pcmu_ib.c revision 25cf1a301a396c38e8adf52c15f537b80d2483f7
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* CMU-CH Interrupt Block
*/
#include <sys/types.h>
#include <sys/kmem.h>
#include <sys/async.h>
#include <sys/systm.h>
#include <sys/spl.h>
#include <sys/sunddi.h>
#include <sys/machsystm.h>
#include <sys/ddi_impldefs.h>
#include <sys/pcicmu/pcicmu.h>
/*LINTLIBRARY*/
static uint_t pcmu_ib_intr_reset(void *arg);
extern uint64_t xc_tick_jump_limit;
void
pcmu_ib_create(pcmu_t *pcmu_p)
{
pcmu_ib_t *pib_p;
uintptr_t a;
int i;
/*
* Allocate interrupt block state structure and link it to
* the pci state structure.
*/
pib_p = kmem_zalloc(sizeof (pcmu_ib_t), KM_SLEEP);
pcmu_p->pcmu_ib_p = pib_p;
pib_p->pib_pcmu_p = pcmu_p;
a = pcmu_ib_setup(pib_p);
/*
* Determine virtual addresses of interrupt mapping, clear and diag
* registers that have common offsets.
*/
pib_p->pib_intr_retry_timer_reg =
(uint64_t *)(a + PCMU_IB_INTR_RETRY_TIMER_OFFSET);
pib_p->pib_obio_intr_state_diag_reg =
(uint64_t *)(a + PCMU_IB_OBIO_INTR_STATE_DIAG_REG);
PCMU_DBG2(PCMU_DBG_ATTACH, pcmu_p->pcmu_dip,
"pcmu_ib_create: obio_imr=%x, obio_cir=%x\n",
pib_p->pib_obio_intr_map_regs, pib_p->pib_obio_clear_intr_regs);
PCMU_DBG2(PCMU_DBG_ATTACH, pcmu_p->pcmu_dip,
"pcmu_ib_create: retry_timer=%x, obio_diag=%x\n",
pib_p->pib_intr_retry_timer_reg,
pib_p->pib_obio_intr_state_diag_reg);
pib_p->pib_ino_lst = (pcmu_ib_ino_info_t *)NULL;
mutex_init(&pib_p->pib_intr_lock, NULL, MUTEX_DRIVER, NULL);
mutex_init(&pib_p->pib_ino_lst_mutex, NULL, MUTEX_DRIVER, NULL);
PCMU_DBG1(PCMU_DBG_ATTACH, pcmu_p->pcmu_dip,
"pcmu_ib_create: numproxy=%x\n", pcmu_p->pcmu_numproxy);
for (i = 1; i <= pcmu_p->pcmu_numproxy; i++) {
set_intr_mapping_reg(pcmu_p->pcmu_id,
(uint64_t *)pib_p->pib_upa_imr[i - 1], i);
}
pcmu_ib_configure(pib_p);
bus_func_register(BF_TYPE_RESINTR, pcmu_ib_intr_reset, pib_p);
}
void
pcmu_ib_destroy(pcmu_t *pcmu_p)
{
pcmu_ib_t *pib_p = pcmu_p->pcmu_ib_p;
PCMU_DBG0(PCMU_DBG_IB, pcmu_p->pcmu_dip, "pcmu_ib_destroy\n");
bus_func_unregister(BF_TYPE_RESINTR, pcmu_ib_intr_reset, pib_p);
intr_dist_rem_weighted(pcmu_ib_intr_dist_all, pib_p);
mutex_destroy(&pib_p->pib_ino_lst_mutex);
mutex_destroy(&pib_p->pib_intr_lock);
pcmu_ib_free_ino_all(pib_p);
kmem_free(pib_p, sizeof (pcmu_ib_t));
pcmu_p->pcmu_ib_p = NULL;
}
void
pcmu_ib_configure(pcmu_ib_t *pib_p)
{
*pib_p->pib_intr_retry_timer_reg = pcmu_intr_retry_intv;
}
/*
* can only used for CMU-CH internal interrupts ue, pbm
*/
void
pcmu_ib_intr_enable(pcmu_t *pcmu_p, pcmu_ib_ino_t ino)
{
pcmu_ib_t *pib_p = pcmu_p->pcmu_ib_p;
pcmu_ib_mondo_t mondo = PCMU_IB_INO_TO_MONDO(pib_p, ino);
volatile uint64_t *imr_p = ib_intr_map_reg_addr(pib_p, ino);
uint_t cpu_id;
/*
* Determine the cpu for the interrupt.
*/
mutex_enter(&pib_p->pib_intr_lock);
cpu_id = intr_dist_cpuid();
cpu_id = u2u_translate_tgtid(pcmu_p, cpu_id, imr_p);
PCMU_DBG2(PCMU_DBG_IB, pcmu_p->pcmu_dip,
"pcmu_ib_intr_enable: ino=%x cpu_id=%x\n", ino, cpu_id);
*imr_p = ib_get_map_reg(mondo, cpu_id);
PCMU_IB_INO_INTR_CLEAR(ib_clear_intr_reg_addr(pib_p, ino));
mutex_exit(&pib_p->pib_intr_lock);
}
/*
* Disable the interrupt via its interrupt mapping register.
* Can only be used for internal interrupts: ue, pbm.
* If called under interrupt context, wait should be set to 0
*/
void
pcmu_ib_intr_disable(pcmu_ib_t *pib_p, pcmu_ib_ino_t ino, int wait)
{
volatile uint64_t *imr_p = ib_intr_map_reg_addr(pib_p, ino);
volatile uint64_t *state_reg_p = PCMU_IB_INO_INTR_STATE_REG(pib_p, ino);
hrtime_t start_time;
hrtime_t prev, curr, interval, jump;
hrtime_t intr_timeout;
/* disable the interrupt */
mutex_enter(&pib_p->pib_intr_lock);
PCMU_IB_INO_INTR_OFF(imr_p);
*imr_p; /* flush previous write */
mutex_exit(&pib_p->pib_intr_lock);
if (!wait)
goto wait_done;
intr_timeout = pcmu_intrpend_timeout;
jump = TICK_TO_NSEC(xc_tick_jump_limit);
start_time = curr = gethrtime();
/* busy wait if there is interrupt being processed */
while (PCMU_IB_INO_INTR_PENDING(state_reg_p, ino) && !panicstr) {
/*
* If we have a really large jump in hrtime, it is most
* probably because we entered the debugger (or OBP,
* in general). So, we adjust the timeout accordingly
* to prevent declaring an interrupt timeout. The
* master-interrupt mechanism in OBP should deliver
* the interrupts properly.
*/
prev = curr;
curr = gethrtime();
interval = curr - prev;
if (interval > jump)
intr_timeout += interval;
if (curr - start_time > intr_timeout) {
pcmu_pbm_t *pcbm_p = pib_p->pib_pcmu_p->pcmu_pcbm_p;
cmn_err(CE_WARN,
"%s:%s: pcmu_ib_intr_disable timeout %x",
pcbm_p->pcbm_nameinst_str,
pcbm_p->pcbm_nameaddr_str, ino);
break;
}
}
wait_done:
PCMU_IB_INO_INTR_PEND(ib_clear_intr_reg_addr(pib_p, ino));
u2u_ittrans_cleanup((u2u_ittrans_data_t *)
(PCMU_IB2CB(pib_p)->pcb_ittrans_cookie), imr_p);
}
/* can only used for CMU-CH internal interrupts ue, pbm */
void
pcmu_ib_nintr_clear(pcmu_ib_t *pib_p, pcmu_ib_ino_t ino)
{
uint64_t *clr_reg = ib_clear_intr_reg_addr(pib_p, ino);
PCMU_IB_INO_INTR_CLEAR(clr_reg);
}
/*
* distribute PBM and UPA interrupts. ino is set to 0 by caller if we
* are dealing with UPA interrupts (without inos).
*/
void
pcmu_ib_intr_dist_nintr(pcmu_ib_t *pib_p, pcmu_ib_ino_t ino,
volatile uint64_t *imr_p)
{
volatile uint64_t imr = *imr_p;
uint32_t cpu_id;
if (!PCMU_IB_INO_INTR_ISON(imr))
return;
cpu_id = intr_dist_cpuid();
if (ino) {
cpu_id = u2u_translate_tgtid(pib_p->pib_pcmu_p, cpu_id, imr_p);
}
if (ib_map_reg_get_cpu(*imr_p) == cpu_id) {
return;
}
*imr_p = ib_get_map_reg(PCMU_IB_IMR2MONDO(imr), cpu_id);
imr = *imr_p; /* flush previous write */
}
static void
pcmu_ib_intr_dist(pcmu_ib_t *pib_p, pcmu_ib_ino_info_t *ino_p)
{
uint32_t cpu_id = ino_p->pino_cpuid;
pcmu_ib_ino_t ino = ino_p->pino_ino;
volatile uint64_t imr, *imr_p, *state_reg;
hrtime_t start_time;
hrtime_t prev, curr, interval, jump;
hrtime_t intr_timeout;
ASSERT(MUTEX_HELD(&pib_p->pib_ino_lst_mutex));
imr_p = ib_intr_map_reg_addr(pib_p, ino);
state_reg = PCMU_IB_INO_INTR_STATE_REG(pib_p, ino);
/* disable interrupt, this could disrupt devices sharing our slot */
PCMU_IB_INO_INTR_OFF(imr_p);
imr = *imr_p; /* flush previous write */
/* busy wait if there is interrupt being processed */
intr_timeout = pcmu_intrpend_timeout;
jump = TICK_TO_NSEC(xc_tick_jump_limit);
start_time = curr = gethrtime();
while (PCMU_IB_INO_INTR_PENDING(state_reg, ino) && !panicstr) {
/*
* If we have a really large jump in hrtime, it is most
* probably because we entered the debugger (or OBP,
* in general). So, we adjust the timeout accordingly
* to prevent declaring an interrupt timeout. The
* master-interrupt mechanism in OBP should deliver
* the interrupts properly.
*/
prev = curr;
curr = gethrtime();
interval = curr - prev;
if (interval > jump)
intr_timeout += interval;
if (curr - start_time > intr_timeout) {
pcmu_pbm_t *pcbm_p = pib_p->pib_pcmu_p->pcmu_pcbm_p;
cmn_err(CE_WARN,
"%s:%s: pcmu_ib_intr_dist(%p,%x) timeout",
pcbm_p->pcbm_nameinst_str,
pcbm_p->pcbm_nameaddr_str,
imr_p, PCMU_IB_INO_TO_MONDO(pib_p, ino));
break;
}
}
cpu_id = u2u_translate_tgtid(pib_p->pib_pcmu_p, cpu_id, imr_p);
*imr_p = ib_get_map_reg(PCMU_IB_IMR2MONDO(imr), cpu_id);
imr = *imr_p; /* flush previous write */
}
/*
* Redistribute interrupts of the specified weight. The first call has a weight
* of weight_max, which can be used to trigger initialization for
* redistribution. The inos with weight [weight_max, inf.) should be processed
* on the "weight == weight_max" call. This first call is followed by calls
* of decreasing weights, inos of that weight should be processed. The final
* call specifies a weight of zero, this can be used to trigger processing of
* stragglers.
*/
void
pcmu_ib_intr_dist_all(void *arg, int32_t weight_max, int32_t weight)
{
pcmu_ib_t *pib_p = (pcmu_ib_t *)arg;
pcmu_ib_ino_info_t *ino_p;
ih_t *ih_lst;
int32_t dweight;
int i;
mutex_enter(&pib_p->pib_ino_lst_mutex);
/* Perform special processing for first call of a redistribution. */
if (weight == weight_max) {
for (ino_p = pib_p->pib_ino_lst; ino_p;
ino_p = ino_p->pino_next) {
/*
* Clear pino_established of each ino on first call.
* The pino_established field may be used by a pci
* nexus driver's pcmu_intr_dist_cpuid implementation
* when detection of established pci slot-cpu binding
* for multi function pci cards.
*/
ino_p->pino_established = 0;
/*
* recompute the pino_intr_weight based on the device
* weight of all devinfo nodes sharing the ino (this
* will allow us to pick up new weights established by
* i_ddi_set_intr_weight()).
*/
ino_p->pino_intr_weight = 0;
for (i = 0, ih_lst = ino_p->pino_ih_head;
i < ino_p->pino_ih_size;
i++, ih_lst = ih_lst->ih_next) {
dweight = i_ddi_get_intr_weight(ih_lst->ih_dip);
if (dweight > 0)
ino_p->pino_intr_weight += dweight;
}
}
}
for (ino_p = pib_p->pib_ino_lst; ino_p; ino_p = ino_p->pino_next) {
/*
* Get the weight of the ino and determine if we are going to
* process call. We wait until an pcmu_ib_intr_dist_all call of
* the proper weight occurs to support redistribution of all
* heavy weighted interrupts first (across all nexus driver
* instances). This is done to ensure optimal
* INTR_WEIGHTED_DIST behavior.
*/
if ((weight == ino_p->pino_intr_weight) ||
((weight >= weight_max) &&
(ino_p->pino_intr_weight >= weight_max))) {
/* select cpuid to target and mark ino established */
ino_p->pino_cpuid = pcmu_intr_dist_cpuid(pib_p, ino_p);
ino_p->pino_established = 1;
/* Add device weight of ino devinfos to targeted cpu. */
for (i = 0, ih_lst = ino_p->pino_ih_head;
i < ino_p->pino_ih_size;
i++, ih_lst = ih_lst->ih_next) {
dweight = i_ddi_get_intr_weight(ih_lst->ih_dip);
intr_dist_cpuid_add_device_weight(
ino_p->pino_cpuid, ih_lst->ih_dip, dweight);
}
/* program the hardware */
pcmu_ib_intr_dist(pib_p, ino_p);
}
}
mutex_exit(&pib_p->pib_ino_lst_mutex);
}
/*
* Reset interrupts to IDLE. This function is called during
* panic handling after redistributing interrupts; it's needed to
* support dumping to network devices after 'sync' from OBP.
*
* N.B. This routine runs in a context where all other threads
* are permanently suspended.
*/
static uint_t
pcmu_ib_intr_reset(void *arg)
{
pcmu_ib_t *pib_p = (pcmu_ib_t *)arg;
pcmu_ib_ino_t ino;
uint64_t *clr_reg;
/*
* Note that we only actually care about interrupts that are
* potentially from network devices.
*/
for (ino = 0; ino <= pib_p->pib_max_ino; ino++) {
clr_reg = ib_clear_intr_reg_addr(pib_p, ino);
PCMU_IB_INO_INTR_CLEAR(clr_reg);
}
return (BF_NONE);
}
void
pcmu_ib_suspend(pcmu_ib_t *pib_p)
{
pcmu_ib_ino_info_t *ip;
/* save ino_lst interrupts' mapping registers content */
mutex_enter(&pib_p->pib_ino_lst_mutex);
for (ip = pib_p->pib_ino_lst; ip; ip = ip->pino_next) {
ip->pino_map_reg_save = *ip->pino_map_reg;
}
mutex_exit(&pib_p->pib_ino_lst_mutex);
}
void
pcmu_ib_resume(pcmu_ib_t *pib_p)
{
pcmu_ib_ino_info_t *ip;
/* restore ino_lst interrupts' mapping registers content */
mutex_enter(&pib_p->pib_ino_lst_mutex);
for (ip = pib_p->pib_ino_lst; ip; ip = ip->pino_next) {
PCMU_IB_INO_INTR_CLEAR(ip->pino_clr_reg); /* set intr to idle */
*ip->pino_map_reg = ip->pino_map_reg_save; /* restore IMR */
}
mutex_exit(&pib_p->pib_ino_lst_mutex);
}
/*
* locate ino_info structure on pib_p->pib_ino_lst according to ino#
* returns NULL if not found.
*/
pcmu_ib_ino_info_t *
pcmu_ib_locate_ino(pcmu_ib_t *pib_p, pcmu_ib_ino_t ino_num)
{
pcmu_ib_ino_info_t *ino_p = pib_p->pib_ino_lst;
ASSERT(MUTEX_HELD(&pib_p->pib_ino_lst_mutex));
for (; ino_p && ino_p->pino_ino != ino_num; ino_p = ino_p->pino_next);
return (ino_p);
}
#define PCMU_IB_INO_TO_SLOT(ino) \
(PCMU_IB_IS_OBIO_INO(ino) ? 0xff : ((ino) & 0x1f) >> 2)
pcmu_ib_ino_info_t *
pcmu_ib_new_ino(pcmu_ib_t *pib_p, pcmu_ib_ino_t ino_num, ih_t *ih_p)
{
pcmu_ib_ino_info_t *ino_p = kmem_alloc(sizeof (pcmu_ib_ino_info_t),
KM_SLEEP);
ino_p->pino_ino = ino_num;
ino_p->pino_slot_no = PCMU_IB_INO_TO_SLOT(ino_num);
ino_p->pino_ib_p = pib_p;
ino_p->pino_clr_reg = ib_clear_intr_reg_addr(pib_p, ino_num);
ino_p->pino_map_reg = ib_intr_map_reg_addr(pib_p, ino_num);
ino_p->pino_unclaimed = 0;
/*
* cannot disable interrupt since we might share slot
* PCMU_IB_INO_INTR_OFF(ino_p->pino_map_reg);
*/
ih_p->ih_next = ih_p;
ino_p->pino_ih_head = ih_p;
ino_p->pino_ih_tail = ih_p;
ino_p->pino_ih_start = ih_p;
ino_p->pino_ih_size = 1;
ino_p->pino_next = pib_p->pib_ino_lst;
pib_p->pib_ino_lst = ino_p;
return (ino_p);
}
/* the ino_p is retrieved by previous call to pcmu_ib_locate_ino() */
void
pcmu_ib_delete_ino(pcmu_ib_t *pib_p, pcmu_ib_ino_info_t *ino_p)
{
pcmu_ib_ino_info_t *list = pib_p->pib_ino_lst;
ASSERT(MUTEX_HELD(&pib_p->pib_ino_lst_mutex));
if (list == ino_p) {
pib_p->pib_ino_lst = list->pino_next;
} else {
for (; list->pino_next != ino_p; list = list->pino_next);
list->pino_next = ino_p->pino_next;
}
}
/* free all ino when we are detaching */
void
pcmu_ib_free_ino_all(pcmu_ib_t *pib_p)
{
pcmu_ib_ino_info_t *tmp = pib_p->pib_ino_lst;
pcmu_ib_ino_info_t *next = NULL;
while (tmp) {
next = tmp->pino_next;
kmem_free(tmp, sizeof (pcmu_ib_ino_info_t));
tmp = next;
}
}
void
pcmu_ib_ino_add_intr(pcmu_t *pcmu_p, pcmu_ib_ino_info_t *ino_p, ih_t *ih_p)
{
pcmu_ib_ino_t ino = ino_p->pino_ino;
pcmu_ib_t *pib_p = ino_p->pino_ib_p;
volatile uint64_t *state_reg = PCMU_IB_INO_INTR_STATE_REG(pib_p, ino);
hrtime_t start_time;
hrtime_t prev, curr, interval, jump;
hrtime_t intr_timeout;
ASSERT(pib_p == pcmu_p->pcmu_ib_p);
ASSERT(MUTEX_HELD(&pib_p->pib_ino_lst_mutex));
/* disable interrupt, this could disrupt devices sharing our slot */
PCMU_IB_INO_INTR_OFF(ino_p->pino_map_reg);
*ino_p->pino_map_reg;
/* do NOT modify the link list until after the busy wait */
/*
* busy wait if there is interrupt being processed.
* either the pending state will be cleared by the interrupt wrapper
* or the interrupt will be marked as blocked indicating that it was
* jabbering.
*/
intr_timeout = pcmu_intrpend_timeout;
jump = TICK_TO_NSEC(xc_tick_jump_limit);
start_time = curr = gethrtime();
while ((ino_p->pino_unclaimed <= pcmu_unclaimed_intr_max) &&
PCMU_IB_INO_INTR_PENDING(state_reg, ino) && !panicstr) {
/*
* If we have a really large jump in hrtime, it is most
* probably because we entered the debugger (or OBP,
* in general). So, we adjust the timeout accordingly
* to prevent declaring an interrupt timeout. The
* master-interrupt mechanism in OBP should deliver
* the interrupts properly.
*/
prev = curr;
curr = gethrtime();
interval = curr - prev;
if (interval > jump)
intr_timeout += interval;
if (curr - start_time > intr_timeout) {
pcmu_pbm_t *pcbm_p = pcmu_p->pcmu_pcbm_p;
cmn_err(CE_WARN,
"%s:%s: pcmu_ib_ino_add_intr %x timeout",
pcbm_p->pcbm_nameinst_str,
pcbm_p->pcbm_nameaddr_str, ino);
break;
}
}
/* link up pcmu_ispec_t portion of the ppd */
ih_p->ih_next = ino_p->pino_ih_head;
ino_p->pino_ih_tail->ih_next = ih_p;
ino_p->pino_ih_tail = ih_p;
ino_p->pino_ih_start = ino_p->pino_ih_head;
ino_p->pino_ih_size++;
/*
* if the interrupt was previously blocked (left in pending state)
* because of jabber we need to clear the pending state in case the
* jabber has gone away.
*/
if (ino_p->pino_unclaimed > pcmu_unclaimed_intr_max) {
cmn_err(CE_WARN,
"%s%d: pcmu_ib_ino_add_intr: ino 0x%x has been unblocked",
ddi_driver_name(pcmu_p->pcmu_dip),
ddi_get_instance(pcmu_p->pcmu_dip),
ino_p->pino_ino);
ino_p->pino_unclaimed = 0;
PCMU_IB_INO_INTR_CLEAR(ino_p->pino_clr_reg);
}
/* re-enable interrupt */
PCMU_IB_INO_INTR_ON(ino_p->pino_map_reg);
*ino_p->pino_map_reg;
}
/*
* removes pcmu_ispec_t from the ino's link list.
* uses hardware mutex to lock out interrupt threads.
* Side effects: interrupt belongs to that ino is turned off on return.
* if we are sharing PCI slot with other inos, the caller needs
* to turn it back on.
*/
void
pcmu_ib_ino_rem_intr(pcmu_t *pcmu_p, pcmu_ib_ino_info_t *ino_p, ih_t *ih_p)
{
int i;
pcmu_ib_ino_t ino = ino_p->pino_ino;
ih_t *ih_lst = ino_p->pino_ih_head;
volatile uint64_t *state_reg =
PCMU_IB_INO_INTR_STATE_REG(ino_p->pino_ib_p, ino);
hrtime_t start_time;
hrtime_t prev, curr, interval, jump;
hrtime_t intr_timeout;
ASSERT(MUTEX_HELD(&ino_p->pino_ib_p->pib_ino_lst_mutex));
/* disable interrupt, this could disrupt devices sharing our slot */
PCMU_IB_INO_INTR_OFF(ino_p->pino_map_reg);
*ino_p->pino_map_reg;
/* do NOT modify the link list until after the busy wait */
/*
* busy wait if there is interrupt being processed.
* either the pending state will be cleared by the interrupt wrapper
* or the interrupt will be marked as blocked indicating that it was
* jabbering.
*/
intr_timeout = pcmu_intrpend_timeout;
jump = TICK_TO_NSEC(xc_tick_jump_limit);
start_time = curr = gethrtime();
while ((ino_p->pino_unclaimed <= pcmu_unclaimed_intr_max) &&
PCMU_IB_INO_INTR_PENDING(state_reg, ino) && !panicstr) {
/*
* If we have a really large jump in hrtime, it is most
* probably because we entered the debugger (or OBP,
* in general). So, we adjust the timeout accordingly
* to prevent declaring an interrupt timeout. The
* master-interrupt mechanism in OBP should deliver
* the interrupts properly.
*/
prev = curr;
curr = gethrtime();
interval = curr - prev;
if (interval > jump)
intr_timeout += interval;
if (curr - start_time > intr_timeout) {
pcmu_pbm_t *pcbm_p = pcmu_p->pcmu_pcbm_p;
cmn_err(CE_WARN,
"%s:%s: pcmu_ib_ino_rem_intr %x timeout",
pcbm_p->pcbm_nameinst_str,
pcbm_p->pcbm_nameaddr_str, ino);
break;
}
}
if (ino_p->pino_ih_size == 1) {
if (ih_lst != ih_p)
goto not_found;
/* no need to set head/tail as ino_p will be freed */
goto reset;
}
/*
* if the interrupt was previously blocked (left in pending state)
* because of jabber we need to clear the pending state in case the
* jabber has gone away.
*/
if (ino_p->pino_unclaimed > pcmu_unclaimed_intr_max) {
cmn_err(CE_WARN,
"%s%d: pcmu_ib_ino_rem_intr: ino 0x%x has been unblocked",
ddi_driver_name(pcmu_p->pcmu_dip),
ddi_get_instance(pcmu_p->pcmu_dip),
ino_p->pino_ino);
ino_p->pino_unclaimed = 0;
PCMU_IB_INO_INTR_CLEAR(ino_p->pino_clr_reg);
}
/* search the link list for ih_p */
for (i = 0; (i < ino_p->pino_ih_size) && (ih_lst->ih_next != ih_p);
i++, ih_lst = ih_lst->ih_next);
if (ih_lst->ih_next != ih_p) {
goto not_found;
}
/* remove ih_p from the link list and maintain the head/tail */
ih_lst->ih_next = ih_p->ih_next;
if (ino_p->pino_ih_head == ih_p) {
ino_p->pino_ih_head = ih_p->ih_next;
}
if (ino_p->pino_ih_tail == ih_p) {
ino_p->pino_ih_tail = ih_lst;
}
ino_p->pino_ih_start = ino_p->pino_ih_head;
reset:
if (ih_p->ih_config_handle) {
pci_config_teardown(&ih_p->ih_config_handle);
}
kmem_free(ih_p, sizeof (ih_t));
ino_p->pino_ih_size--;
return;
not_found:
PCMU_DBG2(PCMU_DBG_R_INTX, ino_p->pino_ib_p->pib_pcmu_p->pcmu_dip,
"ino_p=%x does not have ih_p=%x\n", ino_p, ih_p);
}
ih_t *
pcmu_ib_ino_locate_intr(pcmu_ib_ino_info_t *ino_p,
dev_info_t *rdip, uint32_t inum)
{
ih_t *ih_lst = ino_p->pino_ih_head;
int i;
for (i = 0; i < ino_p->pino_ih_size; i++, ih_lst = ih_lst->ih_next) {
if (ih_lst->ih_dip == rdip && ih_lst->ih_inum == inum) {
return (ih_lst);
}
}
return ((ih_t *)NULL);
}
ih_t *
pcmu_ib_alloc_ih(dev_info_t *rdip, uint32_t inum,
uint_t (*int_handler)(caddr_t int_handler_arg1, caddr_t int_handler_arg2),
caddr_t int_handler_arg1,
caddr_t int_handler_arg2)
{
ih_t *ih_p;
ih_p = kmem_alloc(sizeof (ih_t), KM_SLEEP);
ih_p->ih_dip = rdip;
ih_p->ih_inum = inum;
ih_p->ih_intr_state = PCMU_INTR_STATE_DISABLE;
ih_p->ih_handler = int_handler;
ih_p->ih_handler_arg1 = int_handler_arg1;
ih_p->ih_handler_arg2 = int_handler_arg2;
ih_p->ih_config_handle = NULL;
return (ih_p);
}
int
pcmu_ib_update_intr_state(pcmu_t *pcmu_p, dev_info_t *rdip,
ddi_intr_handle_impl_t *hdlp, uint_t new_intr_state)
{
pcmu_ib_t *pib_p = pcmu_p->pcmu_ib_p;
pcmu_ib_ino_info_t *ino_p;
pcmu_ib_mondo_t mondo;
ih_t *ih_p;
int ret = DDI_FAILURE;
mutex_enter(&pib_p->pib_ino_lst_mutex);
if ((mondo = PCMU_IB_INO_TO_MONDO(pcmu_p->pcmu_ib_p,
PCMU_IB_MONDO_TO_INO((int32_t)hdlp->ih_vector))) == 0) {
mutex_exit(&pib_p->pib_ino_lst_mutex);
return (ret);
}
if (ino_p = pcmu_ib_locate_ino(pib_p, PCMU_IB_MONDO_TO_INO(mondo))) {
if (ih_p = pcmu_ib_ino_locate_intr(ino_p,
rdip, hdlp->ih_inum)) {
ih_p->ih_intr_state = new_intr_state;
ret = DDI_SUCCESS;
}
}
mutex_exit(&pib_p->pib_ino_lst_mutex);
return (ret);
}