opl.c revision 1e2e7a75ddb1eedcefa449ce98fd5862749b72ee
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
#include <sys/cpuvar.h>
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/promif.h>
#include <sys/platform_module.h>
#include <sys/cmn_err.h>
#include <sys/errno.h>
#include <sys/machsystm.h>
#include <sys/bootconf.h>
#include <sys/nvpair.h>
#include <sys/kobj.h>
#include <sys/mem_cage.h>
#include <sys/opl.h>
#include <sys/scfd/scfostoescf.h>
#include <sys/cpu_sgnblk_defs.h>
#include <sys/utsname.h>
#include <sys/ddi.h>
#include <sys/sunndi.h>
#include <sys/lgrp.h>
#include <sys/memnode.h>
#include <sys/sysmacros.h>
#include <vm/vm_dep.h>
int (*opl_get_mem_unum)(int, uint64_t, char *, int, int *);
int (*opl_get_mem_sid)(char *unum, char *buf, int buflen, int *lenp);
int (*opl_get_mem_offset)(uint64_t paddr, uint64_t *offp);
int (*opl_get_mem_addr)(char *unum, char *sid,
uint64_t offset, uint64_t *paddr);
/* Memory for fcode claims. 16k times # maximum possible IO units */
#define EFCODE_SIZE (OPL_MAX_BOARDS * OPL_MAX_IO_UNITS_PER_BOARD * 0x4000)
int efcode_size = EFCODE_SIZE;
#define OPL_MC_MEMBOARD_SHIFT 38 /* Boards on 256BG boundary */
/* Set the maximum number of boards for DR */
int opl_boards = OPL_MAX_BOARDS;
void sgn_update_all_cpus(ushort_t, uchar_t, uchar_t);
extern int tsb_lgrp_affinity;
int opl_tsb_spares = (OPL_MAX_BOARDS) * (OPL_MAX_PCICH_UNITS_PER_BOARD) *
(OPL_MAX_TSBS_PER_PCICH);
pgcnt_t opl_startup_cage_size = 0;
static opl_model_info_t opl_models[] = {
{ "FF1", OPL_MAX_BOARDS_FF1 },
{ "FF2", OPL_MAX_BOARDS_FF2 },
{ "DC1", OPL_MAX_BOARDS_DC1 },
{ "DC2", OPL_MAX_BOARDS_DC2 },
{ "DC3", OPL_MAX_BOARDS_DC3 },
};
static int opl_num_models = sizeof (opl_models)/sizeof (opl_model_info_t);
static opl_model_info_t *opl_cur_model = NULL;
static struct memlist *opl_memlist_per_board(struct memlist *ml);
static enum {
MODEL_FF1 = 0,
MODEL_FF2 = 1,
MODEL_DC = 2
} plat_model = -1;
int
set_platform_max_ncpus(void)
{
return (OPL_MAX_CPU_PER_BOARD * OPL_MAX_BOARDS);
}
int
set_platform_tsb_spares(void)
{
return (MIN(opl_tsb_spares, MAX_UPA));
}
static void
set_model_info()
{
char name[MAXSYSNAME];
int i;
/*
* Get model name from the root node.
*
* We are using the prom device tree since, at this point,
* the Solaris device tree is not yet setup.
*/
(void) prom_getprop(prom_rootnode(), "model", (caddr_t)name);
for (i = 0; i < opl_num_models; i++) {
if (strncmp(name, opl_models[i].model_name, MAXSYSNAME) == 0) {
opl_cur_model = &opl_models[i];
break;
}
}
if (i == opl_num_models)
cmn_err(CE_WARN, "No valid OPL model is found!"
"Set max_mmu_ctxdoms to the default.");
}
static void
set_max_mmu_ctxdoms()
{
extern uint_t max_mmu_ctxdoms;
int max_boards;
/*
* From the model, get the maximum number of boards
* supported and set the value accordingly. If the model
* could not be determined or recognized, we assume the max value.
*/
if (opl_cur_model == NULL)
max_boards = OPL_MAX_BOARDS;
else
max_boards = opl_cur_model->model_max_boards;
/*
* On OPL, cores and MMUs are one-to-one.
*/
max_mmu_ctxdoms = OPL_MAX_CORE_UNITS_PER_BOARD * max_boards;
}
#pragma weak mmu_init_large_pages
void
set_platform_defaults(void)
{
extern char *tod_module_name;
extern void cpu_sgn_update(ushort_t, uchar_t, uchar_t, int);
extern int ts_dispatch_extended;
extern void mmu_init_large_pages(size_t);
/* Set the CPU signature function pointer */
cpu_sgn_func = cpu_sgn_update;
/* Set appropriate tod module for OPL platform */
ASSERT(tod_module_name == NULL);
tod_module_name = "todopl";
/*
* Use the alternate TS dispatch table, which is better tuned
* for large servers.
*/
if (ts_dispatch_extended == -1)
ts_dispatch_extended = 1;
if ((mmu_page_sizes == max_mmu_page_sizes) &&
(mmu_ism_pagesize != MMU_PAGESIZE32M)) {
if (&mmu_init_large_pages)
mmu_init_large_pages(mmu_ism_pagesize);
}
tsb_lgrp_affinity = 1;
set_model_info();
set_max_mmu_ctxdoms();
}
/*
* Convert logical a board number to a physical one.
*/
#define LSBPROP "board#"
#define PSBPROP "physical-board#"
int
opl_get_physical_board(int id)
{
dev_info_t *root_dip, *dip = NULL;
char *dname = NULL;
int circ;
pnode_t pnode;
char pname[MAXSYSNAME] = {0};
int lsb_id; /* Logical System Board ID */
int psb_id; /* Physical System Board ID */
/*
* This function is called on early stage of bootup when the
* kernel device tree is not initialized yet, and also
* later on when the device tree is up. We want to try
* the fast track first.
*/
root_dip = ddi_root_node();
if (root_dip) {
/* Get from devinfo node */
ndi_devi_enter(root_dip, &circ);
for (dip = ddi_get_child(root_dip); dip;
dip = ddi_get_next_sibling(dip)) {
dname = ddi_node_name(dip);
if (strncmp(dname, "pseudo-mc", 9) != 0)
continue;
if ((lsb_id = (int)ddi_getprop(DDI_DEV_T_ANY, dip,
DDI_PROP_DONTPASS, LSBPROP, -1)) == -1)
continue;
if (id == lsb_id) {
if ((psb_id = (int)ddi_getprop(DDI_DEV_T_ANY,
dip, DDI_PROP_DONTPASS, PSBPROP, -1))
== -1) {
ndi_devi_exit(root_dip, circ);
return (-1);
} else {
ndi_devi_exit(root_dip, circ);
return (psb_id);
}
}
}
ndi_devi_exit(root_dip, circ);
}
/*
* We do not have the kernel device tree, or we did not
* find the node for some reason (let's say the kernel
* device tree was modified), let's try the OBP tree.
*/
pnode = prom_rootnode();
for (pnode = prom_childnode(pnode); pnode;
pnode = prom_nextnode(pnode)) {
if ((prom_getprop(pnode, "name", (caddr_t)pname) == -1) ||
(strncmp(pname, "pseudo-mc", 9) != 0))
continue;
if (prom_getprop(pnode, LSBPROP, (caddr_t)&lsb_id) == -1)
continue;
if (id == lsb_id) {
if (prom_getprop(pnode, PSBPROP,
(caddr_t)&psb_id) == -1) {
return (-1);
} else {
return (psb_id);
}
}
}
return (-1);
}
/*
* For OPL it's possible that memory from two or more successive boards
* will be contiguous across the boards, and therefore represented as a
* single chunk.
* This function splits such chunks down the board boundaries.
*/
static struct memlist *
opl_memlist_per_board(struct memlist *ml)
{
uint64_t ssize, low, high, boundary;
struct memlist *head, *tail, *new;
ssize = (1ull << OPL_MC_MEMBOARD_SHIFT);
head = tail = NULL;
for (; ml; ml = ml->next) {
low = (uint64_t)ml->address;
high = low+(uint64_t)(ml->size);
while (low < high) {
boundary = roundup(low+1, ssize);
boundary = MIN(high, boundary);
new = kmem_zalloc(sizeof (struct memlist), KM_SLEEP);
new->address = low;
new->size = boundary - low;
if (head == NULL)
head = new;
if (tail) {
tail->next = new;
new->prev = tail;
}
tail = new;
low = boundary;
}
}
return (head);
}
void
set_platform_cage_params(void)
{
extern pgcnt_t total_pages;
extern struct memlist *phys_avail;
struct memlist *ml, *tml;
int ret;
if (kernel_cage_enable) {
pgcnt_t preferred_cage_size;
preferred_cage_size =
MAX(opl_startup_cage_size, total_pages / 256);
ml = opl_memlist_per_board(phys_avail);
kcage_range_lock();
/*
* Note: we are assuming that post has load the
* whole show in to the high end of memory. Having
* taken this leap, we copy the whole of phys_avail
* the glist and arrange for the cage to grow
* downward (descending pfns).
*/
ret = kcage_range_init(ml, 1);
/* free the memlist */
do {
tml = ml->next;
kmem_free(ml, sizeof (struct memlist));
ml = tml;
} while (ml != NULL);
if (ret == 0)
kcage_init(preferred_cage_size);
kcage_range_unlock();
}
if (kcage_on)
cmn_err(CE_NOTE, "!DR Kernel Cage is ENABLED");
else
cmn_err(CE_NOTE, "!DR Kernel Cage is DISABLED");
}
/*ARGSUSED*/
int
plat_cpu_poweron(struct cpu *cp)
{
int (*opl_cpu_poweron)(struct cpu *) = NULL;
opl_cpu_poweron =
(int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweron", 0);
if (opl_cpu_poweron == NULL)
return (ENOTSUP);
else
return ((opl_cpu_poweron)(cp));
}
/*ARGSUSED*/
int
plat_cpu_poweroff(struct cpu *cp)
{
int (*opl_cpu_poweroff)(struct cpu *) = NULL;
opl_cpu_poweroff =
(int (*)(struct cpu *))kobj_getsymvalue("drmach_cpu_poweroff", 0);
if (opl_cpu_poweroff == NULL)
return (ENOTSUP);
else
return ((opl_cpu_poweroff)(cp));
}
int
plat_max_boards(void)
{
return (OPL_MAX_BOARDS);
}
int
plat_max_cpu_units_per_board(void)
{
return (OPL_MAX_CPU_PER_BOARD);
}
int
plat_max_mem_units_per_board(void)
{
return (OPL_MAX_MEM_UNITS_PER_BOARD);
}
int
plat_max_io_units_per_board(void)
{
return (OPL_MAX_IO_UNITS_PER_BOARD);
}
int
plat_max_cmp_units_per_board(void)
{
return (OPL_MAX_CMP_UNITS_PER_BOARD);
}
int
plat_max_core_units_per_board(void)
{
return (OPL_MAX_CORE_UNITS_PER_BOARD);
}
int
plat_pfn_to_mem_node(pfn_t pfn)
{
return (pfn >> mem_node_pfn_shift);
}
/* ARGSUSED */
void
plat_build_mem_nodes(u_longlong_t *list, size_t nelems)
{
size_t elem;
pfn_t basepfn;
pgcnt_t npgs;
uint64_t boundary, ssize;
uint64_t low, high;
/*
* OPL mem slices are always aligned on a 256GB boundary.
*/
mem_node_pfn_shift = OPL_MC_MEMBOARD_SHIFT - MMU_PAGESHIFT;
mem_node_physalign = 0;
/*
* Boot install lists are arranged <addr, len>, <addr, len>, ...
*/
ssize = (1ull << OPL_MC_MEMBOARD_SHIFT);
for (elem = 0; elem < nelems; elem += 2) {
low = (uint64_t)list[elem];
high = low+(uint64_t)(list[elem+1]);
while (low < high) {
boundary = roundup(low+1, ssize);
boundary = MIN(high, boundary);
basepfn = btop(low);
npgs = btop(boundary - low);
mem_node_add_slice(basepfn, basepfn + npgs - 1);
low = boundary;
}
}
}
/*
* Find the CPU associated with a slice at boot-time.
*/
void
plat_fill_mc(pnode_t nodeid)
{
int board;
int memnode;
struct {
uint64_t addr;
uint64_t size;
} mem_range;
if (prom_getprop(nodeid, "board#", (caddr_t)&board) < 0) {
panic("Can not find board# property in mc node %x", nodeid);
}
if (prom_getprop(nodeid, "sb-mem-ranges", (caddr_t)&mem_range) < 0) {
panic("Can not find sb-mem-ranges property in mc node %x",
nodeid);
}
memnode = mem_range.addr >> OPL_MC_MEMBOARD_SHIFT;
plat_assign_lgrphand_to_mem_node(board, memnode);
}
/*
* Return the platform handle for the lgroup containing the given CPU
*
* For OPL, lgroup platform handle == board #.
*/
extern int mpo_disabled;
extern lgrp_handle_t lgrp_default_handle;
lgrp_handle_t
plat_lgrp_cpu_to_hand(processorid_t id)
{
lgrp_handle_t plathand;
/*
* Return the real platform handle for the CPU until
* such time as we know that MPO should be disabled.
* At that point, we set the "mpo_disabled" flag to true,
* and from that point on, return the default handle.
*
* By the time we know that MPO should be disabled, the
* first CPU will have already been added to a leaf
* lgroup, but that's ok. The common lgroup code will
* double check that the boot CPU is in the correct place,
* and in the case where mpo should be disabled, will move
* it to the root if necessary.
*/
if (mpo_disabled) {
/* If MPO is disabled, return the default (UMA) handle */
plathand = lgrp_default_handle;
} else
plathand = (lgrp_handle_t)LSB_ID(id);
return (plathand);
}
/*
* Platform specific lgroup initialization
*/
void
plat_lgrp_init(void)
{
extern uint32_t lgrp_expand_proc_thresh;
extern uint32_t lgrp_expand_proc_diff;
/*
* Set tuneables for the OPL architecture
*
* lgrp_expand_proc_thresh is the minimum load on the lgroups
* this process is currently running on before considering
* expanding threads to another lgroup.
*
* lgrp_expand_proc_diff determines how much less the remote lgroup
* must be loaded before expanding to it.
*
* Since remote latencies can be costly, attempt to keep 3 threads
* within the same lgroup before expanding to the next lgroup.
*/
lgrp_expand_proc_thresh = LGRP_LOADAVG_THREAD_MAX * 3;
lgrp_expand_proc_diff = LGRP_LOADAVG_THREAD_MAX;
}
/*
* Platform notification of lgroup (re)configuration changes
*/
/*ARGSUSED*/
void
plat_lgrp_config(lgrp_config_flag_t evt, uintptr_t arg)
{
update_membounds_t *umb;
lgrp_config_mem_rename_t lmr;
int sbd, tbd;
lgrp_handle_t hand, shand, thand;
int mnode, snode, tnode;
pfn_t start, end;
if (mpo_disabled)
return;
switch (evt) {
case LGRP_CONFIG_MEM_ADD:
/*
* Establish the lgroup handle to memnode translation.
*/
umb = (update_membounds_t *)arg;
hand = umb->u_board;
mnode = plat_pfn_to_mem_node(umb->u_base >> MMU_PAGESHIFT);
plat_assign_lgrphand_to_mem_node(hand, mnode);
break;
case LGRP_CONFIG_MEM_DEL:
/*
* Special handling for possible memory holes.
*/
umb = (update_membounds_t *)arg;
hand = umb->u_board;
if ((mnode = plat_lgrphand_to_mem_node(hand)) != -1) {
if (mem_node_config[mnode].exists) {
start = mem_node_config[mnode].physbase;
end = mem_node_config[mnode].physmax;
mem_node_pre_del_slice(start, end);
mem_node_post_del_slice(start, end, 0);
}
}
break;
case LGRP_CONFIG_MEM_RENAME:
/*
* During a DR copy-rename operation, all of the memory
* on one board is moved to another board -- but the
* addresses/pfns and memnodes don't change. This means
* the memory has changed locations without changing identity.
*
* Source is where we are copying from and target is where we
* are copying to. After source memnode is copied to target
* memnode, the physical addresses of the target memnode are
* renamed to match what the source memnode had. Then target
* memnode can be removed and source memnode can take its
* place.
*
* To do this, swap the lgroup handle to memnode mappings for
* the boards, so target lgroup will have source memnode and
* source lgroup will have empty target memnode which is where
* its memory will go (if any is added to it later).
*
* Then source memnode needs to be removed from its lgroup
* and added to the target lgroup where the memory was living
* but under a different name/memnode. The memory was in the
* target memnode and now lives in the source memnode with
* different physical addresses even though it is the same
* memory.
*/
sbd = arg & 0xffff;
tbd = (arg & 0xffff0000) >> 16;
shand = sbd;
thand = tbd;
snode = plat_lgrphand_to_mem_node(shand);
tnode = plat_lgrphand_to_mem_node(thand);
/*
* Special handling for possible memory holes.
*/
if (tnode != -1 && mem_node_config[tnode].exists) {
start = mem_node_config[mnode].physbase;
end = mem_node_config[mnode].physmax;
mem_node_pre_del_slice(start, end);
mem_node_post_del_slice(start, end, 0);
}
plat_assign_lgrphand_to_mem_node(thand, snode);
plat_assign_lgrphand_to_mem_node(shand, tnode);
lmr.lmem_rename_from = shand;
lmr.lmem_rename_to = thand;
/*
* Remove source memnode of copy rename from its lgroup
* and add it to its new target lgroup
*/
lgrp_config(LGRP_CONFIG_MEM_RENAME, (uintptr_t)snode,
(uintptr_t)&lmr);
break;
default:
break;
}
}
/*
* Return latency between "from" and "to" lgroups
*
* This latency number can only be used for relative comparison
* between lgroups on the running system, cannot be used across platforms,
* and may not reflect the actual latency. It is platform and implementation
* specific, so platform gets to decide its value. It would be nice if the
* number was at least proportional to make comparisons more meaningful though.
* NOTE: The numbers below are supposed to be load latencies for uncached
* memory divided by 10.
*
* XXX latency values for Columbus, not Columbus2. Should be fixed later when
* we know the actual numbers for Columbus2.
*/
int
plat_lgrp_latency(lgrp_handle_t from, lgrp_handle_t to)
{
/*
* Return min remote latency when there are more than two lgroups
* (root and child) and getting latency between two different lgroups
* or root is involved
*/
if (lgrp_optimizations() && (from != to ||
from == LGRP_DEFAULT_HANDLE || to == LGRP_DEFAULT_HANDLE))
return (27);
else
return (25);
}
/*
* Return platform handle for root lgroup
*/
lgrp_handle_t
plat_lgrp_root_hand(void)
{
if (mpo_disabled)
return (lgrp_default_handle);
return (LGRP_DEFAULT_HANDLE);
}
/*ARGSUSED*/
void
plat_freelist_process(int mnode)
{
}
void
load_platform_drivers(void)
{
(void) i_ddi_attach_pseudo_node("dr");
}
/*
* No platform drivers on this platform
*/
char *platform_module_list[] = {
(char *)0
};
/*ARGSUSED*/
void
plat_tod_fault(enum tod_fault_type tod_bad)
{
}
/*ARGSUSED*/
void
cpu_sgn_update(ushort_t sgn, uchar_t state, uchar_t sub_state, int cpuid)
{
static void (*scf_panic_callback)(int);
static void (*scf_shutdown_callback)(int);
/*
* This is for notifing system panic/shutdown to SCF.
* In case of shutdown and panic, SCF call back
* function should be called.
* <SCF call back functions>
* scf_panic_callb() : panicsys()->panic_quiesce_hw()
* scf_shutdown_callb(): halt() or power_down() or reboot_machine()
* cpuid should be -1 and state should be SIGST_EXIT.
*/
if (state == SIGST_EXIT && cpuid == -1) {
/*
* find the symbol for the SCF panic callback routine in driver
*/
if (scf_panic_callback == NULL)
scf_panic_callback = (void (*)(int))
modgetsymvalue("scf_panic_callb", 0);
if (scf_shutdown_callback == NULL)
scf_shutdown_callback = (void (*)(int))
modgetsymvalue("scf_shutdown_callb", 0);
switch (sub_state) {
case SIGSUBST_PANIC:
if (scf_panic_callback == NULL) {
cmn_err(CE_NOTE, "!cpu_sgn_update: "
"scf_panic_callb not found\n");
return;
}
scf_panic_callback(SIGSUBST_PANIC);
break;
case SIGSUBST_HALT:
if (scf_shutdown_callback == NULL) {
cmn_err(CE_NOTE, "!cpu_sgn_update: "
"scf_shutdown_callb not found\n");
return;
}
scf_shutdown_callback(SIGSUBST_HALT);
break;
case SIGSUBST_ENVIRON:
if (scf_shutdown_callback == NULL) {
cmn_err(CE_NOTE, "!cpu_sgn_update: "
"scf_shutdown_callb not found\n");
return;
}
scf_shutdown_callback(SIGSUBST_ENVIRON);
break;
case SIGSUBST_REBOOT:
if (scf_shutdown_callback == NULL) {
cmn_err(CE_NOTE, "!cpu_sgn_update: "
"scf_shutdown_callb not found\n");
return;
}
scf_shutdown_callback(SIGSUBST_REBOOT);
break;
}
}
}
/*ARGSUSED*/
int
plat_get_mem_unum(int synd_code, uint64_t flt_addr, int flt_bus_id,
int flt_in_memory, ushort_t flt_status,
char *buf, int buflen, int *lenp)
{
/*
* check if it's a Memory error.
*/
if (flt_in_memory) {
if (opl_get_mem_unum != NULL) {
return (opl_get_mem_unum(synd_code, flt_addr,
buf, buflen, lenp));
} else {
return (ENOTSUP);
}
} else {
return (ENOTSUP);
}
}
/*ARGSUSED*/
int
plat_get_cpu_unum(int cpuid, char *buf, int buflen, int *lenp)
{
int plen;
int ret = 0;
char model[20];
uint_t sb;
pnode_t node;
/* determine the platform model once */
if (plat_model == -1) {
plat_model = MODEL_DC; /* Default model */
node = prom_rootnode();
plen = prom_getproplen(node, "model");
if (plen > 0 && plen < sizeof (model)) {
(void) prom_getprop(node, "model", model);
model[plen] = '\0';
if (strcmp(model, "FF1") == 0)
plat_model = MODEL_FF1;
else if (strcmp(model, "FF2") == 0)
plat_model = MODEL_FF2;
else if (strncmp(model, "DC", 2) == 0)
plat_model = MODEL_DC;
}
}
sb = opl_get_physical_board(LSB_ID(cpuid));
if (sb == -1) {
return (ENXIO);
}
switch (plat_model) {
case MODEL_FF1:
plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_A",
CHIP_ID(cpuid) / 2);
break;
case MODEL_FF2:
plen = snprintf(buf, buflen, "/%s/CPUM%d", "MBU_B",
CHIP_ID(cpuid) / 2);
break;
case MODEL_DC:
plen = snprintf(buf, buflen, "/%s%02d/CPUM%d", "CMU", sb,
CHIP_ID(cpuid));
break;
default:
/* This should never happen */
return (ENODEV);
}
if (plen >= buflen) {
ret = ENOSPC;
} else {
if (lenp)
*lenp = strlen(buf);
}
return (ret);
}
#define SCF_PUTINFO(f, s, p) \
f(KEY_ESCF, 0x01, 0, s, p)
void
plat_nodename_set(void)
{
void *datap;
static int (*scf_service_function)(uint32_t, uint8_t,
uint32_t, uint32_t, void *);
int counter = 5;
/*
* find the symbol for the SCF put routine in driver
*/
if (scf_service_function == NULL)
scf_service_function =
(int (*)(uint32_t, uint8_t, uint32_t, uint32_t, void *))
modgetsymvalue("scf_service_putinfo", 0);
/*
* If the symbol was found, call it. Otherwise, log a note (but not to
* the console).
*/
if (scf_service_function == NULL) {
cmn_err(CE_NOTE,
"!plat_nodename_set: scf_service_putinfo not found\n");
return;
}
datap =
(struct utsname *)kmem_zalloc(sizeof (struct utsname), KM_SLEEP);
if (datap == NULL) {
return;
}
bcopy((struct utsname *)&utsname,
(struct utsname *)datap, sizeof (struct utsname));
while ((SCF_PUTINFO(scf_service_function,
sizeof (struct utsname), datap) == EBUSY) && (counter-- > 0)) {
delay(10 * drv_usectohz(1000000));
}
if (counter == 0)
cmn_err(CE_NOTE,
"!plat_nodename_set: "
"scf_service_putinfo not responding\n");
kmem_free(datap, sizeof (struct utsname));
}
caddr_t efcode_vaddr = NULL;
/*
* Preallocate enough memory for fcode claims.
*/
caddr_t
efcode_alloc(caddr_t alloc_base)
{
caddr_t efcode_alloc_base = (caddr_t)roundup((uintptr_t)alloc_base,
MMU_PAGESIZE);
caddr_t vaddr;
/*
* allocate the physical memory for the Oberon fcode.
*/
if ((vaddr = (caddr_t)BOP_ALLOC(bootops, efcode_alloc_base,
efcode_size, MMU_PAGESIZE)) == NULL)
cmn_err(CE_PANIC, "Cannot allocate Efcode Memory");
efcode_vaddr = vaddr;
return (efcode_alloc_base + efcode_size);
}
caddr_t
plat_startup_memlist(caddr_t alloc_base)
{
caddr_t tmp_alloc_base;
tmp_alloc_base = efcode_alloc(alloc_base);
tmp_alloc_base =
(caddr_t)roundup((uintptr_t)tmp_alloc_base, ecache_alignsize);
return (tmp_alloc_base);
}
void
startup_platform(void)
{
}
void
plat_cpuid_to_mmu_ctx_info(processorid_t cpuid, mmu_ctx_info_t *info)
{
int impl;
impl = cpunodes[cpuid].implementation;
if (IS_OLYMPUS_C(impl)) {
/*
* Olympus-C processor supports 2 strands per core.
*/
info->mmu_idx = cpuid >> 1;
info->mmu_nctxs = 8192;
} else {
cmn_err(CE_PANIC, "Unknown processor %d", impl);
}
}
int
plat_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
{
if (opl_get_mem_sid == NULL) {
return (ENOTSUP);
}
return (opl_get_mem_sid(unum, buf, buflen, lenp));
}
int
plat_get_mem_offset(uint64_t paddr, uint64_t *offp)
{
if (opl_get_mem_offset == NULL) {
return (ENOTSUP);
}
return (opl_get_mem_offset(paddr, offp));
}
int
plat_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *addrp)
{
if (opl_get_mem_addr == NULL) {
return (ENOTSUP);
}
return (opl_get_mem_addr(unum, sid, offset, addrp));
}