD) + (CHIP_ID(cpuid) *
OPL_MAX_COREID_PER_CMP) + CORE_ID(cpuid);
}
void
plat_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *info)
{
int impl;
impl = cpunodes[cpuid].implementation;
if (IS_OLYMPUS_C(impl) || IS_JUPITER(impl)) {
info->mmu_idx = get_mmu_id(cpuid);
info->mmu_nctxs = 8192;
} else {
cmn_err(CE_PANIC, "Unknown processor %d", impl);
}
}
int
plat_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
{
if (opl_get_mem_sid == NULL) {
return (ENOTSUP);
}
return (opl_get_mem_sid(unum, buf, buflen, lenp));
}
int
plat_get_mem_offset(uint64_t paddr, uint64_t *offp)
{
if (opl_get_mem_offset == NULL) {
return (ENOTSUP);
}
return (opl_get_mem_offset(paddr, offp));
}
int
plat_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp)
{
if (opl_get_mem_addr == NULL) {
return (ENOTSUP);
}
return (opl_get_mem_addr(unum, sid, offset, addrp));
}
void
plat_lock_delay(uint_t backoff)
{
int i;
uint_t cnt, remcnt;
int ctr;
hrtime_t delay_start, rem_delay;
/*
* Platform specific lock delay code for OPL
*
* Using staged linear increases in the delay.
* The sleep instruction is the preferred method of delay,
* but is too large of granularity for the initial backoff.
*/
if (backoff < 100) {
/*
* If desired backoff is long enough,
* use sleep for most of it
*/
for (cnt = backoff;
cnt >= OPL_BOFF_SLEEP;
cnt -= OPL_BOFF_SLEEP) {
cpu_smt_pause();
}
/*
* spin for small remainder of backoff
*/
for (ctr = cnt * OPL_BOFF_SPIN; ctr; ctr--) {
mutex_delay_default();
}
} else {
/* backoff is large. Fill it by sleeping */
delay_start = gethrtime_waitfree();
cnt = backoff / OPL_BOFF_SLEEP;
/*
* use sleep instructions for delay
*/
for (i = 0; i < cnt; i++) {
cpu_smt_pause();
}
/*
* Note: if the other strand executes a sleep instruction,
* then the sleep ends immediately with a minimum time of
* 42 clocks. We check gethrtime to insure we have
* waited long enough. And we include both a short
* spin loop and a sleep for repeated delay times.
*/
rem_delay = gethrtime_waitfree() - delay_start;
while (rem_delay < cnt * OPL_BOFF_TM) {
remcnt = cnt - (rem_delay / OPL_BOFF_TM);
for (i = 0; i < remcnt; i++) {
cpu_smt_pause();
for (ctr = OPL_BOFF_SPIN; ctr; ctr--) {
mutex_delay_default();
}
}
rem_delay = gethrtime_waitfree() - delay_start;
}
}
}
/*
* The following code implements asynchronous call to XSCF to setup the
* domain node name.
*/
#define FREE_MSG(m) kmem_free((m), NM_LEN((m)->len))
/*
* The following three macros define the all operations on the request
* list we are using here, and hide the details of the list
* implementation from the code.
*/
#define PUSH(m) \
{ \
(m)->next = ctl_msg.head; \
(m)->prev = NULL; \
if ((m)->next != NULL) \
(m)->next->prev = (m); \
ctl_msg.head = (m); \
}
#define REMOVE(m) \
{ \
if ((m)->prev != NULL) \
(m)->prev->next = (m)->next; \
else \
ctl_msg.head = (m)->next; \
if ((m)->next != NULL) \
(m)->next->prev = (m)->prev; \
}
#define FREE_THE_TAIL(head) \
{ \
nm_msg_t *n_msg, *m; \
m = (head)->next; \
(head)->next = NULL; \
while (m != NULL) { \
n_msg = m->next; \
FREE_MSG(m); \
m = n_msg; \
} \
}
#define SCF_PUTINFO(f, s, p) \
f(KEY_ESCF, 0x01, 0, s, p)
#define PASS2XSCF(m, r) ((r = SCF_PUTINFO(ctl_msg.scf_service_function, \
(m)->len, (m)->data)) == 0)
/*
* The value of the following macro loosely depends on the
* value of the "device busy" timeout used in the SCF driver.
* (See pass2xscf_thread()).
*/
#define SCF_DEVBUSY_DELAY 10
/*
* The default number of attempts to contact the scf driver
* if we cannot fetch any information about the timeout value
* it uses.
*/
#define REPEATS 4
typedef struct nm_msg {
struct nm_msg *next;
struct nm_msg *prev;
int len;
char data[1];
} nm_msg_t;
#define NM_LEN(len) (sizeof (nm_msg_t) + (len) - 1)
static struct ctlmsg {
nm_msg_t *head;
nm_msg_t *now_serving;
kmutex_t nm_lock;
kthread_t *nmt;
int cnt;
int (*scf_service_function)(uint32_t, uint8_t,
uint32_t, uint32_t, void *);
} ctl_msg;
static void
post_xscf_msg(char *dp, int len)
{
nm_msg_t *msg;
msg = (nm_msg_t *)kmem_zalloc(NM_LEN(len), KM_SLEEP);
bcopy(dp, msg->data, len);
msg->len = len;
mutex_enter(&ctl_msg.nm_lock);
if (ctl_msg.nmt == NULL) {
ctl_msg.nmt = thread_create(NULL, 0, pass2xscf_thread,
NULL, 0, &p0, TS_RUN, minclsyspri);
}
PUSH(msg);
ctl_msg.cnt++;
mutex_exit(&ctl_msg.nm_lock);
}
static void
pass2xscf_thread()
{
nm_msg_t *msg;
int ret;
uint_t i, msg_sent, xscf_driver_delay;
static uint_t repeat_cnt;
uint_t *scf_wait_cnt;
mutex_enter(&ctl_msg.nm_lock);
/*
* Find the address of the SCF put routine if it's not done yet.
*/
if (ctl_msg.scf_service_function == NULL) {
if ((ctl_msg.scf_service_function =
(int (*)(uint32_t, uint8_t, uint32_t, uint32_t, void *))
modgetsymvalue("scf_service_putinfo", 0)) == NULL) {
cmn_err(CE_NOTE, "pass2xscf_thread: "
"scf_service_putinfo not found\n");
ctl_msg.nmt = NULL;
mutex_exit(&ctl_msg.nm_lock);
return;
}
}
/*
* Calculate the number of attempts to connect XSCF based on the
* scf driver delay (which is
* SCF_DEVBUSY_DELAY*scf_online_wait_rcnt seconds) and the value
* of xscf_connect_delay (the total number of seconds to wait
* till xscf get ready.)
*/
if (repeat_cnt == 0) {
if ((scf_wait_cnt =
(uint_t *)
modgetsymvalue("scf_online_wait_rcnt", 0)) == NULL) {
repeat_cnt = REPEATS;
} else {
xscf_driver_delay = *scf_wait_cnt *
SCF_DEVBUSY_DELAY;
repeat_cnt = (xscf_connect_delay/xscf_driver_delay) + 1;
}
}
while (ctl_msg.cnt != 0) {
/*
* Take the very last request from the queue,
*/
ctl_msg.now_serving = ctl_msg.head;
ASSERT(ctl_msg.now_serving != NULL);
/*
* and discard all the others if any.
*/
FREE_THE_TAIL(ctl_msg.now_serving);
ctl_msg.cnt = 1;
mutex_exit(&ctl_msg.nm_lock);
/*
* Pass the name to XSCF. Note please, we do not hold the
* mutex while we are doing this.
*/
msg_sent = 0;
for (i = 0; i < repeat_cnt; i++) {
if (PASS2XSCF(ctl_msg.now_serving, ret)) {
msg_sent = 1;
break;
} else {
if (ret != EBUSY) {
cmn_err(CE_NOTE, "pass2xscf_thread:"
" unexpected return code"
" from scf_service_putinfo():"
" %d\n", ret);
}
}
}
if (msg_sent) {
/*
* Remove the request from the list
*/
mutex_enter(&ctl_msg.nm_lock);
msg = ctl_msg.now_serving;
ctl_msg.now_serving = NULL;
REMOVE(msg);
ctl_msg.cnt--;
mutex_exit(&ctl_msg.nm_lock);
FREE_MSG(msg);
} else {
/*
* If while we have tried to communicate with
* XSCF there were any other requests we are
* going to drop this one and take the latest
* one. Otherwise we will try to pass this one
* again.
*/
cmn_err(CE_NOTE,
"pass2xscf_thread: "
"scf_service_putinfo "
"not responding\n");
}
mutex_enter(&ctl_msg.nm_lock);
}
/*
* The request queue is empty, exit.
*/
ctl_msg.nmt = NULL;
mutex_exit(&ctl_msg.nm_lock);
}