mc-opl.c revision 392e836b07e8da771953e4d64233b2abe4393efe
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
*/
/*
* All Rights Reserved, Copyright (c) FUJITSU LIMITED 2008
*/
#include <sys/types.h>
#include <sys/sysmacros.h>
#include <sys/conf.h>
#include <sys/modctl.h>
#include <sys/stat.h>
#include <sys/async.h>
#include <sys/machcpuvar.h>
#include <sys/machsystm.h>
#include <sys/promif.h>
#include <sys/ksynch.h>
#include <sys/ddi.h>
#include <sys/sunddi.h>
#include <sys/sunndi.h>
#include <sys/ddifm.h>
#include <sys/fm/protocol.h>
#include <sys/fm/util.h>
#include <sys/kmem.h>
#include <sys/fm/io/opl_mc_fm.h>
#include <sys/memlist.h>
#include <sys/param.h>
#include <sys/disp.h>
#include <vm/page.h>
#include <sys/mc-opl.h>
#include <sys/opl.h>
#include <sys/opl_dimm.h>
#include <sys/scfd/scfostoescf.h>
#include <sys/cpu_module.h>
#include <vm/seg_kmem.h>
#include <sys/vmem.h>
#include <vm/hat_sfmmu.h>
#include <sys/vmsystm.h>
#include <sys/membar.h>
#include <sys/mem.h>
/*
* Function prototypes
*/
static int mc_open(dev_t *, int, int, cred_t *);
static int mc_close(dev_t, int, int, cred_t *);
static int mc_ioctl(dev_t, int, intptr_t, int, cred_t *, int *);
static int mc_attach(dev_info_t *, ddi_attach_cmd_t);
static int mc_detach(dev_info_t *, ddi_detach_cmd_t);
static int mc_poll_init(void);
static void mc_poll_fini(void);
static int mc_board_add(mc_opl_t *mcp);
static int mc_board_del(mc_opl_t *mcp);
static int mc_suspend(mc_opl_t *mcp, uint32_t flag);
static int mc_resume(mc_opl_t *mcp, uint32_t flag);
int opl_mc_suspend(void);
int opl_mc_resume(void);
static void insert_mcp(mc_opl_t *mcp);
static void delete_mcp(mc_opl_t *mcp);
static int pa_to_maddr(mc_opl_t *mcp, uint64_t pa, mc_addr_t *maddr);
static int mc_rangecheck_pa(mc_opl_t *mcp, uint64_t pa);
int mc_get_mem_unum(int, uint64_t, char *, int, int *);
int mc_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *paddr);
int mc_get_mem_offset(uint64_t paddr, uint64_t *offp);
int mc_get_mem_sid(char *unum, char *buf, int buflen, int *lenp);
int mc_get_mem_sid_dimm(mc_opl_t *mcp, char *dname, char *buf,
int buflen, int *lenp);
mc_dimm_info_t *mc_get_dimm_list(mc_opl_t *mcp);
mc_dimm_info_t *mc_prepare_dimmlist(board_dimm_info_t *bd_dimmp);
int mc_set_mem_sid(mc_opl_t *mcp, char *buf, int buflen, int lsb, int bank,
uint32_t mf_type, uint32_t d_slot);
static void mc_free_dimm_list(mc_dimm_info_t *d);
static void mc_get_mlist(mc_opl_t *);
static void mc_polling(void);
static int mc_opl_get_physical_board(int);
static void mc_clear_rewrite(mc_opl_t *mcp, int i);
static void mc_set_rewrite(mc_opl_t *mcp, int bank, uint32_t addr, int state);
static int mc_scf_log_event(mc_flt_page_t *flt_pag);
#ifdef DEBUG
static int mc_ioctl_debug(dev_t, int, intptr_t, int, cred_t *, int *);
void mc_dump_dimm(char *buf, int dnamesz, int serialsz, int partnumsz);
void mc_dump_dimm_info(board_dimm_info_t *bd_dimmp);
#endif
#pragma weak opl_get_physical_board
extern int opl_get_physical_board(int);
extern int plat_max_boards(void);
/*
* Configuration data structures
*/
static struct cb_ops mc_cb_ops = {
mc_open, /* open */
mc_close, /* close */
nulldev, /* strategy */
nulldev, /* print */
nodev, /* dump */
nulldev, /* read */
nulldev, /* write */
mc_ioctl, /* ioctl */
nodev, /* devmap */
nodev, /* mmap */
nodev, /* segmap */
nochpoll, /* poll */
ddi_prop_op, /* cb_prop_op */
0, /* streamtab */
D_MP | D_NEW | D_HOTPLUG, /* Driver compatibility flag */
CB_REV, /* rev */
nodev, /* cb_aread */
nodev /* cb_awrite */
};
static struct dev_ops mc_ops = {
DEVO_REV, /* rev */
0, /* refcnt */
ddi_getinfo_1to1, /* getinfo */
nulldev, /* identify */
nulldev, /* probe */
mc_attach, /* attach */
mc_detach, /* detach */
nulldev, /* reset */
&mc_cb_ops, /* cb_ops */
(struct bus_ops *)0, /* bus_ops */
nulldev, /* power */
ddi_quiesce_not_needed, /* quiesce */
};
/*
* Driver globals
*/
static enum {
MODEL_FF1,
MODEL_FF2,
MODEL_DC,
MODEL_IKKAKU
} plat_model = MODEL_DC; /* The default behaviour is DC */
static struct plat_model_names {
const char *unit_name;
const char *mem_name;
} model_names[] = {
{ "MBU_A", "MEMB" },
{ "MBU_B", "MEMB" },
{ "CMU", "" },
{ "MBU_A", "" }
};
/*
* The DIMM Names for DC platform.
* The index into this table is made up of (bank, dslot),
* Where dslot occupies bits 0-1 and bank occupies 2-4.
*/
static char *mc_dc_dimm_unum_table[OPL_MAX_DIMMS] = {
/* --------CMUnn----------- */
/* --CS0-----|--CS1------ */
/* -H-|--L-- | -H- | -L-- */
"03A", "02A", "03B", "02B", /* Bank 0 (MAC 0 bank 0) */
"13A", "12A", "13B", "12B", /* Bank 1 (MAC 0 bank 1) */
"23A", "22A", "23B", "22B", /* Bank 2 (MAC 1 bank 0) */
"33A", "32A", "33B", "32B", /* Bank 3 (MAC 1 bank 1) */
"01A", "00A", "01B", "00B", /* Bank 4 (MAC 2 bank 0) */
"11A", "10A", "11B", "10B", /* Bank 5 (MAC 2 bank 1) */
"21A", "20A", "21B", "20B", /* Bank 6 (MAC 3 bank 0) */
"31A", "30A", "31B", "30B" /* Bank 7 (MAC 3 bank 1) */
};
/*
* The DIMM Names for FF1/FF2/IKKAKU platforms.
* The index into this table is made up of (board, bank, dslot),
* Where dslot occupies bits 0-1, bank occupies 2-4 and
* board occupies the bit 5.
*/
static char *mc_ff_dimm_unum_table[2 * OPL_MAX_DIMMS] = {
/* --------CMU0---------- */
/* --CS0-----|--CS1------ */
/* -H-|--L-- | -H- | -L-- */
"03A", "02A", "03B", "02B", /* Bank 0 (MAC 0 bank 0) */
"01A", "00A", "01B", "00B", /* Bank 1 (MAC 0 bank 1) */
"13A", "12A", "13B", "12B", /* Bank 2 (MAC 1 bank 0) */
"11A", "10A", "11B", "10B", /* Bank 3 (MAC 1 bank 1) */
"23A", "22A", "23B", "22B", /* Bank 4 (MAC 2 bank 0) */
"21A", "20A", "21B", "20B", /* Bank 5 (MAC 2 bank 1) */
"33A", "32A", "33B", "32B", /* Bank 6 (MAC 3 bank 0) */
"31A", "30A", "31B", "30B", /* Bank 7 (MAC 3 bank 1) */
/* --------CMU1---------- */
/* --CS0-----|--CS1------ */
/* -H-|--L-- | -H- | -L-- */
"43A", "42A", "43B", "42B", /* Bank 0 (MAC 0 bank 0) */
"41A", "40A", "41B", "40B", /* Bank 1 (MAC 0 bank 1) */
"53A", "52A", "53B", "52B", /* Bank 2 (MAC 1 bank 0) */
"51A", "50A", "51B", "50B", /* Bank 3 (MAC 1 bank 1) */
"63A", "62A", "63B", "62B", /* Bank 4 (MAC 2 bank 0) */
"61A", "60A", "61B", "60B", /* Bank 5 (MAC 2 bank 1) */
"73A", "72A", "73B", "72B", /* Bank 6 (MAC 3 bank 0) */
"71A", "70A", "71B", "70B" /* Bank 7 (MAC 3 bank 1) */
};
#define BD_BK_SLOT_TO_INDEX(bd, bk, s) \
(((bd & 0x01) << 5) | ((bk & 0x07) << 2) | (s & 0x03))
#define INDEX_TO_BANK(i) (((i) & 0x1C) >> 2)
#define INDEX_TO_SLOT(i) ((i) & 0x03)
#define SLOT_TO_CS(slot) ((slot & 0x3) >> 1)
/* Isolation unit size is 64 MB */
#define MC_ISOLATION_BSIZE (64 * 1024 * 1024)
#define MC_MAX_SPEEDS 7
typedef struct {
uint32_t mc_speeds;
uint32_t mc_period;
} mc_scan_speed_t;
#define MC_CNTL_SPEED_SHIFT 26
/*
* In mirror mode, we normalized the bank idx to "even" since
* the HW treats them as one unit w.r.t programming.
* This bank index will be the "effective" bank index.
* All mirrored bank state info on mc_period, mc_speedup_period
* will be stored in the even bank structure to avoid code duplication.
*/
#define MIRROR_IDX(bankidx) (bankidx & ~1)
static mc_scan_speed_t mc_scan_speeds[MC_MAX_SPEEDS] = {
{0x6 << MC_CNTL_SPEED_SHIFT, 0},
{0x5 << MC_CNTL_SPEED_SHIFT, 32},
{0x4 << MC_CNTL_SPEED_SHIFT, 64},
{0x3 << MC_CNTL_SPEED_SHIFT, 128},
{0x2 << MC_CNTL_SPEED_SHIFT, 256},
{0x1 << MC_CNTL_SPEED_SHIFT, 512},
{0x0 << MC_CNTL_SPEED_SHIFT, 1024}
};
static uint32_t mc_max_speed = (0x6 << 26);
int mc_isolation_bsize = MC_ISOLATION_BSIZE;
int mc_patrol_interval_sec = MC_PATROL_INTERVAL_SEC;
int mc_max_scf_retry = 16;
int mc_max_scf_logs = 64;
int mc_max_errlog_processed = BANKNUM_PER_SB*2;
int mc_scan_period = 12 * 60 * 60; /* 12 hours period */
int mc_max_rewrite_loop = 100;
int mc_rewrite_delay = 10;
/*
* it takes SCF about 300 m.s. to process a requst. We can bail out
* if it is busy. It does not pay to wait for it too long.
*/
int mc_max_scf_loop = 2;
int mc_scf_delay = 100;
int mc_pce_dropped = 0;
int mc_poll_priority = MINCLSYSPRI;
int mc_max_rewrite_retry = 6 * 60;
/*
* Mutex hierarchy in mc-opl
* If both mcmutex and mc_lock must be held,
* mcmutex must be acquired first, and then mc_lock.
*/
static kmutex_t mcmutex;
mc_opl_t *mc_instances[OPL_MAX_BOARDS];
static kmutex_t mc_polling_lock;
static kcondvar_t mc_polling_cv;
static kcondvar_t mc_poll_exit_cv;
static int mc_poll_cmd = 0;
static int mc_pollthr_running = 0;
int mc_timeout_period = 0; /* this is in m.s. */
void *mc_statep;
#ifdef DEBUG
int oplmc_debug = 0;
#endif
static int mc_debug_show_all = 0;
extern struct mod_ops mod_driverops;
static struct modldrv modldrv = {
&mod_driverops, /* module type, this one is a driver */
"OPL Memory-controller", /* module name */
&mc_ops, /* driver ops */
};
static struct modlinkage modlinkage = {
MODREV_1, /* rev */
(void *)&modldrv,
NULL
};
#pragma weak opl_get_mem_unum
#pragma weak opl_get_mem_sid
#pragma weak opl_get_mem_offset
#pragma weak opl_get_mem_addr
extern int (*opl_get_mem_unum)(int, uint64_t, char *, int, int *);
extern int (*opl_get_mem_sid)(char *unum, char *buf, int buflen, int *lenp);
extern int (*opl_get_mem_offset)(uint64_t paddr, uint64_t *offp);
extern int (*opl_get_mem_addr)(char *unum, char *sid, uint64_t offset,
uint64_t *paddr);
/*
* pseudo-mc node portid format
*
* [10] = 0
* [9] = 1
* [8] = LSB_ID[4] = 0
* [7:4] = LSB_ID[3:0]
* [3:0] = 0
*
*/
/*
* These are the module initialization routines.
*/
int
_init(void)
{
int error;
int plen;
char model[20];
pnode_t node;
if ((error = ddi_soft_state_init(&mc_statep,
sizeof (mc_opl_t), 1)) != 0)
return (error);
if ((error = mc_poll_init()) != 0) {
ddi_soft_state_fini(&mc_statep);
return (error);
}
mutex_init(&mcmutex, NULL, MUTEX_DRIVER, NULL);
if (&opl_get_mem_unum)
opl_get_mem_unum = mc_get_mem_unum;
if (&opl_get_mem_sid)
opl_get_mem_sid = mc_get_mem_sid;
if (&opl_get_mem_offset)
opl_get_mem_offset = mc_get_mem_offset;
if (&opl_get_mem_addr)
opl_get_mem_addr = mc_get_mem_addr;
node = prom_rootnode();
plen = prom_getproplen(node, "model");
if (plen > 0 && plen < sizeof (model)) {
(void) prom_getprop(node, "model", model);
model[plen] = '\0';
if (strcmp(model, "FF1") == 0)
plat_model = MODEL_FF1;
else if (strcmp(model, "FF2") == 0)
plat_model = MODEL_FF2;
else if (strncmp(model, "DC", 2) == 0)
plat_model = MODEL_DC;
else if (strcmp(model, "IKKAKU") == 0)
plat_model = MODEL_IKKAKU;
}
error = mod_install(&modlinkage);
if (error != 0) {
if (&opl_get_mem_unum)
opl_get_mem_unum = NULL;
if (&opl_get_mem_sid)
opl_get_mem_sid = NULL;
if (&opl_get_mem_offset)
opl_get_mem_offset = NULL;
if (&opl_get_mem_addr)
opl_get_mem_addr = NULL;
mutex_destroy(&mcmutex);
mc_poll_fini();
ddi_soft_state_fini(&mc_statep);
}
return (error);
}
int
_fini(void)
{
int error;
if ((error = mod_remove(&modlinkage)) != 0)
return (error);
if (&opl_get_mem_unum)
opl_get_mem_unum = NULL;
if (&opl_get_mem_sid)
opl_get_mem_sid = NULL;
if (&opl_get_mem_offset)
opl_get_mem_offset = NULL;
if (&opl_get_mem_addr)
opl_get_mem_addr = NULL;
mutex_destroy(&mcmutex);
mc_poll_fini();
ddi_soft_state_fini(&mc_statep);
return (0);
}
int
_info(struct modinfo *modinfop)
{
return (mod_info(&modlinkage, modinfop));
}
static void
mc_polling_thread()
{
mutex_enter(&mc_polling_lock);
mc_pollthr_running = 1;
while (!(mc_poll_cmd & MC_POLL_EXIT)) {
mc_polling();
(void) cv_reltimedwait(&mc_polling_cv, &mc_polling_lock,
mc_timeout_period, TR_CLOCK_TICK);
}
mc_pollthr_running = 0;
/*
* signal if any one is waiting for this thread to exit.
*/
cv_signal(&mc_poll_exit_cv);
mutex_exit(&mc_polling_lock);
thread_exit();
/* NOTREACHED */
}
static int
mc_poll_init()
{
mutex_init(&mc_polling_lock, NULL, MUTEX_DRIVER, NULL);
cv_init(&mc_polling_cv, NULL, CV_DRIVER, NULL);
cv_init(&mc_poll_exit_cv, NULL, CV_DRIVER, NULL);
return (0);
}
static void
mc_poll_fini()
{
mutex_enter(&mc_polling_lock);
if (mc_pollthr_running) {
mc_poll_cmd = MC_POLL_EXIT;
cv_signal(&mc_polling_cv);
while (mc_pollthr_running) {
cv_wait(&mc_poll_exit_cv, &mc_polling_lock);
}
}
mutex_exit(&mc_polling_lock);
mutex_destroy(&mc_polling_lock);
cv_destroy(&mc_polling_cv);
cv_destroy(&mc_poll_exit_cv);
}
static int
mc_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
{
mc_opl_t *mcp;
int instance;
int rv;
/* get the instance of this devi */
instance = ddi_get_instance(devi);
switch (cmd) {
case DDI_ATTACH:
break;
case DDI_RESUME:
mcp = ddi_get_soft_state(mc_statep, instance);
rv = mc_resume(mcp, MC_DRIVER_SUSPENDED);
return (rv);
default:
return (DDI_FAILURE);
}
if (ddi_soft_state_zalloc(mc_statep, instance) != DDI_SUCCESS)
return (DDI_FAILURE);
if (ddi_create_minor_node(devi, "mc-opl", S_IFCHR, instance,
"ddi_mem_ctrl", 0) != DDI_SUCCESS) {
MC_LOG("mc_attach: create_minor_node failed\n");
return (DDI_FAILURE);
}
if ((mcp = ddi_get_soft_state(mc_statep, instance)) == NULL) {
goto bad;
}
if (mc_timeout_period == 0) {
mc_patrol_interval_sec = (int)ddi_getprop(DDI_DEV_T_ANY, devi,
DDI_PROP_DONTPASS, "mc-timeout-interval-sec",
mc_patrol_interval_sec);
mc_timeout_period = drv_usectohz(1000000 *
mc_patrol_interval_sec / OPL_MAX_BOARDS);
}
/* set informations in mc state */
mcp->mc_dip = devi;
if (mc_board_add(mcp))
goto bad;
insert_mcp(mcp);
/*
* Start the polling thread if it is not running already.
*/
mutex_enter(&mc_polling_lock);
if (!mc_pollthr_running) {
(void) thread_create(NULL, 0, (void (*)())mc_polling_thread,
NULL, 0, &p0, TS_RUN, mc_poll_priority);
}
mutex_exit(&mc_polling_lock);
ddi_report_dev(devi);
return (DDI_SUCCESS);
bad:
ddi_remove_minor_node(devi, NULL);
ddi_soft_state_free(mc_statep, instance);
return (DDI_FAILURE);
}
/* ARGSUSED */
static int
mc_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
{
int rv;
int instance;
mc_opl_t *mcp;
/* get the instance of this devi */
instance = ddi_get_instance(devi);
if ((mcp = ddi_get_soft_state(mc_statep, instance)) == NULL) {
return (DDI_FAILURE);
}
switch (cmd) {
case DDI_SUSPEND:
rv = mc_suspend(mcp, MC_DRIVER_SUSPENDED);
return (rv);
case DDI_DETACH:
break;
default:
return (DDI_FAILURE);
}
delete_mcp(mcp);
if (mc_board_del(mcp) != DDI_SUCCESS) {
return (DDI_FAILURE);
}
ddi_remove_minor_node(devi, NULL);
/* free up the soft state */
ddi_soft_state_free(mc_statep, instance);
return (DDI_SUCCESS);
}
/* ARGSUSED */
static int
mc_open(dev_t *devp, int flag, int otyp, cred_t *credp)
{
return (0);
}
/* ARGSUSED */
static int
mc_close(dev_t devp, int flag, int otyp, cred_t *credp)
{
return (0);
}
/* ARGSUSED */
static int
mc_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
int *rvalp)
{
mc_flt_page_t flt_page;
if (cmd == MCIOC_FAULT_PAGE) {
if (arg == NULL)
return (EINVAL);
if (ddi_copyin((const void *)arg, (void *)&flt_page,
sizeof (mc_flt_page_t), 0) < 0)
return (EFAULT);
return (mc_scf_log_event(&flt_page));
}
#ifdef DEBUG
return (mc_ioctl_debug(dev, cmd, arg, mode, credp, rvalp));
#else
return (ENOTTY);
#endif
}
/*
* PA validity check:
* This function return 1 if the PA is a valid PA
* in the running Solaris instance i.e. in physinstall
* Otherwise, return 0.
*/
/* ARGSUSED */
static int
pa_is_valid(mc_opl_t *mcp, uint64_t addr)
{
if (mcp->mlist == NULL)
mc_get_mlist(mcp);
if (mcp->mlist && address_in_memlist(mcp->mlist, addr, 0)) {
return (1);
}
return (0);
}
/*
* mac-pa translation routines.
*
* Input: mc driver state, (LSB#, Bank#, DIMM address)
* Output: physical address
*
* Valid - return value: 0
* Invalid - return value: -1
*/
static int
mcaddr_to_pa(mc_opl_t *mcp, mc_addr_t *maddr, uint64_t *pa)
{
int i;
uint64_t pa_offset = 0;
int cs = (maddr->ma_dimm_addr >> CS_SHIFT) & 1;
int bank = maddr->ma_bank;
mc_addr_t maddr1;
int bank0, bank1;
MC_LOG("mcaddr /LSB%d/B%d/%x\n", maddr->ma_bd, bank,
maddr->ma_dimm_addr);
/* loc validity check */
ASSERT(maddr->ma_bd >= 0 && OPL_BOARD_MAX > maddr->ma_bd);
ASSERT(bank >= 0 && OPL_BANK_MAX > bank);
/* Do translation */
for (i = 0; i < PA_BITS_FOR_MAC; i++) {
int pa_bit = 0;
int mc_bit = mcp->mc_trans_table[cs][i];
if (mc_bit < MC_ADDRESS_BITS) {
pa_bit = (maddr->ma_dimm_addr >> mc_bit) & 1;
} else if (mc_bit == MP_NONE) {
pa_bit = 0;
} else if (mc_bit == MP_BANK_0) {
pa_bit = bank & 1;
} else if (mc_bit == MP_BANK_1) {
pa_bit = (bank >> 1) & 1;
} else if (mc_bit == MP_BANK_2) {
pa_bit = (bank >> 2) & 1;
}
pa_offset |= ((uint64_t)pa_bit) << i;
}
*pa = mcp->mc_start_address + pa_offset;
MC_LOG("pa = %lx\n", *pa);
if (pa_to_maddr(mcp, *pa, &maddr1) == -1) {
cmn_err(CE_WARN, "mcaddr_to_pa: /LSB%d/B%d/%x failed to "
"convert PA %lx\n", maddr->ma_bd, bank,
maddr->ma_dimm_addr, *pa);
return (-1);
}
/*
* In mirror mode, PA is always translated to the even bank.
*/
if (IS_MIRROR(mcp, maddr->ma_bank)) {
bank0 = maddr->ma_bank & ~(1);
bank1 = maddr1.ma_bank & ~(1);
} else {
bank0 = maddr->ma_bank;
bank1 = maddr1.ma_bank;
}
/*
* there is no need to check ma_bd because it is generated from
* mcp. They are the same.
*/
if ((bank0 == bank1) && (maddr->ma_dimm_addr ==
maddr1.ma_dimm_addr)) {
return (0);
} else {
MC_LOG("Translation error source /LSB%d/B%d/%x, "
"PA %lx, target /LSB%d/B%d/%x\n", maddr->ma_bd, bank,
maddr->ma_dimm_addr, *pa, maddr1.ma_bd, maddr1.ma_bank,
maddr1.ma_dimm_addr);
return (-1);
}
}
/*
* PA to CS (used by pa_to_maddr).
*/
static int
pa_to_cs(mc_opl_t *mcp, uint64_t pa_offset)
{
int i;
int cs = 1;
for (i = 0; i < PA_BITS_FOR_MAC; i++) {
/* MAC address bit<29> is arranged on the same PA bit */
/* on both table. So we may use any table. */
if (mcp->mc_trans_table[0][i] == CS_SHIFT) {
cs = (pa_offset >> i) & 1;
break;
}
}
return (cs);
}
/*
* PA to DIMM (used by pa_to_maddr).
*/
/* ARGSUSED */
static uint32_t
pa_to_dimm(mc_opl_t *mcp, uint64_t pa_offset)
{
int i;
int cs = pa_to_cs(mcp, pa_offset);
uint32_t dimm_addr = 0;
for (i = 0; i < PA_BITS_FOR_MAC; i++) {
int pa_bit_value = (pa_offset >> i) & 1;
int mc_bit = mcp->mc_trans_table[cs][i];
if (mc_bit < MC_ADDRESS_BITS) {
dimm_addr |= pa_bit_value << mc_bit;
}
}
dimm_addr |= cs << CS_SHIFT;
return (dimm_addr);
}
/*
* PA to Bank (used by pa_to_maddr).
*/
static int
pa_to_bank(mc_opl_t *mcp, uint64_t pa_offset)
{
int i;
int cs = pa_to_cs(mcp, pa_offset);
int bankno = mcp->mc_trans_table[cs][INDEX_OF_BANK_SUPPLEMENT_BIT];
for (i = 0; i < PA_BITS_FOR_MAC; i++) {
int pa_bit_value = (pa_offset >> i) & 1;
int mc_bit = mcp->mc_trans_table[cs][i];
switch (mc_bit) {
case MP_BANK_0:
bankno |= pa_bit_value;
break;
case MP_BANK_1:
bankno |= pa_bit_value << 1;
break;
case MP_BANK_2:
bankno |= pa_bit_value << 2;
break;
}
}
return (bankno);
}
/*
* PA to MAC address translation
*
* Input: MAC driver state, physicall adress
* Output: LSB#, Bank id, mac address
*
* Valid - return value: 0
* Invalid - return value: -1
*/
int
pa_to_maddr(mc_opl_t *mcp, uint64_t pa, mc_addr_t *maddr)
{
uint64_t pa_offset;
if (!mc_rangecheck_pa(mcp, pa))
return (-1);
/* Do translation */
pa_offset = pa - mcp->mc_start_address;
maddr->ma_bd = mcp->mc_board_num;
maddr->ma_phys_bd = mcp->mc_phys_board_num;
maddr->ma_bank = pa_to_bank(mcp, pa_offset);
maddr->ma_dimm_addr = pa_to_dimm(mcp, pa_offset);
MC_LOG("pa %lx -> mcaddr /LSB%d/B%d/%x\n", pa_offset, maddr->ma_bd,
maddr->ma_bank, maddr->ma_dimm_addr);
return (0);
}
/*
* UNUM format for DC is "/CMUnn/MEMxyZ", where
* nn = 00..03 for DC1 and 00..07 for DC2 and 00..15 for DC3.
* x = MAC 0..3
* y = 0..3 (slot info).
* Z = 'A' or 'B'
*
* UNUM format for FF1 is "/MBU_A/MEMBx/MEMyZ", where
* x = 0..3 (MEMB number)
* y = 0..3 (slot info).
* Z = 'A' or 'B'
*
* UNUM format for FF2 is "/MBU_B/MEMBx/MEMyZ", where
* x = 0..7 (MEMB number)
* y = 0..3 (slot info).
* Z = 'A' or 'B'
*
* UNUM format for IKKAKU is "/MBU_A/MEMyZ", where
* y = 0..3 (slot info).
* Z = 'A' or 'B'
*
*/
int
mc_set_mem_unum(char *buf, int buflen, int sb, int bank,
uint32_t mf_type, uint32_t d_slot)
{
char *dimmnm;
char memb_num;
int cs;
int i;
int j;
cs = SLOT_TO_CS(d_slot);
switch (plat_model) {
case MODEL_DC:
if (mf_type == FLT_TYPE_INTERMITTENT_CE ||
mf_type == FLT_TYPE_PERMANENT_CE) {
i = BD_BK_SLOT_TO_INDEX(0, bank, d_slot);
dimmnm = mc_dc_dimm_unum_table[i];
(void) snprintf(buf, buflen, "/%s%02d/MEM%s",
model_names[plat_model].unit_name, sb, dimmnm);
} else {
i = BD_BK_SLOT_TO_INDEX(0, bank, 0);
j = (cs == 0) ? i : i + 2;
(void) snprintf(buf, buflen, "/%s%02d/MEM%s MEM%s",
model_names[plat_model].unit_name, sb,
mc_dc_dimm_unum_table[j],
mc_dc_dimm_unum_table[j + 1]);
}
break;
case MODEL_FF1:
case MODEL_FF2:
if (mf_type == FLT_TYPE_INTERMITTENT_CE ||
mf_type == FLT_TYPE_PERMANENT_CE) {
i = BD_BK_SLOT_TO_INDEX(sb, bank, d_slot);
dimmnm = mc_ff_dimm_unum_table[i];
memb_num = dimmnm[0];
(void) snprintf(buf, buflen, "/%s/%s%c/MEM%s",
model_names[plat_model].unit_name,
model_names[plat_model].mem_name,
memb_num, &dimmnm[1]);
} else {
i = BD_BK_SLOT_TO_INDEX(sb, bank, 0);
j = (cs == 0) ? i : i + 2;
memb_num = mc_ff_dimm_unum_table[i][0],
(void) snprintf(buf, buflen, "/%s/%s%c/MEM%s MEM%s",
model_names[plat_model].unit_name,
model_names[plat_model].mem_name, memb_num,
&mc_ff_dimm_unum_table[j][1],
&mc_ff_dimm_unum_table[j + 1][1]);
}
break;
case MODEL_IKKAKU:
if (mf_type == FLT_TYPE_INTERMITTENT_CE ||
mf_type == FLT_TYPE_PERMANENT_CE) {
i = BD_BK_SLOT_TO_INDEX(sb, bank, d_slot);
dimmnm = mc_ff_dimm_unum_table[i];
(void) snprintf(buf, buflen, "/%s/MEM%s",
model_names[plat_model].unit_name, &dimmnm[1]);
} else {
i = BD_BK_SLOT_TO_INDEX(sb, bank, 0);
j = (cs == 0) ? i : i + 2;
memb_num = mc_ff_dimm_unum_table[i][0],
(void) snprintf(buf, buflen, "/%s/MEM%s MEM%s",
model_names[plat_model].unit_name,
&mc_ff_dimm_unum_table[j][1],
&mc_ff_dimm_unum_table[j + 1][1]);
}
break;
default:
return (-1);
}
return (0);
}
static void
mc_ereport_post(mc_aflt_t *mc_aflt)
{
char buf[FM_MAX_CLASS];
char device_path[MAXPATHLEN];
char sid[MAXPATHLEN];
nv_alloc_t *nva = NULL;
nvlist_t *ereport, *detector, *resource;
errorq_elem_t *eqep;
int nflts;
mc_flt_stat_t *flt_stat;
int i, n;
int blen = MAXPATHLEN;
char *p, *s = NULL;
uint32_t values[2], synd[2], dslot[2];
uint64_t offset = (uint64_t)-1;
int ret = -1;
if (panicstr) {
eqep = errorq_reserve(ereport_errorq);
if (eqep == NULL)
return;
ereport = errorq_elem_nvl(ereport_errorq, eqep);
nva = errorq_elem_nva(ereport_errorq, eqep);
} else {
ereport = fm_nvlist_create(nva);
}
/*
* Create the scheme "dev" FMRI.
*/
detector = fm_nvlist_create(nva);
resource = fm_nvlist_create(nva);
nflts = mc_aflt->mflt_nflts;
ASSERT(nflts >= 1 && nflts <= 2);
flt_stat = mc_aflt->mflt_stat[0];
(void) ddi_pathname(mc_aflt->mflt_mcp->mc_dip, device_path);
(void) fm_fmri_dev_set(detector, FM_DEV_SCHEME_VERSION, NULL,
device_path, NULL, NULL);
/*
* Encode all the common data into the ereport.
*/
(void) snprintf(buf, FM_MAX_CLASS, "%s.%s-%s", MC_OPL_ERROR_CLASS,
mc_aflt->mflt_is_ptrl ? MC_OPL_PTRL_SUBCLASS : MC_OPL_MI_SUBCLASS,
mc_aflt->mflt_erpt_class);
MC_LOG("mc_ereport_post: ereport %s\n", buf);
fm_ereport_set(ereport, FM_EREPORT_VERSION, buf,
fm_ena_generate(mc_aflt->mflt_id, FM_ENA_FMT1), detector, NULL);
/*
* Set payload.
*/
fm_payload_set(ereport, MC_OPL_BOARD, DATA_TYPE_UINT32,
flt_stat->mf_flt_maddr.ma_bd, NULL);
fm_payload_set(ereport, MC_OPL_PA, DATA_TYPE_UINT64,
flt_stat->mf_flt_paddr, NULL);
if (flt_stat->mf_type == FLT_TYPE_INTERMITTENT_CE ||
flt_stat->mf_type == FLT_TYPE_PERMANENT_CE) {
fm_payload_set(ereport, MC_OPL_FLT_TYPE, DATA_TYPE_UINT8,
ECC_STICKY, NULL);
}
for (i = 0; i < nflts; i++)
values[i] = mc_aflt->mflt_stat[i]->mf_flt_maddr.ma_bank;
fm_payload_set(ereport, MC_OPL_BANK, DATA_TYPE_UINT32_ARRAY, nflts,
values, NULL);
for (i = 0; i < nflts; i++)
values[i] = mc_aflt->mflt_stat[i]->mf_cntl;
fm_payload_set(ereport, MC_OPL_STATUS, DATA_TYPE_UINT32_ARRAY, nflts,
values, NULL);
for (i = 0; i < nflts; i++)
values[i] = mc_aflt->mflt_stat[i]->mf_err_add;
/* offset is set only for PCE and ICE */
if (mc_aflt->mflt_stat[0]->mf_type == FLT_TYPE_INTERMITTENT_CE ||
mc_aflt->mflt_stat[0]->mf_type == FLT_TYPE_PERMANENT_CE) {
offset = values[0];
}
fm_payload_set(ereport, MC_OPL_ERR_ADD, DATA_TYPE_UINT32_ARRAY, nflts,
values, NULL);
for (i = 0; i < nflts; i++)
values[i] = mc_aflt->mflt_stat[i]->mf_err_log;
fm_payload_set(ereport, MC_OPL_ERR_LOG, DATA_TYPE_UINT32_ARRAY, nflts,
values, NULL);
for (i = 0; i < nflts; i++) {
flt_stat = mc_aflt->mflt_stat[i];
if (flt_stat->mf_errlog_valid) {
synd[i] = flt_stat->mf_synd;
dslot[i] = flt_stat->mf_dimm_slot;
values[i] = flt_stat->mf_dram_place;
} else {
synd[i] = 0;
dslot[i] = 0;
values[i] = 0;
}
}
fm_payload_set(ereport, MC_OPL_ERR_SYND, DATA_TYPE_UINT32_ARRAY, nflts,
synd, NULL);
fm_payload_set(ereport, MC_OPL_ERR_DIMMSLOT, DATA_TYPE_UINT32_ARRAY,
nflts, dslot, NULL);
fm_payload_set(ereport, MC_OPL_ERR_DRAM, DATA_TYPE_UINT32_ARRAY, nflts,
values, NULL);
device_path[0] = 0;
p = &device_path[0];
sid[0] = 0;
s = &sid[0];
ret = 0;
for (i = 0; i < nflts; i++) {
int bank;
flt_stat = mc_aflt->mflt_stat[i];
bank = flt_stat->mf_flt_maddr.ma_bank;
ret = mc_set_mem_unum(p + strlen(p), blen,
flt_stat->mf_flt_maddr.ma_phys_bd, bank, flt_stat->mf_type,
flt_stat->mf_dimm_slot);
if (ret != 0) {
cmn_err(CE_WARN,
"mc_ereport_post: Failed to determine the unum "
"for board=%d bank=%d type=0x%x slot=0x%x",
flt_stat->mf_flt_maddr.ma_bd, bank,
flt_stat->mf_type, flt_stat->mf_dimm_slot);
continue;
}
n = strlen(device_path);
blen = MAXPATHLEN - n;
p = &device_path[n];
if (i < (nflts - 1)) {
(void) snprintf(p, blen, " ");
blen--;
p++;
}
if (ret == 0) {
ret = mc_set_mem_sid(mc_aflt->mflt_mcp, s + strlen(s),
blen, flt_stat->mf_flt_maddr.ma_phys_bd, bank,
flt_stat->mf_type, flt_stat->mf_dimm_slot);
}
}
(void) fm_fmri_mem_set(resource, FM_MEM_SCHEME_VERSION, NULL,
device_path, (ret == 0) ? sid : NULL, (ret == 0) ? offset :
(uint64_t)-1);
fm_payload_set(ereport, MC_OPL_RESOURCE, DATA_TYPE_NVLIST, resource,
NULL);
if (panicstr) {
errorq_commit(ereport_errorq, eqep, ERRORQ_SYNC);
} else {
(void) fm_ereport_post(ereport, EVCH_TRYHARD);
fm_nvlist_destroy(ereport, FM_NVA_FREE);
fm_nvlist_destroy(detector, FM_NVA_FREE);
fm_nvlist_destroy(resource, FM_NVA_FREE);
}
}
static void
mc_err_drain(mc_aflt_t *mc_aflt)
{
int rv;
uint64_t pa = (uint64_t)(-1);
int i;
MC_LOG("mc_err_drain: %s\n", mc_aflt->mflt_erpt_class);
/*
* we come here only when we have:
* In mirror mode: MUE, SUE
* In normal mode: UE, Permanent CE, Intermittent CE
*/
for (i = 0; i < mc_aflt->mflt_nflts; i++) {
rv = mcaddr_to_pa(mc_aflt->mflt_mcp,
&(mc_aflt->mflt_stat[i]->mf_flt_maddr), &pa);
/* Ensure the pa is valid (not in isolated memory block) */
if (rv == 0 && pa_is_valid(mc_aflt->mflt_mcp, pa))
mc_aflt->mflt_stat[i]->mf_flt_paddr = pa;
else
mc_aflt->mflt_stat[i]->mf_flt_paddr = (uint64_t)-1;
}
MC_LOG("mc_err_drain:pa = %lx\n", pa);
switch (page_retire_check(pa, NULL)) {
case 0:
case EAGAIN:
MC_LOG("Page retired or pending\n");
return;
case EIO:
/*
* Do page retirement except for the PCE and ICE cases.
* This is taken care by the OPL DE
*/
if (mc_aflt->mflt_stat[0]->mf_type !=
FLT_TYPE_INTERMITTENT_CE &&
mc_aflt->mflt_stat[0]->mf_type != FLT_TYPE_PERMANENT_CE) {
MC_LOG("offline page at pa %lx error %x\n", pa,
mc_aflt->mflt_pr);
(void) page_retire(pa, mc_aflt->mflt_pr);
}
break;
case EINVAL:
default:
/*
* Some memory do not have page structure so
* we keep going in case of EINVAL.
*/
break;
}
for (i = 0; i < mc_aflt->mflt_nflts; i++) {
mc_aflt_t mc_aflt0;
if (mc_aflt->mflt_stat[i]->mf_flt_paddr != (uint64_t)-1) {
mc_aflt0 = *mc_aflt;
mc_aflt0.mflt_nflts = 1;
mc_aflt0.mflt_stat[0] = mc_aflt->mflt_stat[i];
mc_ereport_post(&mc_aflt0);
}
}
}
/*
* The restart address is actually defined in unit of PA[37:6]
* the mac patrol will convert that to dimm offset. If the
* address is not in the bank, it will continue to search for
* the next PA that is within the bank.
*
* Also the mac patrol scans the dimms based on PA, not
* dimm offset.
*/
static int
restart_patrol(mc_opl_t *mcp, int bank, mc_rsaddr_info_t *rsaddr_info)
{
uint64_t pa;
int rv;
if (MC_REWRITE_MODE(mcp, bank)) {
return (0);
}
if (rsaddr_info == NULL || (rsaddr_info->mi_valid == 0)) {
MAC_PTRL_START(mcp, bank);
return (0);
}
rv = mcaddr_to_pa(mcp, &rsaddr_info->mi_restartaddr, &pa);
if (rv != 0) {
MC_LOG("cannot convert mcaddr to pa. use auto restart\n");
MAC_PTRL_START(mcp, bank);
return (0);
}
if (!mc_rangecheck_pa(mcp, pa)) {
/* pa is not on this board, just retry */
cmn_err(CE_WARN, "restart_patrol: invalid address %lx "
"on board %d\n", pa, mcp->mc_board_num);
MAC_PTRL_START(mcp, bank);
return (0);
}
MC_LOG("restart_patrol: pa = %lx\n", pa);
if (!rsaddr_info->mi_injectrestart) {
/*
* For non-error injection restart we need to
* determine if the current restart pa/page is
* a "good" page. A "good" page is a page that
* has not been page retired. If the current
* page that contains the pa is "good", we will
* do a HW auto restart and let HW patrol continue
* where it last stopped. Most desired scenario.
*
* If the current page is not "good", we will advance
* to the next page to find the next "good" page and
* restart the patrol from there.
*/
int wrapcount = 0;
uint64_t origpa = pa;
while (wrapcount < 2) {
if (!pa_is_valid(mcp, pa)) {
/*
* Not in physinstall - advance to the
* next memory isolation blocksize
*/
MC_LOG("Invalid PA\n");
pa = roundup(pa + 1, mc_isolation_bsize);
} else {
int rv;
if ((rv = page_retire_check(pa, NULL)) != 0 &&
rv != EAGAIN) {
/*
* The page is "good" (not retired),
* we will use automatic HW restart
* algorithm if this is the original
* current starting page.
*/
if (pa == origpa) {
MC_LOG("Page has no error. "
"Auto restart\n");
MAC_PTRL_START(mcp, bank);
return (0);
} else {
/*
* found a subsequent good page
*/
break;
}
}
/*
* Skip to the next page
*/
pa = roundup(pa + 1, PAGESIZE);
MC_LOG("Skipping bad page to %lx\n", pa);
}
/* Check to see if we hit the end of the memory range */
if (pa >= (mcp->mc_start_address + mcp->mc_size)) {
MC_LOG("Wrap around\n");
pa = mcp->mc_start_address;
wrapcount++;
}
}
if (wrapcount > 1) {
MC_LOG("Failed to find a good page. Just restart\n");
MAC_PTRL_START(mcp, bank);
return (0);
}
}
/*
* We reached here either:
* 1. We are doing an error injection restart that specify
* the exact pa/page to restart. OR
* 2. We found a subsequent good page different from the
* original restart pa/page.
* Restart MAC patrol: PA[37:6]
*/
MC_LOG("restart at pa = %lx\n", pa);
ST_MAC_REG(MAC_RESTART_ADD(mcp, bank), MAC_RESTART_PA(pa));
MAC_PTRL_START_ADD(mcp, bank);
return (0);
}
static void
mc_retry_info_put(mc_retry_info_t **q, mc_retry_info_t *p)
{
ASSERT(p != NULL);
p->ri_next = *q;
*q = p;
}
static mc_retry_info_t *
mc_retry_info_get(mc_retry_info_t **q)
{
mc_retry_info_t *p;
if ((p = *q) != NULL) {
*q = p->ri_next;
return (p);
} else {
return (NULL);
}
}
/*
* Rewriting is used for two purposes.
* - to correct the error in memory.
* - to determine whether the error is permanent or intermittent.
* It's done by writing the address in MAC_BANKm_REWRITE_ADD
* and issuing REW_REQ command in MAC_BANKm_PTRL_CNRL. After that,
* REW_END (and REW_CE/REW_UE if some error detected) is set when
* rewrite operation is done. See 4.7.3 and 4.7.11 in Columbus2 PRM.
*
* Note that rewrite operation doesn't change RAW_UE to Marked UE.
* Therefore, we use it only CE case.
*/
static uint32_t
do_rewrite(mc_opl_t *mcp, int bank, uint32_t dimm_addr, int retrying)
{
uint32_t cntl;
int count = 0;
int max_count;
int retry_state;
if (retrying)
max_count = 1;
else
max_count = mc_max_rewrite_loop;
retry_state = RETRY_STATE_PENDING;
if (!retrying && MC_REWRITE_MODE(mcp, bank)) {
goto timeout;
}
retry_state = RETRY_STATE_ACTIVE;
/* first wait to make sure PTRL_STATUS is 0 */
while (count++ < max_count) {
cntl = LD_MAC_REG(MAC_PTRL_CNTL(mcp, bank));
if (!(cntl & MAC_CNTL_PTRL_STATUS)) {
count = 0;
break;
}
drv_usecwait(mc_rewrite_delay);
}
if (count >= max_count)
goto timeout;
count = 0;
ST_MAC_REG(MAC_REWRITE_ADD(mcp, bank), dimm_addr);
MAC_REW_REQ(mcp, bank);
retry_state = RETRY_STATE_REWRITE;
do {
if (count++ > max_count) {
goto timeout;
} else {
drv_usecwait(mc_rewrite_delay);
}
cntl = LD_MAC_REG(MAC_PTRL_CNTL(mcp, bank));
/*
* If there are other MEMORY or PCI activities, this
* will be BUSY, else it should be set immediately
*/
} while (!(cntl & MAC_CNTL_REW_END));
MAC_CLEAR_ERRS(mcp, bank, MAC_CNTL_REW_ERRS);
return (cntl);
timeout:
mc_set_rewrite(mcp, bank, dimm_addr, retry_state);
return (0);
}
void
mc_clear_rewrite(mc_opl_t *mcp, int bank)
{
struct mc_bank *bankp;
mc_retry_info_t *retry;
uint32_t rew_addr;
bankp = &(mcp->mc_bank[bank]);
retry = bankp->mcb_active;
bankp->mcb_active = NULL;
mc_retry_info_put(&bankp->mcb_retry_freelist, retry);
again:
bankp->mcb_rewrite_count = 0;
while (retry = mc_retry_info_get(&bankp->mcb_retry_pending)) {
rew_addr = retry->ri_addr;
mc_retry_info_put(&bankp->mcb_retry_freelist, retry);
if (do_rewrite(mcp, bank, rew_addr, 1) == 0)
break;
}
/* we break out if no more pending rewrite or we got timeout again */
if (!bankp->mcb_active && !bankp->mcb_retry_pending) {
if (!IS_MIRROR(mcp, bank)) {
MC_CLEAR_REWRITE_MODE(mcp, bank);
} else {
int mbank = bank ^ 1;
bankp = &(mcp->mc_bank[mbank]);
if (!bankp->mcb_active && !bankp->mcb_retry_pending) {
MC_CLEAR_REWRITE_MODE(mcp, bank);
MC_CLEAR_REWRITE_MODE(mcp, mbank);
} else {
bank = mbank;
goto again;
}
}
}
}
void
mc_set_rewrite(mc_opl_t *mcp, int bank, uint32_t addr, int state)
{
mc_retry_info_t *retry;
struct mc_bank *bankp;
bankp = &mcp->mc_bank[bank];
retry = mc_retry_info_get(&bankp->mcb_retry_freelist);
if (retry == NULL) {
mc_addr_t maddr;
uint64_t paddr;
/*
* previous rewrite request has not completed yet.
* So we discard this rewrite request.
*/
maddr.ma_bd = mcp->mc_board_num;
maddr.ma_bank = bank;
maddr.ma_dimm_addr = addr;
if (mcaddr_to_pa(mcp, &maddr, &paddr) == 0) {
cmn_err(CE_WARN, "Discard CE rewrite request"
" for 0x%lx (/LSB%d/B%d/%x).\n",
paddr, mcp->mc_board_num, bank, addr);
} else {
cmn_err(CE_WARN, "Discard CE rewrite request"
" for /LSB%d/B%d/%x.\n",
mcp->mc_board_num, bank, addr);
}
return;
}
retry->ri_addr = addr;
retry->ri_state = state;
MC_SET_REWRITE_MODE(mcp, bank);
if ((state > RETRY_STATE_PENDING)) {
ASSERT(bankp->mcb_active == NULL);
bankp->mcb_active = retry;
} else {
mc_retry_info_put(&bankp->mcb_retry_pending, retry);
}
if (IS_MIRROR(mcp, bank)) {
int mbank = bank ^1;
MC_SET_REWRITE_MODE(mcp, mbank);
}
}
void
mc_process_scf_log(mc_opl_t *mcp)
{
int count;
int n = 0;
scf_log_t *p;
int bank;
for (bank = 0; bank < BANKNUM_PER_SB; bank++) {
while ((p = mcp->mc_scf_log[bank]) != NULL &&
(n < mc_max_errlog_processed)) {
ASSERT(bank == p->sl_bank);
count = 0;
while ((LD_MAC_REG(MAC_STATIC_ERR_ADD(mcp, p->sl_bank))
& MAC_STATIC_ERR_VLD)) {
if (count++ >= (mc_max_scf_loop)) {
break;
}
drv_usecwait(mc_scf_delay);
}
if (count < mc_max_scf_loop) {
ST_MAC_REG(MAC_STATIC_ERR_LOG(mcp, p->sl_bank),
p->sl_err_log);
ST_MAC_REG(MAC_STATIC_ERR_ADD(mcp, p->sl_bank),
p->sl_err_add|MAC_STATIC_ERR_VLD);
mcp->mc_scf_retry[bank] = 0;
} else {
/*
* if we try too many times, just drop the req
*/
if (mcp->mc_scf_retry[bank]++ <=
mc_max_scf_retry) {
return;
} else {
if ((++mc_pce_dropped & 0xff) == 0) {
cmn_err(CE_WARN, "Cannot "
"report CE to SCF\n");
}
}
}
n++;
mcp->mc_scf_log[bank] = p->sl_next;
mcp->mc_scf_total[bank]--;
ASSERT(mcp->mc_scf_total[bank] >= 0);
kmem_free(p, sizeof (scf_log_t));
}
}
}
void
mc_queue_scf_log(mc_opl_t *mcp, mc_flt_stat_t *flt_stat, int bank)
{
scf_log_t *p;
if (mcp->mc_scf_total[bank] >= mc_max_scf_logs) {
if ((++mc_pce_dropped & 0xff) == 0) {
cmn_err(CE_WARN, "Too many CE requests.\n");
}
return;
}
p = kmem_zalloc(sizeof (scf_log_t), KM_SLEEP);
p->sl_next = 0;
p->sl_err_add = flt_stat->mf_err_add;
p->sl_err_log = flt_stat->mf_err_log;
p->sl_bank = bank;
if (mcp->mc_scf_log[bank] == NULL) {
/*
* we rely on mc_scf_log to detect NULL queue.
* mc_scf_log_tail is irrelevant is such case.
*/
mcp->mc_scf_log_tail[bank] = mcp->mc_scf_log[bank] = p;
} else {
mcp->mc_scf_log_tail[bank]->sl_next = p;
mcp->mc_scf_log_tail[bank] = p;
}
mcp->mc_scf_total[bank]++;
}
/*
* This routine determines what kind of CE happens, intermittent
* or permanent as follows. (See 4.7.3 in Columbus2 PRM.)
* - Do rewrite by issuing REW_REQ command to MAC_PTRL_CNTL register.
* - If CE is still detected on the same address even after doing
* rewrite operation twice, it is determined as permanent error.
* - If error is not detected anymore, it is determined as intermittent
* error.
* - If UE is detected due to rewrite operation, it should be treated
* as UE.
*/
/* ARGSUSED */
static void
mc_scrub_ce(mc_opl_t *mcp, int bank, mc_flt_stat_t *flt_stat, int ptrl_error)
{
uint32_t cntl;
int i;
flt_stat->mf_type = FLT_TYPE_PERMANENT_CE;
/*
* rewrite request 1st time reads and correct error data
* and write to DIMM. 2nd rewrite request must be issued
* after REW_CE/UE/END is 0. When the 2nd request is completed,
* if REW_CE = 1, then it is permanent CE.
*/
for (i = 0; i < 2; i++) {
cntl = do_rewrite(mcp, bank, flt_stat->mf_err_add, 0);
if (cntl == 0) {
/* timeout case */
return;
}
/*
* If the error becomes UE or CMPE
* we return to the caller immediately.
*/
if (cntl & MAC_CNTL_REW_UE) {
if (ptrl_error)
flt_stat->mf_cntl |= MAC_CNTL_PTRL_UE;
else
flt_stat->mf_cntl |= MAC_CNTL_MI_UE;
flt_stat->mf_type = FLT_TYPE_UE;
return;
}
if (cntl & MAC_CNTL_REW_CMPE) {
if (ptrl_error)
flt_stat->mf_cntl |= MAC_CNTL_PTRL_CMPE;
else
flt_stat->mf_cntl |= MAC_CNTL_MI_CMPE;
flt_stat->mf_type = FLT_TYPE_CMPE;
return;
}
}
if (!(cntl & MAC_CNTL_REW_CE)) {
flt_stat->mf_type = FLT_TYPE_INTERMITTENT_CE;
}
if (flt_stat->mf_type == FLT_TYPE_PERMANENT_CE) {
/* report PERMANENT_CE to SP via SCF */
if (!(flt_stat->mf_err_log & MAC_ERR_LOG_INVALID)) {
mc_queue_scf_log(mcp, flt_stat, bank);
}
}
}
#define IS_CMPE(cntl, f) ((cntl) & ((f) ? MAC_CNTL_PTRL_CMPE :\
MAC_CNTL_MI_CMPE))
#define IS_UE(cntl, f) ((cntl) & ((f) ? MAC_CNTL_PTRL_UE : MAC_CNTL_MI_UE))
#define IS_CE(cntl, f) ((cntl) & ((f) ? MAC_CNTL_PTRL_CE : MAC_CNTL_MI_CE))
#define IS_OK(cntl, f) (!((cntl) & ((f) ? MAC_CNTL_PTRL_ERRS : \
MAC_CNTL_MI_ERRS)))
static int
IS_CE_ONLY(uint32_t cntl, int ptrl_error)
{
if (ptrl_error) {
return ((cntl & MAC_CNTL_PTRL_ERRS) == MAC_CNTL_PTRL_CE);
} else {
return ((cntl & MAC_CNTL_MI_ERRS) == MAC_CNTL_MI_CE);
}
}
void
mc_write_cntl(mc_opl_t *mcp, int bank, uint32_t value)
{
int ebank = (IS_MIRROR(mcp, bank)) ? MIRROR_IDX(bank) : bank;
if (mcp->mc_speedup_period[ebank] > 0)
value |= mc_max_speed;
else
value |= mcp->mc_speed;
ST_MAC_REG(MAC_PTRL_CNTL(mcp, bank), value);
}
static void
mc_read_ptrl_reg(mc_opl_t *mcp, int bank, mc_flt_stat_t *flt_stat)
{
flt_stat->mf_cntl = LD_MAC_REG(MAC_PTRL_CNTL(mcp, bank)) &
MAC_CNTL_PTRL_ERRS;
flt_stat->mf_err_add = LD_MAC_REG(MAC_PTRL_ERR_ADD(mcp, bank));
flt_stat->mf_err_log = LD_MAC_REG(MAC_PTRL_ERR_LOG(mcp, bank));
flt_stat->mf_flt_maddr.ma_bd = mcp->mc_board_num;
flt_stat->mf_flt_maddr.ma_phys_bd = mcp->mc_phys_board_num;
flt_stat->mf_flt_maddr.ma_bank = bank;
flt_stat->mf_flt_maddr.ma_dimm_addr = flt_stat->mf_err_add;
}
static void
mc_read_mi_reg(mc_opl_t *mcp, int bank, mc_flt_stat_t *flt_stat)
{
uint32_t status, old_status;
status = LD_MAC_REG(MAC_PTRL_CNTL(mcp, bank)) & MAC_CNTL_MI_ERRS;
old_status = 0;
/* we keep reading until the status is stable */
while (old_status != status) {
old_status = status;
flt_stat->mf_err_add = LD_MAC_REG(MAC_MI_ERR_ADD(mcp, bank));
flt_stat->mf_err_log = LD_MAC_REG(MAC_MI_ERR_LOG(mcp, bank));
status = LD_MAC_REG(MAC_PTRL_CNTL(mcp, bank)) &
MAC_CNTL_MI_ERRS;
if (status == old_status) {
break;
}
}
flt_stat->mf_cntl = status;
flt_stat->mf_flt_maddr.ma_bd = mcp->mc_board_num;
flt_stat->mf_flt_maddr.ma_phys_bd = mcp->mc_phys_board_num;
flt_stat->mf_flt_maddr.ma_bank = bank;
flt_stat->mf_flt_maddr.ma_dimm_addr = flt_stat->mf_err_add;
}
/*
* Error philosophy for mirror mode:
*
* PTRL (The error address for both banks are same, since ptrl stops if it
* detects error.)
* - Compare error log CMPE.
*
* - UE-UE Report MUE. No rewrite.
*
* - UE-* UE-(CE/OK). Rewrite to scrub UE. Report SUE.
*
* - CE-* CE-(CE/OK). Scrub to determine if CE is permanent.
* If CE is permanent, inform SCF. Once for each
* Dimm. If CE becomes UE or CMPE, go back to above.
*
*
* MI (The error addresses for each bank are the same or different.)
* - Compare error If addresses are the same. Just CMPE, so log CMPE.
* If addresses are different (this could happen
* as a result of scrubbing. Report each separately.
* Only report error info on each side.
*
* - UE-UE Addresses are the same. Report MUE.
* Addresses are different. Report SUE on each bank.
* Rewrite to clear UE.
*
* - UE-* UE-(CE/OK)
* Rewrite to clear UE. Report SUE for the bank.
*
* - CE-* CE-(CE/OK). Scrub to determine if CE is permanent.
* If CE becomes UE or CMPE, go back to above.
*
*/
static int
mc_process_error_mir(mc_opl_t *mcp, mc_aflt_t *mc_aflt, mc_flt_stat_t *flt_stat)
{
int ptrl_error = mc_aflt->mflt_is_ptrl;
int i;
int rv = 0;
int bank;
int rewrite_timeout = 0;
MC_LOG("process mirror errors cntl[0] = %x, cntl[1] = %x\n",
flt_stat[0].mf_cntl, flt_stat[1].mf_cntl);
if (ptrl_error) {
if (((flt_stat[0].mf_cntl | flt_stat[1].mf_cntl) &
MAC_CNTL_PTRL_ERRS) == 0)
return (0);
} else {
if (((flt_stat[0].mf_cntl | flt_stat[1].mf_cntl) &
MAC_CNTL_MI_ERRS) == 0)
return (0);
}
/*
* First we take care of the case of CE
* because they can become UE or CMPE
*/
for (i = 0; i < 2; i++) {
if (IS_CE_ONLY(flt_stat[i].mf_cntl, ptrl_error)) {
bank = flt_stat[i].mf_flt_maddr.ma_bank;
MC_LOG("CE detected on bank %d\n", bank);
mc_scrub_ce(mcp, bank, &flt_stat[i], ptrl_error);
if (MC_REWRITE_ACTIVE(mcp, bank)) {
rewrite_timeout = 1;
}
rv = 1;
}
}
if (rewrite_timeout)
return (0);
/* The above scrubbing can turn CE into UE or CMPE */
/*
* Now we distinguish two cases: same address or not
* the same address. It might seem more intuitive to
* distinguish PTRL v.s. MI error but it is more
* complicated that way.
*/
if (flt_stat[0].mf_err_add == flt_stat[1].mf_err_add) {
if (IS_CMPE(flt_stat[0].mf_cntl, ptrl_error) ||
IS_CMPE(flt_stat[1].mf_cntl, ptrl_error)) {
flt_stat[0].mf_type = FLT_TYPE_CMPE;
flt_stat[1].mf_type = FLT_TYPE_CMPE;
mc_aflt->mflt_erpt_class = MC_OPL_CMPE;
mc_aflt->mflt_nflts = 2;
mc_aflt->mflt_stat[0] = &flt_stat[0];
mc_aflt->mflt_stat[1] = &flt_stat[1];
mc_aflt->mflt_pr = PR_UE;
/*
* Compare error is result of MAC internal error, so
* simply log it instead of publishing an ereport. SCF
* diagnoses all the MAC internal and its i/f error.
*/
MC_LOG("cmpe error detected\n");
return (1);
}
if (IS_UE(flt_stat[0].mf_cntl, ptrl_error) &&
IS_UE(flt_stat[1].mf_cntl, ptrl_error)) {
/* Both side are UE's */
MAC_SET_ERRLOG_INFO(&flt_stat[0]);
MAC_SET_ERRLOG_INFO(&flt_stat[1]);
MC_LOG("MUE detected\n");
flt_stat[0].mf_type = FLT_TYPE_MUE;
flt_stat[1].mf_type = FLT_TYPE_MUE;
mc_aflt->mflt_erpt_class = MC_OPL_MUE;
mc_aflt->mflt_nflts = 2;
mc_aflt->mflt_stat[0] = &flt_stat[0];
mc_aflt->mflt_stat[1] = &flt_stat[1];
mc_aflt->mflt_pr = PR_UE;
mc_err_drain(mc_aflt);
return (1);
}
/* Now the only case is UE/CE, UE/OK, or don't care */
for (i = 0; i < 2; i++) {
if (IS_UE(flt_stat[i].mf_cntl, ptrl_error)) {
/* rewrite can clear the one side UE error */
if (IS_OK(flt_stat[i^1].mf_cntl, ptrl_error)) {
(void) do_rewrite(mcp,
flt_stat[i].mf_flt_maddr.ma_bank,
flt_stat[i].mf_flt_maddr.ma_dimm_addr, 0);
}
flt_stat[i].mf_type = FLT_TYPE_UE;
MAC_SET_ERRLOG_INFO(&flt_stat[i]);
mc_aflt->mflt_erpt_class = MC_OPL_SUE;
mc_aflt->mflt_stat[0] = &flt_stat[i];
mc_aflt->mflt_nflts = 1;
mc_aflt->mflt_pr = PR_MCE;
mc_err_drain(mc_aflt);
/* Once we hit a UE/CE or UE/OK case, done */
return (1);
}
}
} else {
/*
* addresses are different. That means errors
* on the 2 banks are not related at all.
*/
for (i = 0; i < 2; i++) {
if (IS_CMPE(flt_stat[i].mf_cntl, ptrl_error)) {
flt_stat[i].mf_type = FLT_TYPE_CMPE;
mc_aflt->mflt_erpt_class = MC_OPL_CMPE;
mc_aflt->mflt_nflts = 1;
mc_aflt->mflt_stat[0] = &flt_stat[i];
mc_aflt->mflt_pr = PR_UE;
/*
* Compare error is result of MAC internal
* error, so simply log it instead of
* publishing an ereport. SCF diagnoses all
* the MAC internal and its interface error.
*/
MC_LOG("cmpe error detected\n");
/* no more report on this bank */
flt_stat[i].mf_cntl = 0;
rv = 1;
}
}
/* rewrite can clear the one side UE error */
for (i = 0; i < 2; i++) {
if (IS_UE(flt_stat[i].mf_cntl, ptrl_error)) {
(void) do_rewrite(mcp,
flt_stat[i].mf_flt_maddr.ma_bank,
flt_stat[i].mf_flt_maddr.ma_dimm_addr,
0);
flt_stat[i].mf_type = FLT_TYPE_UE;
MAC_SET_ERRLOG_INFO(&flt_stat[i]);
mc_aflt->mflt_erpt_class = MC_OPL_SUE;
mc_aflt->mflt_stat[0] = &flt_stat[i];
mc_aflt->mflt_nflts = 1;
mc_aflt->mflt_pr = PR_MCE;
mc_err_drain(mc_aflt);
rv = 1;
}
}
}
return (rv);
}
static void
mc_error_handler_mir(mc_opl_t *mcp, int bank, mc_rsaddr_info_t *rsaddr)
{
mc_aflt_t mc_aflt;
mc_flt_stat_t flt_stat[2], mi_flt_stat[2];
int i;
int mi_valid;
ASSERT(rsaddr);
bzero(&mc_aflt, sizeof (mc_aflt_t));
bzero(&flt_stat, 2 * sizeof (mc_flt_stat_t));
bzero(&mi_flt_stat, 2 * sizeof (mc_flt_stat_t));
mc_aflt.mflt_mcp = mcp;
mc_aflt.mflt_id = gethrtime();
/* Now read all the registers into flt_stat */
for (i = 0; i < 2; i++) {
MC_LOG("Reading registers of bank %d\n", bank);
/* patrol registers */
mc_read_ptrl_reg(mcp, bank, &flt_stat[i]);
/*
* In mirror mode, it is possible that only one bank
* may report the error. We need to check for it to
* ensure we pick the right addr value for patrol restart.
* Note that if both banks reported errors, we pick the
* 2nd one. Both banks should reported the same error address.
*/
if (flt_stat[i].mf_cntl & MAC_CNTL_PTRL_ERRS)
rsaddr->mi_restartaddr = flt_stat[i].mf_flt_maddr;
MC_LOG("ptrl registers cntl %x add %x log %x\n",
flt_stat[i].mf_cntl, flt_stat[i].mf_err_add,
flt_stat[i].mf_err_log);
/* MI registers */
mc_read_mi_reg(mcp, bank, &mi_flt_stat[i]);
MC_LOG("MI registers cntl %x add %x log %x\n",
mi_flt_stat[i].mf_cntl, mi_flt_stat[i].mf_err_add,
mi_flt_stat[i].mf_err_log);
bank = bank^1;
}
/* clear errors once we read all the registers */
MAC_CLEAR_ERRS(mcp, bank, (MAC_CNTL_PTRL_ERRS|MAC_CNTL_MI_ERRS));
MAC_CLEAR_ERRS(mcp, bank ^ 1, (MAC_CNTL_PTRL_ERRS|MAC_CNTL_MI_ERRS));
/* Process MI errors first */
/* if not error mode, cntl1 is 0 */
if ((mi_flt_stat[0].mf_err_add & MAC_ERR_ADD_INVALID) ||
(mi_flt_stat[0].mf_err_log & MAC_ERR_LOG_INVALID))
mi_flt_stat[0].mf_cntl = 0;
if ((mi_flt_stat[1].mf_err_add & MAC_ERR_ADD_INVALID) ||
(mi_flt_stat[1].mf_err_log & MAC_ERR_LOG_INVALID))
mi_flt_stat[1].mf_cntl = 0;
mc_aflt.mflt_is_ptrl = 0;
mi_valid = mc_process_error_mir(mcp, &mc_aflt, &mi_flt_stat[0]);
if ((((flt_stat[0].mf_cntl & MAC_CNTL_PTRL_ERRS) >>
MAC_CNTL_PTRL_ERR_SHIFT) == ((mi_flt_stat[0].mf_cntl &
MAC_CNTL_MI_ERRS) >> MAC_CNTL_MI_ERR_SHIFT)) &&
(flt_stat[0].mf_err_add ==
ROUNDDOWN(mi_flt_stat[0].mf_err_add, MC_BOUND_BYTE)) &&
(((flt_stat[1].mf_cntl & MAC_CNTL_PTRL_ERRS) >>
MAC_CNTL_PTRL_ERR_SHIFT) == ((mi_flt_stat[1].mf_cntl &
MAC_CNTL_MI_ERRS) >> MAC_CNTL_MI_ERR_SHIFT)) &&
(flt_stat[1].mf_err_add ==
ROUNDDOWN(mi_flt_stat[1].mf_err_add, MC_BOUND_BYTE))) {
#ifdef DEBUG
MC_LOG("discarding PTRL error because "
"it is the same as MI\n");
#endif
rsaddr->mi_valid = mi_valid;
return;
}
/* if not error mode, cntl1 is 0 */
if ((flt_stat[0].mf_err_add & MAC_ERR_ADD_INVALID) ||
(flt_stat[0].mf_err_log & MAC_ERR_LOG_INVALID))
flt_stat[0].mf_cntl = 0;
if ((flt_stat[1].mf_err_add & MAC_ERR_ADD_INVALID) ||
(flt_stat[1].mf_err_log & MAC_ERR_LOG_INVALID))
flt_stat[1].mf_cntl = 0;
mc_aflt.mflt_is_ptrl = 1;
rsaddr->mi_valid = mc_process_error_mir(mcp, &mc_aflt, &flt_stat[0]);
}
static int
mc_process_error(mc_opl_t *mcp, int bank, mc_aflt_t *mc_aflt,
mc_flt_stat_t *flt_stat)
{
int ptrl_error = mc_aflt->mflt_is_ptrl;
int rv = 0;
mc_aflt->mflt_erpt_class = NULL;
if (IS_UE(flt_stat->mf_cntl, ptrl_error)) {
MC_LOG("UE detected\n");
flt_stat->mf_type = FLT_TYPE_UE;
mc_aflt->mflt_erpt_class = MC_OPL_UE;
mc_aflt->mflt_pr = PR_UE;
MAC_SET_ERRLOG_INFO(flt_stat);
rv = 1;
} else if (IS_CE(flt_stat->mf_cntl, ptrl_error)) {
MC_LOG("CE detected\n");
MAC_SET_ERRLOG_INFO(flt_stat);
/* Error type can change after scrubbing */
mc_scrub_ce(mcp, bank, flt_stat, ptrl_error);
if (MC_REWRITE_ACTIVE(mcp, bank)) {
return (0);
}
if (flt_stat->mf_type == FLT_TYPE_INTERMITTENT_CE) {
mc_aflt->mflt_erpt_class = MC_OPL_ICE;
mc_aflt->mflt_pr = PR_MCE;
} else if (flt_stat->mf_type == FLT_TYPE_PERMANENT_CE) {
mc_aflt->mflt_erpt_class = MC_OPL_CE;
mc_aflt->mflt_pr = PR_MCE;
} else if (flt_stat->mf_type == FLT_TYPE_UE) {
mc_aflt->mflt_erpt_class = MC_OPL_UE;
mc_aflt->mflt_pr = PR_UE;
}
rv = 1;
}
MC_LOG("mc_process_error: fault type %x erpt %s\n", flt_stat->mf_type,
mc_aflt->mflt_erpt_class);
if (mc_aflt->mflt_erpt_class) {
mc_aflt->mflt_stat[0] = flt_stat;
mc_aflt->mflt_nflts = 1;
mc_err_drain(mc_aflt);
}
return (rv);
}
static void
mc_error_handler(mc_opl_t *mcp, int bank, mc_rsaddr_info_t *rsaddr)
{
mc_aflt_t mc_aflt;
mc_flt_stat_t flt_stat, mi_flt_stat;
int mi_valid;
bzero(&mc_aflt, sizeof (mc_aflt_t));
bzero(&flt_stat, sizeof (mc_flt_stat_t));
bzero(&mi_flt_stat, sizeof (mc_flt_stat_t));
mc_aflt.mflt_mcp = mcp;
mc_aflt.mflt_id = gethrtime();
/* patrol registers */
mc_read_ptrl_reg(mcp, bank, &flt_stat);
ASSERT(rsaddr);
rsaddr->mi_restartaddr = flt_stat.mf_flt_maddr;
MC_LOG("ptrl registers cntl %x add %x log %x\n", flt_stat.mf_cntl,
flt_stat.mf_err_add, flt_stat.mf_err_log);
/* MI registers */
mc_read_mi_reg(mcp, bank, &mi_flt_stat);
MC_LOG("MI registers cntl %x add %x log %x\n", mi_flt_stat.mf_cntl,
mi_flt_stat.mf_err_add, mi_flt_stat.mf_err_log);
/* clear errors once we read all the registers */
MAC_CLEAR_ERRS(mcp, bank, (MAC_CNTL_PTRL_ERRS|MAC_CNTL_MI_ERRS));
mc_aflt.mflt_is_ptrl = 0;
if ((mi_flt_stat.mf_cntl & MAC_CNTL_MI_ERRS) &&
((mi_flt_stat.mf_err_add & MAC_ERR_ADD_INVALID) == 0) &&
((mi_flt_stat.mf_err_log & MAC_ERR_LOG_INVALID) == 0)) {
mi_valid = mc_process_error(mcp, bank, &mc_aflt, &mi_flt_stat);
}
if ((((flt_stat.mf_cntl & MAC_CNTL_PTRL_ERRS) >>
MAC_CNTL_PTRL_ERR_SHIFT) == ((mi_flt_stat.mf_cntl &
MAC_CNTL_MI_ERRS) >> MAC_CNTL_MI_ERR_SHIFT)) &&
(flt_stat.mf_err_add ==
ROUNDDOWN(mi_flt_stat.mf_err_add, MC_BOUND_BYTE))) {
#ifdef DEBUG
MC_LOG("discarding PTRL error because "
"it is the same as MI\n");
#endif
rsaddr->mi_valid = mi_valid;
return;
}
mc_aflt.mflt_is_ptrl = 1;
if ((flt_stat.mf_cntl & MAC_CNTL_PTRL_ERRS) &&
((flt_stat.mf_err_add & MAC_ERR_ADD_INVALID) == 0) &&
((flt_stat.mf_err_log & MAC_ERR_LOG_INVALID) == 0)) {
rsaddr->mi_valid = mc_process_error(mcp, bank, &mc_aflt,
&flt_stat);
}
}
/*
* memory patrol error handling algorithm:
* timeout() is used to do periodic polling
* This is the flow chart.
* timeout ->
* mc_check_errors()
* if memory bank is installed, read the status register
* if any error bit is set,
* -> mc_error_handler()
* -> read all error registers
* -> mc_process_error()
* determine error type
* rewrite to clear error or scrub to determine CE type
* inform SCF on permanent CE
* -> mc_err_drain
* page offline processing
* -> mc_ereport_post()
*/
static void
mc_process_rewrite(mc_opl_t *mcp, int bank)
{
uint32_t rew_addr, cntl;
mc_retry_info_t *retry;
struct mc_bank *bankp;
bankp = &(mcp->mc_bank[bank]);
retry = bankp->mcb_active;
if (retry == NULL)
return;
if (retry->ri_state <= RETRY_STATE_ACTIVE) {
cntl = LD_MAC_REG(MAC_PTRL_CNTL(mcp, bank));
if (cntl & MAC_CNTL_PTRL_STATUS)
return;
rew_addr = retry->ri_addr;
ST_MAC_REG(MAC_REWRITE_ADD(mcp, bank), rew_addr);
MAC_REW_REQ(mcp, bank);
retry->ri_state = RETRY_STATE_REWRITE;
}
cntl = ldphysio(MAC_PTRL_CNTL(mcp, bank));
if (cntl & MAC_CNTL_REW_END) {
MAC_CLEAR_ERRS(mcp, bank,
MAC_CNTL_REW_ERRS);
mc_clear_rewrite(mcp, bank);
} else {
/*
* If the rewrite does not complete in
* 1 hour, we have to consider this a HW
* failure. However, there is no recovery
* mechanism. The only thing we can do
* to to print a warning message to the
* console. We continue to increment the
* counter but we only print the message
* once. It will take the counter a long
* time to wrap around and the user might
* see a second message. In practice,
* we have never hit this condition but
* we have to keep the code here just in case.
*/
if (++mcp->mc_bank[bank].mcb_rewrite_count
== mc_max_rewrite_retry) {
cmn_err(CE_WARN, "Memory patrol feature is"
" partly suspended on /LSB%d/B%d"
" due to heavy memory load,"
" and it will restart"
" automatically.\n", mcp->mc_board_num,
bank);
}
}
}
static void
mc_check_errors_func(mc_opl_t *mcp)
{
mc_rsaddr_info_t rsaddr_info;
int i, error_count = 0;
uint32_t stat, cntl;
int running;
int wrapped;
int ebk;
/*
* scan errors.
*/
if (mcp->mc_status & MC_MEMORYLESS)
return;
for (i = 0; i < BANKNUM_PER_SB; i++) {
if (mcp->mc_bank[i].mcb_status & BANK_INSTALLED) {
if (MC_REWRITE_ACTIVE(mcp, i)) {
mc_process_rewrite(mcp, i);
}
stat = ldphysio(MAC_PTRL_STAT(mcp, i));
cntl = ldphysio(MAC_PTRL_CNTL(mcp, i));
running = cntl & MAC_CNTL_PTRL_START;
wrapped = cntl & MAC_CNTL_PTRL_ADD_MAX;
/* Compute the effective bank idx */
ebk = (IS_MIRROR(mcp, i)) ? MIRROR_IDX(i) : i;
if (mc_debug_show_all || stat) {
MC_LOG("/LSB%d/B%d stat %x cntl %x\n",
mcp->mc_board_num, i, stat, cntl);
}
/*
* Update stats and reset flag if the HW patrol
* wrapped around in its scan.
*/
if (wrapped) {
MAC_CLEAR_MAX(mcp, i);
mcp->mc_period[ebk]++;
if (IS_MIRROR(mcp, i)) {
MC_LOG("mirror mc period %ld on "
"/LSB%d/B%d\n", mcp->mc_period[ebk],
mcp->mc_board_num, i);
} else {
MC_LOG("mc period %ld on "
"/LSB%d/B%d\n", mcp->mc_period[ebk],
mcp->mc_board_num, i);
}
}
if (running) {
/*
* Mac patrol HW is still running.
* Normally when an error is detected,
* the HW patrol will stop so that we
* can collect error data for reporting.
* Certain errors (MI errors) detected may not
* cause the HW patrol to stop which is a
* problem since we cannot read error data while
* the HW patrol is running. SW is not allowed
* to stop the HW patrol while it is running
* as it may cause HW inconsistency. This is
* described in a HW errata.
* In situations where we detected errors
* that may not cause the HW patrol to stop.
* We speed up the HW patrol scanning in
* the hope that it will find the 'real' PTRL
* errors associated with the previous errors
* causing the HW to finally stop so that we
* can do the reporting.
*/
/*
* Check to see if we did speed up
* the HW patrol due to previous errors
* detected that did not cause the patrol
* to stop. We only do it if HW patrol scan
* wrapped (counted as completing a 'period').
*/
if (mcp->mc_speedup_period[ebk] > 0) {
if (wrapped &&
(--mcp->mc_speedup_period[ebk] ==
0)) {
/*
* We did try to speed up.
* The speed up period has
* expired and the HW patrol
* is still running. The
* errors must be intermittent.
* We have no choice but to
* ignore them, reset the scan
* speed to normal and clear
* the MI error bits. For
* mirror mode, we need to
* clear errors on both banks.
*/
MC_LOG("Clearing MI errors\n");
MAC_CLEAR_ERRS(mcp, i,
MAC_CNTL_MI_ERRS);
if (IS_MIRROR(mcp, i)) {
MC_LOG("Clearing "
"Mirror MI errs\n");
MAC_CLEAR_ERRS(mcp,
i^1,
MAC_CNTL_MI_ERRS);
}
}
} else if (stat & MAC_STAT_MI_ERRS) {
/*
* MI errors detected but we cannot
* report them since the HW patrol
* is still running.
* We will attempt to speed up the
* scanning and hopefully the HW
* can detect PRTL errors at the same
* location that cause the HW patrol
* to stop.
*/
mcp->mc_speedup_period[ebk] = 2;
MAC_CMD(mcp, i, 0);
}
} else if (stat & (MAC_STAT_PTRL_ERRS |
MAC_STAT_MI_ERRS)) {
/*
* HW Patrol has stopped and we found errors.
* Proceed to collect and report error info.
*/
mcp->mc_speedup_period[ebk] = 0;
rsaddr_info.mi_valid = 0;
rsaddr_info.mi_injectrestart = 0;
if (IS_MIRROR(mcp, i)) {
mc_error_handler_mir(mcp, i,
&rsaddr_info);
} else {
mc_error_handler(mcp, i, &rsaddr_info);
}
error_count++;
(void) restart_patrol(mcp, i, &rsaddr_info);
} else {
/*
* HW patrol scan has apparently stopped
* but no errors detected/flagged.
* Restart the HW patrol just to be sure.
* In mirror mode, the odd bank might have
* reported errors that caused the patrol to
* stop. We'll defer the restart to the odd
* bank in this case.
*/
if (!IS_MIRROR(mcp, i) || (i & 0x1))
(void) restart_patrol(mcp, i, NULL);
}
}
}
if (error_count > 0)
mcp->mc_last_error += error_count;
else
mcp->mc_last_error = 0;
}
/*
* mc_polling -- Check errors for only one instance,
* but process errors for all instances to make sure we drain the errors
* faster than they can be accumulated.
*
* Polling on each board should be done only once per each
* mc_patrol_interval_sec. This is equivalent to setting mc_tick_left
* to OPL_MAX_BOARDS and decrement by 1 on each timeout.
* Once mc_tick_left becomes negative, the board becomes a candidate
* for polling because it has waited for at least
* mc_patrol_interval_sec's long. If mc_timeout_period is calculated
* differently, this has to be updated accordingly.
*/
static void
mc_polling(void)
{
int i, scan_error;
mc_opl_t *mcp;
scan_error = 1;
for (i = 0; i < OPL_MAX_BOARDS; i++) {
mutex_enter(&mcmutex);
if ((mcp = mc_instances[i]) == NULL) {
mutex_exit(&mcmutex);
continue;
}
mutex_enter(&mcp->mc_lock);
mutex_exit(&mcmutex);
if (!(mcp->mc_status & MC_POLL_RUNNING)) {
mutex_exit(&mcp->mc_lock);
continue;
}
if (scan_error && mcp->mc_tick_left <= 0) {
mc_check_errors_func((void *)mcp);
mcp->mc_tick_left = OPL_MAX_BOARDS;
scan_error = 0;
} else {
mcp->mc_tick_left--;
}
mc_process_scf_log(mcp);
mutex_exit(&mcp->mc_lock);
}
}
static void
get_ptrl_start_address(mc_opl_t *mcp, int bank, mc_addr_t *maddr)
{
maddr->ma_bd = mcp->mc_board_num;
maddr->ma_bank = bank;
maddr->ma_dimm_addr = 0;
}
typedef struct mc_mem_range {
uint64_t addr;
uint64_t size;
} mc_mem_range_t;
static int
get_base_address(mc_opl_t *mcp)
{
mc_mem_range_t *mem_range;
int len;
if (ddi_getlongprop(DDI_DEV_T_ANY, mcp->mc_dip, DDI_PROP_DONTPASS,
"sb-mem-ranges", (caddr_t)&mem_range, &len) != DDI_SUCCESS) {
return (DDI_FAILURE);
}
mcp->mc_start_address = mem_range->addr;
mcp->mc_size = mem_range->size;
kmem_free(mem_range, len);
return (DDI_SUCCESS);
}
struct mc_addr_spec {
uint32_t bank;
uint32_t phys_hi;
uint32_t phys_lo;
};
#define REGS_PA(m, i) ((((uint64_t)m[i].phys_hi)<<32) | m[i].phys_lo)
static char *mc_tbl_name[] = {
"cs0-mc-pa-trans-table",
"cs1-mc-pa-trans-table"
};
/*
* This routine performs a rangecheck for a given PA
* to see if it belongs to the memory range for this board.
* Return 1 if it is valid (within the range) and 0 otherwise
*/
static int
mc_rangecheck_pa(mc_opl_t *mcp, uint64_t pa)
{
if ((pa < mcp->mc_start_address) || (mcp->mc_start_address +
mcp->mc_size <= pa))
return (0);
else
return (1);
}
static void
mc_memlist_delete(struct memlist *mlist)
{
struct memlist *ml;
for (ml = mlist; ml; ml = mlist) {
mlist = ml->ml_next;
kmem_free(ml, sizeof (struct memlist));
}
}
static struct memlist *
mc_memlist_dup(struct memlist *mlist)
{
struct memlist *hl = NULL, *tl, **mlp;
if (mlist == NULL)
return (NULL);
mlp = &hl;
tl = *mlp;
for (; mlist; mlist = mlist->ml_next) {
*mlp = kmem_alloc(sizeof (struct memlist), KM_SLEEP);
(*mlp)->ml_address = mlist->ml_address;
(*mlp)->ml_size = mlist->ml_size;
(*mlp)->ml_prev = tl;
tl = *mlp;
mlp = &((*mlp)->ml_next);
}
*mlp = NULL;
return (hl);
}
static struct memlist *
mc_memlist_del_span(struct memlist *mlist, uint64_t base, uint64_t len)
{
uint64_t end;
struct memlist *ml, *tl, *nlp;
if (mlist == NULL)
return (NULL);
end = base + len;
if ((end <= mlist->ml_address) || (base == end))
return (mlist);
for (tl = ml = mlist; ml; tl = ml, ml = nlp) {
uint64_t mend;
nlp = ml->ml_next;
if (end <= ml->ml_address)
break;
mend = ml->ml_address + ml->ml_size;
if (base < mend) {
if (base <= ml->ml_address) {
ml->ml_address = end;
if (end >= mend)
ml->ml_size = 0ull;
else
ml->ml_size = mend - ml->ml_address;
} else {
ml->ml_size = base - ml->ml_address;
if (end < mend) {
struct memlist *nl;
/*
* splitting an memlist entry.
*/
nl = kmem_alloc(sizeof (struct memlist),
KM_SLEEP);
nl->ml_address = end;
nl->ml_size = mend - nl->ml_address;
if ((nl->ml_next = nlp) != NULL)
nlp->ml_prev = nl;
nl->ml_prev = ml;
ml->ml_next = nl;
nlp = nl;
}
}
if (ml->ml_size == 0ull) {
if (ml == mlist) {
if ((mlist = nlp) != NULL)
nlp->ml_prev = NULL;
kmem_free(ml, sizeof (struct memlist));
if (mlist == NULL)
break;
ml = nlp;
} else {
if ((tl->ml_next = nlp) != NULL)
nlp->ml_prev = tl;
kmem_free(ml, sizeof (struct memlist));
ml = tl;
}
}
}
}
return (mlist);
}
static void
mc_get_mlist(mc_opl_t *mcp)
{
struct memlist *mlist;
memlist_read_lock();
mlist = mc_memlist_dup(phys_install);
memlist_read_unlock();
if (mlist) {
mlist = mc_memlist_del_span(mlist, 0ull, mcp->mc_start_address);
}
if (mlist) {
uint64_t startpa, endpa;
startpa = mcp->mc_start_address + mcp->mc_size;
endpa = ptob(physmax + 1);
if (endpa > startpa) {
mlist = mc_memlist_del_span(mlist, startpa,
endpa - startpa);
}
}
if (mlist) {
mcp->mlist = mlist;
}
}
int
mc_board_add(mc_opl_t *mcp)
{
struct mc_addr_spec *macaddr;
cs_status_t *cs_status;
int len, len1, i, bk, cc;
mc_rsaddr_info_t rsaddr;
uint32_t mirr;
int nbanks = 0;
uint64_t nbytes = 0;
int mirror_mode = 0;
int ret;
/*
* Get configurations from "pseudo-mc" node which includes:
* board# : LSB number
* mac-addr : physical base address of MAC registers
* csX-mac-pa-trans-table: translation table from DIMM address
* to physical address or vice versa.
*/
mcp->mc_board_num = (int)ddi_getprop(DDI_DEV_T_ANY, mcp->mc_dip,
DDI_PROP_DONTPASS, "board#", -1);
if (mcp->mc_board_num == -1) {
return (DDI_FAILURE);
}
/*
* Get start address in this CAB. It can be gotten from
* "sb-mem-ranges" property.
*/
if (get_base_address(mcp) == DDI_FAILURE) {
return (DDI_FAILURE);
}
/* get mac-pa trans tables */
for (i = 0; i < MC_TT_CS; i++) {
len = MC_TT_ENTRIES;
cc = ddi_getlongprop_buf(DDI_DEV_T_ANY, mcp->mc_dip,
DDI_PROP_DONTPASS, mc_tbl_name[i],
(caddr_t)mcp->mc_trans_table[i], &len);
if (cc != DDI_SUCCESS) {
bzero(mcp->mc_trans_table[i], MC_TT_ENTRIES);
}
}
mcp->mlist = NULL;
mc_get_mlist(mcp);
/* initialize bank informations */
cc = ddi_getlongprop(DDI_DEV_T_ANY, mcp->mc_dip, DDI_PROP_DONTPASS,
"mc-addr", (caddr_t)&macaddr, &len);
if (cc != DDI_SUCCESS) {
cmn_err(CE_WARN, "Cannot get mc-addr. err=%d\n", cc);
return (DDI_FAILURE);
}
cc = ddi_getlongprop(DDI_DEV_T_ANY, mcp->mc_dip, DDI_PROP_DONTPASS,
"cs-status", (caddr_t)&cs_status, &len1);
if (cc != DDI_SUCCESS) {
if (len > 0)
kmem_free(macaddr, len);
cmn_err(CE_WARN, "Cannot get cs-status. err=%d\n", cc);
return (DDI_FAILURE);
}
/* get the physical board number for a given logical board number */
mcp->mc_phys_board_num = mc_opl_get_physical_board(mcp->mc_board_num);
if (mcp->mc_phys_board_num < 0) {
if (len > 0)
kmem_free(macaddr, len);
cmn_err(CE_WARN, "Unable to obtain the physical board number");
return (DDI_FAILURE);
}
mutex_init(&mcp->mc_lock, NULL, MUTEX_DRIVER, NULL);
for (i = 0; i < len1 / sizeof (cs_status_t); i++) {
nbytes += ((uint64_t)cs_status[i].cs_avail_hi << 32) |
((uint64_t)cs_status[i].cs_avail_low);
}
if (len1 > 0)
kmem_free(cs_status, len1);
nbanks = len / sizeof (struct mc_addr_spec);
if (nbanks > 0)
nbytes /= nbanks;
else {
/* No need to free macaddr because len must be 0 */
mcp->mc_status |= MC_MEMORYLESS;
return (DDI_SUCCESS);
}
for (i = 0; i < BANKNUM_PER_SB; i++) {
mcp->mc_scf_retry[i] = 0;
mcp->mc_period[i] = 0;
mcp->mc_speedup_period[i] = 0;
}
/*
* Get the memory size here. Let it be B (bytes).
* Let T be the time in u.s. to scan 64 bytes.
* If we want to complete 1 round of scanning in P seconds.
*
* B * T * 10^(-6) = P
* ---------------
* 64
*
* T = P * 64 * 10^6
* -------------
* B
*
* = P * 64 * 10^6
* -------------
* B
*
* The timing bits are set in PTRL_CNTL[28:26] where
*
* 0 - 1 m.s
* 1 - 512 u.s.
* 10 - 256 u.s.
* 11 - 128 u.s.
* 100 - 64 u.s.
* 101 - 32 u.s.
* 110 - 0 u.s.
* 111 - reserved.
*
*
* a[0] = 110, a[1] = 101, ... a[6] = 0
*
* cs-status property is int x 7
* 0 - cs#
* 1 - cs-status
* 2 - cs-avail.hi
* 3 - cs-avail.lo
* 4 - dimm-capa.hi
* 5 - dimm-capa.lo
* 6 - #of dimms
*/
if (nbytes > 0) {
int i;
uint64_t ms;
ms = ((uint64_t)mc_scan_period * 64 * 1000000)/nbytes;
mcp->mc_speed = mc_scan_speeds[MC_MAX_SPEEDS - 1].mc_speeds;
for (i = 0; i < MC_MAX_SPEEDS - 1; i++) {
if (ms < mc_scan_speeds[i + 1].mc_period) {
mcp->mc_speed = mc_scan_speeds[i].mc_speeds;
break;
}
}
} else
mcp->mc_speed = 0;
for (i = 0; i < len / sizeof (struct mc_addr_spec); i++) {
struct mc_bank *bankp;
mc_retry_info_t *retry;
uint32_t reg;
int k;
/*
* setup bank
*/
bk = macaddr[i].bank;
bankp = &(mcp->mc_bank[bk]);
bankp->mcb_status = BANK_INSTALLED;
bankp->mcb_reg_base = REGS_PA(macaddr, i);
bankp->mcb_retry_freelist = NULL;
bankp->mcb_retry_pending = NULL;
bankp->mcb_active = NULL;
retry = &bankp->mcb_retry_infos[0];
for (k = 0; k < MC_RETRY_COUNT; k++, retry++) {
mc_retry_info_put(&bankp->mcb_retry_freelist, retry);
}
reg = LD_MAC_REG(MAC_PTRL_CNTL(mcp, bk));
bankp->mcb_ptrl_cntl = (reg & MAC_CNTL_PTRL_PRESERVE_BITS);
/*
* check if mirror mode
*/
mirr = LD_MAC_REG(MAC_MIRR(mcp, bk));
if (mirr & MAC_MIRR_MIRROR_MODE) {
MC_LOG("Mirror -> /LSB%d/B%d\n", mcp->mc_board_num,
bk);
bankp->mcb_status |= BANK_MIRROR_MODE;
mirror_mode = 1;
/*
* The following bit is only used for
* error injection. We should clear it
*/
if (mirr & MAC_MIRR_BANK_EXCLUSIVE)
ST_MAC_REG(MAC_MIRR(mcp, bk), 0);
}
/*
* restart if not mirror mode or the other bank
* of the mirror is not running
*/
if (!(mirr & MAC_MIRR_MIRROR_MODE) ||
!(mcp->mc_bank[bk^1].mcb_status & BANK_PTRL_RUNNING)) {
MC_LOG("Starting up /LSB%d/B%d\n", mcp->mc_board_num,
bk);
get_ptrl_start_address(mcp, bk, &rsaddr.mi_restartaddr);
rsaddr.mi_valid = 0;
rsaddr.mi_injectrestart = 0;
(void) restart_patrol(mcp, bk, &rsaddr);
} else {
MC_LOG("Not starting up /LSB%d/B%d\n",
mcp->mc_board_num, bk);
}
bankp->mcb_status |= BANK_PTRL_RUNNING;
}
if (len > 0)
kmem_free(macaddr, len);
ret = ndi_prop_update_int(DDI_DEV_T_NONE, mcp->mc_dip, "mirror-mode",
mirror_mode);
if (ret != DDI_PROP_SUCCESS) {
cmn_err(CE_WARN, "Unable to update mirror-mode property");
}
mcp->mc_dimm_list = mc_get_dimm_list(mcp);
/*
* set interval in HZ.
*/
mcp->mc_last_error = 0;
/* restart memory patrol checking */
mcp->mc_status |= MC_POLL_RUNNING;
return (DDI_SUCCESS);
}
int
mc_board_del(mc_opl_t *mcp)
{
int i;
scf_log_t *p;
/*
* cleanup mac state
*/
mutex_enter(&mcp->mc_lock);
if (mcp->mc_status & MC_MEMORYLESS) {
mutex_exit(&mcp->mc_lock);
mutex_destroy(&mcp->mc_lock);
return (DDI_SUCCESS);
}
for (i = 0; i < BANKNUM_PER_SB; i++) {
if (mcp->mc_bank[i].mcb_status & BANK_INSTALLED) {
mcp->mc_bank[i].mcb_status &= ~BANK_INSTALLED;
}
}
/* stop memory patrol checking */
mcp->mc_status &= ~MC_POLL_RUNNING;
/* just throw away all the scf logs */
for (i = 0; i < BANKNUM_PER_SB; i++) {
while ((p = mcp->mc_scf_log[i]) != NULL) {
mcp->mc_scf_log[i] = p->sl_next;
mcp->mc_scf_total[i]--;
kmem_free(p, sizeof (scf_log_t));
}
}
if (mcp->mlist)
mc_memlist_delete(mcp->mlist);
if (mcp->mc_dimm_list)
mc_free_dimm_list(mcp->mc_dimm_list);
mutex_exit(&mcp->mc_lock);
mutex_destroy(&mcp->mc_lock);
return (DDI_SUCCESS);
}
int
mc_suspend(mc_opl_t *mcp, uint32_t flag)
{
/* stop memory patrol checking */
mutex_enter(&mcp->mc_lock);
if (mcp->mc_status & MC_MEMORYLESS) {
mutex_exit(&mcp->mc_lock);
return (DDI_SUCCESS);
}
mcp->mc_status &= ~MC_POLL_RUNNING;
mcp->mc_status |= flag;
mutex_exit(&mcp->mc_lock);
return (DDI_SUCCESS);
}
void
opl_mc_update_mlist(void)
{
int i;
mc_opl_t *mcp;
/*
* memory information is not updated until
* the post attach/detach stage during DR.
* This interface is used by dr_mem to inform
* mc-opl to update the mlist.
*/
mutex_enter(&mcmutex);
for (i = 0; i < OPL_MAX_BOARDS; i++) {
if ((mcp = mc_instances[i]) == NULL)
continue;
mutex_enter(&mcp->mc_lock);
if (mcp->mlist)
mc_memlist_delete(mcp->mlist);
mcp->mlist = NULL;
mc_get_mlist(mcp);
mutex_exit(&mcp->mc_lock);
}
mutex_exit(&mcmutex);
}
/* caller must clear the SUSPEND bits or this will do nothing */
int
mc_resume(mc_opl_t *mcp, uint32_t flag)
{
int i;
uint64_t basepa;
mutex_enter(&mcp->mc_lock);
if (mcp->mc_status & MC_MEMORYLESS) {
mutex_exit(&mcp->mc_lock);
return (DDI_SUCCESS);
}
basepa = mcp->mc_start_address;
if (get_base_address(mcp) == DDI_FAILURE) {
mutex_exit(&mcp->mc_lock);
return (DDI_FAILURE);
}
if (basepa != mcp->mc_start_address) {
if (mcp->mlist)
mc_memlist_delete(mcp->mlist);
mcp->mlist = NULL;
mc_get_mlist(mcp);
}
mcp->mc_status &= ~flag;
if (mcp->mc_status & (MC_SOFT_SUSPENDED | MC_DRIVER_SUSPENDED)) {
mutex_exit(&mcp->mc_lock);
return (DDI_SUCCESS);
}
if (!(mcp->mc_status & MC_POLL_RUNNING)) {
/* restart memory patrol checking */
mcp->mc_status |= MC_POLL_RUNNING;
for (i = 0; i < BANKNUM_PER_SB; i++) {
if (mcp->mc_bank[i].mcb_status & BANK_INSTALLED) {
mc_check_errors_func(mcp);
}
}
}
mutex_exit(&mcp->mc_lock);
return (DDI_SUCCESS);
}
static mc_opl_t *
mc_pa_to_mcp(uint64_t pa)
{
mc_opl_t *mcp;
int i;
ASSERT(MUTEX_HELD(&mcmutex));
for (i = 0; i < OPL_MAX_BOARDS; i++) {
if ((mcp = mc_instances[i]) == NULL)
continue;
/* if mac patrol is suspended, we cannot rely on it */
if (!(mcp->mc_status & MC_POLL_RUNNING) ||
(mcp->mc_status & MC_SOFT_SUSPENDED))
continue;
if (mc_rangecheck_pa(mcp, pa)) {
return (mcp);
}
}
return (NULL);
}
/*
* Get Physical Board number from Logical one.
*/
static int
mc_opl_get_physical_board(int sb)
{
if (&opl_get_physical_board) {
return (opl_get_physical_board(sb));
}
cmn_err(CE_NOTE, "!opl_get_physical_board() not loaded\n");
return (-1);
}
/* ARGSUSED */
int
mc_get_mem_unum(int synd_code, uint64_t flt_addr, char *buf, int buflen,
int *lenp)
{
int i;
int j;
int sb;
int bank;
int cs;
int rv = 0;
mc_opl_t *mcp;
char memb_num;
mutex_enter(&mcmutex);
if (((mcp = mc_pa_to_mcp(flt_addr)) == NULL) ||
(!pa_is_valid(mcp, flt_addr))) {
mutex_exit(&mcmutex);
if (snprintf(buf, buflen, "UNKNOWN") >= buflen) {
return (ENOSPC);
} else {
if (lenp)
*lenp = strlen(buf);
}
return (0);
}
bank = pa_to_bank(mcp, flt_addr - mcp->mc_start_address);
sb = mcp->mc_phys_board_num;
cs = pa_to_cs(mcp, flt_addr - mcp->mc_start_address);
if (sb == -1) {
mutex_exit(&mcmutex);
return (ENXIO);
}
switch (plat_model) {
case MODEL_DC:
i = BD_BK_SLOT_TO_INDEX(0, bank, 0);
j = (cs == 0) ? i : i + 2;
(void) snprintf(buf, buflen, "/%s%02d/MEM%s MEM%s",
model_names[plat_model].unit_name, sb,
mc_dc_dimm_unum_table[j],
mc_dc_dimm_unum_table[j + 1]);
break;
case MODEL_FF2:
case MODEL_FF1:
i = BD_BK_SLOT_TO_INDEX(sb, bank, 0);
j = (cs == 0) ? i : i + 2;
memb_num = mc_ff_dimm_unum_table[i][0];
(void) snprintf(buf, buflen, "/%s/%s%c/MEM%s MEM%s",
model_names[plat_model].unit_name,
model_names[plat_model].mem_name, memb_num,
&mc_ff_dimm_unum_table[j][1],
&mc_ff_dimm_unum_table[j + 1][1]);
break;
case MODEL_IKKAKU:
i = BD_BK_SLOT_TO_INDEX(sb, bank, 0);
j = (cs == 0) ? i : i + 2;
(void) snprintf(buf, buflen, "/%s/MEM%s MEM%s",
model_names[plat_model].unit_name,
&mc_ff_dimm_unum_table[j][1],
&mc_ff_dimm_unum_table[j + 1][1]);
break;
default:
rv = ENXIO;
}
if (lenp) {
*lenp = strlen(buf);
}
mutex_exit(&mcmutex);
return (rv);
}
int
opl_mc_suspend(void)
{
mc_opl_t *mcp;
int i;
mutex_enter(&mcmutex);
for (i = 0; i < OPL_MAX_BOARDS; i++) {
if ((mcp = mc_instances[i]) == NULL)
continue;
(void) mc_suspend(mcp, MC_SOFT_SUSPENDED);
}
mutex_exit(&mcmutex);
return (0);
}
int
opl_mc_resume(void)
{
mc_opl_t *mcp;
int i;
mutex_enter(&mcmutex);
for (i = 0; i < OPL_MAX_BOARDS; i++) {
if ((mcp = mc_instances[i]) == NULL)
continue;
(void) mc_resume(mcp, MC_SOFT_SUSPENDED);
}
mutex_exit(&mcmutex);
return (0);
}
static void
insert_mcp(mc_opl_t *mcp)
{
mutex_enter(&mcmutex);
if (mc_instances[mcp->mc_board_num] != NULL) {
MC_LOG("mc-opl instance for board# %d already exists\n",
mcp->mc_board_num);
}
mc_instances[mcp->mc_board_num] = mcp;
mutex_exit(&mcmutex);
}
static void
delete_mcp(mc_opl_t *mcp)
{
mutex_enter(&mcmutex);
mc_instances[mcp->mc_board_num] = 0;
mutex_exit(&mcmutex);
}
/* Error injection interface */
static void
mc_lock_va(uint64_t pa, caddr_t new_va)
{
tte_t tte;
vtag_flushpage(new_va, (uint64_t)ksfmmup);
sfmmu_memtte(&tte, pa >> PAGESHIFT, PROC_DATA|HAT_NOSYNC, TTE8K);
tte.tte_intlo |= TTE_LCK_INT;
sfmmu_dtlb_ld_kva(new_va, &tte);
}
static void
mc_unlock_va(caddr_t va)
{
vtag_flushpage(va, (uint64_t)ksfmmup);
}
/* ARGSUSED */
int
mc_inject_error(int error_type, uint64_t pa, uint32_t flags)
{
mc_opl_t *mcp;
int bank;
uint32_t dimm_addr;
uint32_t cntl;
mc_rsaddr_info_t rsaddr;
uint32_t data, stat;
int both_sides = 0;
uint64_t pa0;
int extra_injection_needed = 0;
extern void cpu_flush_ecache(void);
MC_LOG("HW mc_inject_error(%x, %lx, %x)\n", error_type, pa, flags);
mutex_enter(&mcmutex);
if ((mcp = mc_pa_to_mcp(pa)) == NULL) {
mutex_exit(&mcmutex);
MC_LOG("mc_inject_error: invalid pa\n");
return (ENOTSUP);
}
mutex_enter(&mcp->mc_lock);
mutex_exit(&mcmutex);
if (mcp->mc_status & (MC_SOFT_SUSPENDED | MC_DRIVER_SUSPENDED)) {
mutex_exit(&mcp->mc_lock);
MC_LOG("mc-opl has been suspended. No error injection.\n");
return (EBUSY);
}
/* convert pa to offset within the board */
MC_LOG("pa %lx, offset %lx\n", pa, pa - mcp->mc_start_address);
if (!pa_is_valid(mcp, pa)) {
mutex_exit(&mcp->mc_lock);
return (EINVAL);
}
pa0 = pa - mcp->mc_start_address;
bank = pa_to_bank(mcp, pa0);
if (flags & MC_INJECT_FLAG_OTHER)
bank = bank ^ 1;
if (MC_INJECT_MIRROR(error_type) && !IS_MIRROR(mcp, bank)) {
mutex_exit(&mcp->mc_lock);
MC_LOG("Not mirror mode\n");
return (EINVAL);
}
dimm_addr = pa_to_dimm(mcp, pa0);
MC_LOG("injecting error to /LSB%d/B%d/%x\n", mcp->mc_board_num, bank,
dimm_addr);
switch (error_type) {
case MC_INJECT_INTERMITTENT_MCE:
case MC_INJECT_PERMANENT_MCE:
case MC_INJECT_MUE:
both_sides = 1;
}
if (flags & MC_INJECT_FLAG_RESET)
ST_MAC_REG(MAC_EG_CNTL(mcp, bank), 0);
ST_MAC_REG(MAC_EG_ADD(mcp, bank), dimm_addr & MAC_EG_ADD_MASK);
if (both_sides) {
ST_MAC_REG(MAC_EG_CNTL(mcp, bank^1), 0);
ST_MAC_REG(MAC_EG_ADD(mcp, bank^1), dimm_addr &
MAC_EG_ADD_MASK);
}
switch (error_type) {
case MC_INJECT_SUE:
extra_injection_needed = 1;
/*FALLTHROUGH*/
case MC_INJECT_UE:
case MC_INJECT_MUE:
if (flags & MC_INJECT_FLAG_PATH) {
cntl = MAC_EG_ADD_FIX | MAC_EG_FORCE_READ00 |
MAC_EG_FORCE_READ16 | MAC_EG_RDERR_ONCE;
} else {
cntl = MAC_EG_ADD_FIX | MAC_EG_FORCE_DERR00 |
MAC_EG_FORCE_DERR16 | MAC_EG_DERR_ONCE;
}
flags |= MC_INJECT_FLAG_ST;
break;
case MC_INJECT_INTERMITTENT_CE:
case MC_INJECT_INTERMITTENT_MCE:
if (flags & MC_INJECT_FLAG_PATH) {
cntl = MAC_EG_ADD_FIX |MAC_EG_FORCE_READ00 |
MAC_EG_RDERR_ONCE;
} else {
cntl = MAC_EG_ADD_FIX | MAC_EG_FORCE_DERR16 |
MAC_EG_DERR_ONCE;
}
extra_injection_needed = 1;
flags |= MC_INJECT_FLAG_ST;
break;
case MC_INJECT_PERMANENT_CE:
case MC_INJECT_PERMANENT_MCE:
if (flags & MC_INJECT_FLAG_PATH) {
cntl = MAC_EG_ADD_FIX | MAC_EG_FORCE_READ00 |
MAC_EG_RDERR_ALWAYS;
} else {
cntl = MAC_EG_ADD_FIX | MAC_EG_FORCE_DERR16 |
MAC_EG_DERR_ALWAYS;
}
flags |= MC_INJECT_FLAG_ST;
break;
case MC_INJECT_CMPE:
data = 0xabcdefab;
stphys(pa, data);
cpu_flush_ecache();
MC_LOG("CMPE: writing data %x to %lx\n", data, pa);
ST_MAC_REG(MAC_MIRR(mcp, bank), MAC_MIRR_BANK_EXCLUSIVE);
stphys(pa, data ^ 0xffffffff);
membar_sync();
cpu_flush_ecache();
ST_MAC_REG(MAC_MIRR(mcp, bank), 0);
MC_LOG("CMPE: write new data %xto %lx\n", data, pa);
cntl = 0;
break;
case MC_INJECT_NOP:
cntl = 0;
break;
default:
MC_LOG("mc_inject_error: invalid option\n");
cntl = 0;
}
if (cntl) {
ST_MAC_REG(MAC_EG_CNTL(mcp, bank), cntl & MAC_EG_SETUP_MASK);
ST_MAC_REG(MAC_EG_CNTL(mcp, bank), cntl);
if (both_sides) {
ST_MAC_REG(MAC_EG_CNTL(mcp, bank^1), cntl &
MAC_EG_SETUP_MASK);
ST_MAC_REG(MAC_EG_CNTL(mcp, bank^1), cntl);
}
}
/*
* For all injection cases except compare error, we
* must write to the PA to trigger the error.
*/
if (flags & MC_INJECT_FLAG_ST) {
data = 0xf0e0d0c0;
MC_LOG("Writing %x to %lx\n", data, pa);
stphys(pa, data);
cpu_flush_ecache();
}
if (flags & MC_INJECT_FLAG_LD) {
if (flags & MC_INJECT_FLAG_PREFETCH) {
/*
* Use strong prefetch operation to
* inject MI errors.
*/
page_t *pp;
extern void mc_prefetch(caddr_t);
MC_LOG("prefetch\n");
pp = page_numtopp_nolock(pa >> PAGESHIFT);
if (pp != NULL) {
caddr_t va, va1;
va = ppmapin(pp, PROT_READ|PROT_WRITE,
(caddr_t)-1);
kpreempt_disable();
mc_lock_va((uint64_t)pa, va);
va1 = va + (pa & (PAGESIZE - 1));
mc_prefetch(va1);
mc_unlock_va(va);
kpreempt_enable();
ppmapout(va);
/*
* For MI errors, we need one extra
* injection for HW patrol to stop.
*/
extra_injection_needed = 1;
} else {
cmn_err(CE_WARN, "Cannot find page structure"
" for PA %lx\n", pa);
}
} else {
MC_LOG("Reading from %lx\n", pa);
data = ldphys(pa);
MC_LOG("data = %x\n", data);
}
if (extra_injection_needed) {
/*
* These are the injection cases where the
* requested injected errors will not cause the HW
* patrol to stop. For these cases, we need to inject
* an extra 'real' PTRL error to force the
* HW patrol to stop so that we can report the
* errors injected. Note that we cannot read
* and report error status while the HW patrol
* is running.
*/
ST_MAC_REG(MAC_EG_CNTL(mcp, bank),
cntl & MAC_EG_SETUP_MASK);
ST_MAC_REG(MAC_EG_CNTL(mcp, bank), cntl);
if (both_sides) {
ST_MAC_REG(MAC_EG_CNTL(mcp, bank^1), cntl &
MAC_EG_SETUP_MASK);
ST_MAC_REG(MAC_EG_CNTL(mcp, bank^1), cntl);
}
data = 0xf0e0d0c0;
MC_LOG("Writing %x to %lx\n", data, pa);
stphys(pa, data);
cpu_flush_ecache();
}
}
if (flags & MC_INJECT_FLAG_RESTART) {
MC_LOG("Restart patrol\n");
rsaddr.mi_restartaddr.ma_bd = mcp->mc_board_num;
rsaddr.mi_restartaddr.ma_bank = bank;
rsaddr.mi_restartaddr.ma_dimm_addr = dimm_addr;
rsaddr.mi_valid = 1;
rsaddr.mi_injectrestart = 1;
(void) restart_patrol(mcp, bank, &rsaddr);
}
if (flags & MC_INJECT_FLAG_POLL) {
int running;
int ebank = (IS_MIRROR(mcp, bank)) ? MIRROR_IDX(bank) : bank;
MC_LOG("Poll patrol error\n");
stat = LD_MAC_REG(MAC_PTRL_STAT(mcp, bank));
cntl = LD_MAC_REG(MAC_PTRL_CNTL(mcp, bank));
running = cntl & MAC_CNTL_PTRL_START;
if (!running &&
(stat & (MAC_STAT_PTRL_ERRS|MAC_STAT_MI_ERRS))) {
/*
* HW patrol stopped and we have errors to
* report. Do it.
*/
mcp->mc_speedup_period[ebank] = 0;
rsaddr.mi_valid = 0;
rsaddr.mi_injectrestart = 0;
if (IS_MIRROR(mcp, bank)) {
mc_error_handler_mir(mcp, bank, &rsaddr);
} else {
mc_error_handler(mcp, bank, &rsaddr);
}
(void) restart_patrol(mcp, bank, &rsaddr);
} else {
/*
* We are expecting to report injected
* errors but the HW patrol is still running.
* Speed up the scanning
*/
mcp->mc_speedup_period[ebank] = 2;
MAC_CMD(mcp, bank, 0);
(void) restart_patrol(mcp, bank, NULL);
}
}
mutex_exit(&mcp->mc_lock);
return (0);
}
void
mc_stphysio(uint64_t pa, uint32_t data)
{
MC_LOG("0x%x -> pa(%lx)\n", data, pa);
stphysio(pa, data);
/* force the above write to be processed by mac patrol */
data = ldphysio(pa);
MC_LOG("pa(%lx) = 0x%x\n", pa, data);
}
uint32_t
mc_ldphysio(uint64_t pa)
{
uint32_t rv;
rv = ldphysio(pa);
MC_LOG("pa(%lx) = 0x%x\n", pa, rv);
return (rv);
}
#define isdigit(ch) ((ch) >= '0' && (ch) <= '9')
/*
* parse_unum_memory -- extract the board number and the DIMM name from
* the unum.
*
* Return 0 for success and non-zero for a failure.
*/
int
parse_unum_memory(char *unum, int *board, char *dname)
{
char *c;
char x, y, z;
if ((c = strstr(unum, "CMU")) != NULL) {
/* DC Model */
c += 3;
*board = (uint8_t)stoi(&c);
if ((c = strstr(c, "MEM")) == NULL) {
return (1);
}
c += 3;
if (strlen(c) < 3) {
return (2);
}
if ((!isdigit(c[0])) || (!(isdigit(c[1]))) ||
((c[2] != 'A') && (c[2] != 'B'))) {
return (3);
}
x = c[0];
y = c[1];
z = c[2];
} else if ((c = strstr(unum, "MBU_")) != NULL) {
/* FF1/FF2/Ikkaku Model */
c += 4;
if ((c[0] != 'A') && (c[0] != 'B')) {
return (4);
}
if (plat_model == MODEL_IKKAKU) {
/* Ikkaku Model */
x = '0';
*board = 0;
} else {
/* FF1/FF2 Model */
if ((c = strstr(c, "MEMB")) == NULL) {
return (5);
}
c += 4;
x = c[0];
*board = ((uint8_t)stoi(&c)) / 4;
}
if ((c = strstr(c, "MEM")) == NULL) {
return (6);
}
c += 3;
if (strlen(c) < 2) {
return (7);
}
if ((!isdigit(c[0])) || ((c[1] != 'A') && (c[1] != 'B'))) {
return (8);
}
y = c[0];
z = c[1];
} else {
return (9);
}
if (*board < 0) {
return (10);
}
dname[0] = x;
dname[1] = y;
dname[2] = z;
dname[3] = '\0';
return (0);
}
/*
* mc_get_mem_sid_dimm -- Get the serial-ID for a given board and
* the DIMM name.
*/
int
mc_get_mem_sid_dimm(mc_opl_t *mcp, char *dname, char *buf,
int buflen, int *lenp)
{
int ret = ENODEV;
mc_dimm_info_t *d = NULL;
if ((d = mcp->mc_dimm_list) == NULL) {
MC_LOG("mc_get_mem_sid_dimm: mc_dimm_list is NULL\n");
return (EINVAL);
}
for (; d != NULL; d = d->md_next) {
if (strcmp(d->md_dimmname, dname) == 0) {
break;
}
}
if (d != NULL) {
*lenp = strlen(d->md_serial) + strlen(d->md_partnum);
if (buflen <= *lenp) {
cmn_err(CE_WARN, "mc_get_mem_sid_dimm: "
"buflen is smaller than %d\n", *lenp);
ret = ENOSPC;
} else {
(void) snprintf(buf, buflen, "%s:%s",
d->md_serial, d->md_partnum);
ret = 0;
}
}
MC_LOG("mc_get_mem_sid_dimm: Ret=%d Name=%s Serial-ID=%s\n",
ret, dname, (ret == 0) ? buf : "");
return (ret);
}
int
mc_set_mem_sid(mc_opl_t *mcp, char *buf, int buflen, int sb,
int bank, uint32_t mf_type, uint32_t d_slot)
{
int lenp = buflen;
int id;
int ret;
char *dimmnm;
if (mf_type == FLT_TYPE_INTERMITTENT_CE ||
mf_type == FLT_TYPE_PERMANENT_CE) {
if (plat_model == MODEL_DC) {
/*
* All DC models
*/
id = BD_BK_SLOT_TO_INDEX(0, bank, d_slot);
dimmnm = mc_dc_dimm_unum_table[id];
} else {
/*
* All FF and Ikkaku models
*/
id = BD_BK_SLOT_TO_INDEX(sb, bank, d_slot);
dimmnm = mc_ff_dimm_unum_table[id];
}
if ((ret = mc_get_mem_sid_dimm(mcp, dimmnm, buf, buflen,
&lenp)) != 0) {
return (ret);
}
} else {
return (1);
}
return (0);
}
/*
* mc_get_mem_sid -- get the DIMM serial-ID corresponding to the unum.
*/
int
mc_get_mem_sid(char *unum, char *buf, int buflen, int *lenp)
{
int i;
int ret = ENODEV;
int board;
char dname[MCOPL_MAX_DIMMNAME + 1];
mc_opl_t *mcp;
MC_LOG("mc_get_mem_sid: unum=%s buflen=%d\n", unum, buflen);
if ((ret = parse_unum_memory(unum, &board, dname)) != 0) {
MC_LOG("mc_get_mem_sid: unum(%s) parsing failed ret=%d\n",
unum, ret);
return (EINVAL);
}
if (board < 0) {
MC_LOG("mc_get_mem_sid: Invalid board=%d dimm=%s\n",
board, dname);
return (EINVAL);
}
mutex_enter(&mcmutex);
/*
* return ENOENT if we can not find the matching board.
*/
ret = ENOENT;
for (i = 0; i < OPL_MAX_BOARDS; i++) {
if ((mcp = mc_instances[i]) == NULL)
continue;
mutex_enter(&mcp->mc_lock);
if (mcp->mc_phys_board_num != board) {
mutex_exit(&mcp->mc_lock);
continue;
}
ret = mc_get_mem_sid_dimm(mcp, dname, buf, buflen, lenp);
if (ret == 0) {
mutex_exit(&mcp->mc_lock);
break;
}
mutex_exit(&mcp->mc_lock);
}
mutex_exit(&mcmutex);
return (ret);
}
/*
* mc_get_mem_offset -- get the offset in a DIMM for a given physical address.
*/
int
mc_get_mem_offset(uint64_t paddr, uint64_t *offp)
{
int i;
int ret = ENODEV;
mc_addr_t maddr;
mc_opl_t *mcp;
mutex_enter(&mcmutex);
for (i = 0; ((i < OPL_MAX_BOARDS) && (ret != 0)); i++) {
if ((mcp = mc_instances[i]) == NULL)
continue;
mutex_enter(&mcp->mc_lock);
if (!pa_is_valid(mcp, paddr)) {
mutex_exit(&mcp->mc_lock);
continue;
}
if (pa_to_maddr(mcp, paddr, &maddr) == 0) {
*offp = maddr.ma_dimm_addr;
ret = 0;
}
mutex_exit(&mcp->mc_lock);
}
mutex_exit(&mcmutex);
MC_LOG("mc_get_mem_offset: Ret=%d paddr=0x%lx offset=0x%lx\n",
ret, paddr, *offp);
return (ret);
}
/*
* dname_to_bankslot - Get the bank and slot number from the DIMM name.
*/
int
dname_to_bankslot(char *dname, int *bank, int *slot)
{
int i;
int tsz;
char **tbl;
if (plat_model == MODEL_DC) {
/*
* All DC models
*/
tbl = mc_dc_dimm_unum_table;
tsz = OPL_MAX_DIMMS;
} else {
/*
* All FF and Ikkaku models
*/
tbl = mc_ff_dimm_unum_table;
tsz = 2 * OPL_MAX_DIMMS;
}
for (i = 0; i < tsz; i++) {
if (strcmp(dname, tbl[i]) == 0) {
break;
}
}
if (i == tsz) {
return (1);
}
*bank = INDEX_TO_BANK(i);
*slot = INDEX_TO_SLOT(i);
return (0);
}
/*
* mc_get_mem_addr -- get the physical address of a DIMM corresponding
* to the unum and sid.
*/
int
mc_get_mem_addr(char *unum, char *sid, uint64_t offset, uint64_t *paddr)
{
int board;
int bank;
int slot;
int i;
int ret = ENODEV;
char dname[MCOPL_MAX_DIMMNAME + 1];
mc_addr_t maddr;
mc_opl_t *mcp;
MC_LOG("mc_get_mem_addr: unum=%s sid=%s offset=0x%lx\n",
unum, sid, offset);
if (parse_unum_memory(unum, &board, dname) != 0) {
MC_LOG("mc_get_mem_sid: unum(%s) parsing failed ret=%d\n",
unum, ret);
return (EINVAL);
}
if (board < 0) {
MC_LOG("mc_get_mem_addr: Invalid board=%d dimm=%s\n",
board, dname);
return (EINVAL);
}
mutex_enter(&mcmutex);
for (i = 0; i < OPL_MAX_BOARDS; i++) {
if ((mcp = mc_instances[i]) == NULL)
continue;
mutex_enter(&mcp->mc_lock);
if (mcp->mc_phys_board_num != board) {
mutex_exit(&mcp->mc_lock);
continue;
}
ret = dname_to_bankslot(dname, &bank, &slot);
MC_LOG("mc_get_mem_addr: bank=%d slot=%d\n", bank, slot);
if (ret != 0) {
MC_LOG("mc_get_mem_addr: dname_to_bankslot failed\n");
ret = ENODEV;
} else {
maddr.ma_bd = mcp->mc_board_num;
maddr.ma_bank = bank;
maddr.ma_dimm_addr = offset;
ret = mcaddr_to_pa(mcp, &maddr, paddr);
if (ret != 0) {
MC_LOG("mc_get_mem_addr: "
"mcaddr_to_pa failed\n");
ret = ENODEV;
mutex_exit(&mcp->mc_lock);
continue;
}
mutex_exit(&mcp->mc_lock);
break;
}
mutex_exit(&mcp->mc_lock);
}
mutex_exit(&mcmutex);
MC_LOG("mc_get_mem_addr: Ret=%d, Paddr=0x%lx\n", ret, *paddr);
return (ret);
}
static void
mc_free_dimm_list(mc_dimm_info_t *d)
{
mc_dimm_info_t *next;
while (d != NULL) {
next = d->md_next;
kmem_free(d, sizeof (mc_dimm_info_t));
d = next;
}
}
/*
* mc_get_dimm_list -- get the list of dimms with serial-id info
* from the SP.
*/
mc_dimm_info_t *
mc_get_dimm_list(mc_opl_t *mcp)
{
uint32_t bufsz;
uint32_t maxbufsz;
int ret;
int sexp;
board_dimm_info_t *bd_dimmp;
mc_dimm_info_t *dimm_list = NULL;
maxbufsz = bufsz = sizeof (board_dimm_info_t) +
((MCOPL_MAX_DIMMNAME + MCOPL_MAX_SERIAL +
MCOPL_MAX_PARTNUM) * OPL_MAX_DIMMS);
bd_dimmp = (board_dimm_info_t *)kmem_alloc(bufsz, KM_SLEEP);
ret = scf_get_dimminfo(mcp->mc_board_num, (void *)bd_dimmp, &bufsz);
MC_LOG("mc_get_dimm_list: scf_service_getinfo returned=%d\n", ret);
if (ret == 0) {
sexp = sizeof (board_dimm_info_t) +
((bd_dimmp->bd_dnamesz + bd_dimmp->bd_serialsz +
bd_dimmp->bd_partnumsz) * bd_dimmp->bd_numdimms);
if ((bd_dimmp->bd_version == OPL_DIMM_INFO_VERSION) &&
(bd_dimmp->bd_dnamesz <= MCOPL_MAX_DIMMNAME) &&
(bd_dimmp->bd_serialsz <= MCOPL_MAX_SERIAL) &&
(bd_dimmp->bd_partnumsz <= MCOPL_MAX_PARTNUM) &&
(sexp <= bufsz)) {
#ifdef DEBUG
if (oplmc_debug)
mc_dump_dimm_info(bd_dimmp);
#endif
dimm_list = mc_prepare_dimmlist(bd_dimmp);
} else {
cmn_err(CE_WARN, "DIMM info version mismatch\n");
}
}
kmem_free(bd_dimmp, maxbufsz);
MC_LOG("mc_get_dimm_list: dimmlist=0x%p\n", (void *)dimm_list);
return (dimm_list);
}
/*
* mc_prepare_dimmlist - Prepare the dimm list from the information
* received from the SP.
*/
mc_dimm_info_t *
mc_prepare_dimmlist(board_dimm_info_t *bd_dimmp)
{
char *dimm_name;
char *serial;
char *part;
int dimm;
int dnamesz = bd_dimmp->bd_dnamesz;
int sersz = bd_dimmp->bd_serialsz;
int partsz = bd_dimmp->bd_partnumsz;
mc_dimm_info_t *dimm_list = NULL;
mc_dimm_info_t *d;
dimm_name = (char *)(bd_dimmp + 1);
for (dimm = 0; dimm < bd_dimmp->bd_numdimms; dimm++) {
d = (mc_dimm_info_t *)kmem_alloc(sizeof (mc_dimm_info_t),
KM_SLEEP);
bcopy(dimm_name, d->md_dimmname, dnamesz);
d->md_dimmname[dnamesz] = 0;
serial = dimm_name + dnamesz;
bcopy(serial, d->md_serial, sersz);
d->md_serial[sersz] = 0;
part = serial + sersz;
bcopy(part, d->md_partnum, partsz);
d->md_partnum[partsz] = 0;
d->md_next = dimm_list;
dimm_list = d;
dimm_name = part + partsz;
}
return (dimm_list);
}
static int
mc_get_mem_fmri(mc_flt_page_t *fpag, char **unum)
{
if (fpag->fmri_addr == 0 || fpag->fmri_sz > MEM_FMRI_MAX_BUFSIZE)
return (EINVAL);
*unum = kmem_alloc(fpag->fmri_sz, KM_SLEEP);
if (copyin((void *)fpag->fmri_addr, *unum, fpag->fmri_sz) != 0) {
kmem_free(*unum, fpag->fmri_sz);
return (EFAULT);
}
return (0);
}
static int
mc_scf_log_event(mc_flt_page_t *flt_pag)
{
mc_opl_t *mcp;
int board, bank, slot;
int len, rv = 0;
char *unum, *sid;
char dname[MCOPL_MAX_DIMMNAME + 1];
size_t sid_sz;
uint64_t pa;
mc_flt_stat_t flt_stat;
if ((sid_sz = cpu_get_name_bufsize()) == 0)
return (ENOTSUP);
if ((rv = mc_get_mem_fmri(flt_pag, &unum)) != 0) {
MC_LOG("mc_scf_log_event: mc_get_mem_fmri failed\n");
return (rv);
}
sid = kmem_zalloc(sid_sz, KM_SLEEP);
if ((rv = mc_get_mem_sid(unum, sid, sid_sz, &len)) != 0) {
MC_LOG("mc_scf_log_event: mc_get_mem_sid failed\n");
goto out;
}
if ((rv = mc_get_mem_addr(unum, sid, (uint64_t)flt_pag->err_add,
&pa)) != 0) {
MC_LOG("mc_scf_log_event: mc_get_mem_addr failed\n");
goto out;
}
if (parse_unum_memory(unum, &board, dname) != 0) {
MC_LOG("mc_scf_log_event: parse_unum_memory failed\n");
rv = EINVAL;
goto out;
}
if (board < 0) {
MC_LOG("mc_scf_log_event: Invalid board=%d dimm=%s\n",
board, dname);
rv = EINVAL;
goto out;
}
if (dname_to_bankslot(dname, &bank, &slot) != 0) {
MC_LOG("mc_scf_log_event: dname_to_bankslot failed\n");
rv = EINVAL;
goto out;
}
mutex_enter(&mcmutex);
flt_stat.mf_err_add = flt_pag->err_add;
flt_stat.mf_err_log = flt_pag->err_log;
flt_stat.mf_flt_paddr = pa;
if ((mcp = mc_pa_to_mcp(pa)) == NULL) {
mutex_exit(&mcmutex);
MC_LOG("mc_scf_log_event: invalid pa\n");
rv = EINVAL;
goto out;
}
MC_LOG("mc_scf_log_event: DIMM%s, /LSB%d/B%d/%x, pa %lx elog %x\n",
unum, mcp->mc_board_num, bank, flt_pag->err_add, pa,
flt_pag->err_log);
mutex_enter(&mcp->mc_lock);
if (!pa_is_valid(mcp, pa)) {
mutex_exit(&mcp->mc_lock);
mutex_exit(&mcmutex);
rv = EINVAL;
goto out;
}
rv = 0;
mc_queue_scf_log(mcp, &flt_stat, bank);
mutex_exit(&mcp->mc_lock);
mutex_exit(&mcmutex);
out:
kmem_free(unum, flt_pag->fmri_sz);
kmem_free(sid, sid_sz);
return (rv);
}
#ifdef DEBUG
void
mc_dump_dimm(char *buf, int dnamesz, int serialsz, int partnumsz)
{
char dname[MCOPL_MAX_DIMMNAME + 1];
char serial[MCOPL_MAX_SERIAL + 1];
char part[ MCOPL_MAX_PARTNUM + 1];
char *b;
b = buf;
bcopy(b, dname, dnamesz);
dname[dnamesz] = 0;
b += dnamesz;
bcopy(b, serial, serialsz);
serial[serialsz] = 0;
b += serialsz;
bcopy(b, part, partnumsz);
part[partnumsz] = 0;
printf("DIMM=%s Serial=%s PartNum=%s\n", dname, serial, part);
}
void
mc_dump_dimm_info(board_dimm_info_t *bd_dimmp)
{
int dimm;
int dnamesz = bd_dimmp->bd_dnamesz;
int sersz = bd_dimmp->bd_serialsz;
int partsz = bd_dimmp->bd_partnumsz;
char *buf;
printf("Version=%d Board=%02d DIMMs=%d NameSize=%d "
"SerialSize=%d PartnumSize=%d\n", bd_dimmp->bd_version,
bd_dimmp->bd_boardnum, bd_dimmp->bd_numdimms, bd_dimmp->bd_dnamesz,
bd_dimmp->bd_serialsz, bd_dimmp->bd_partnumsz);
printf("======================================================\n");
buf = (char *)(bd_dimmp + 1);
for (dimm = 0; dimm < bd_dimmp->bd_numdimms; dimm++) {
mc_dump_dimm(buf, dnamesz, sersz, partsz);
buf += dnamesz + sersz + partsz;
}
printf("======================================================\n");
}
/* ARGSUSED */
static int
mc_ioctl_debug(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
int *rvalp)
{
caddr_t buf, kbuf;
uint64_t pa;
int rv = 0;
int i;
uint32_t flags;
static uint32_t offset = 0;
flags = (cmd >> 4) & 0xfffffff;
cmd &= 0xf;
MC_LOG("mc_ioctl(cmd = %x, flags = %x)\n", cmd, flags);
if (arg != NULL) {
if (ddi_copyin((const void *)arg, (void *)&pa,
sizeof (uint64_t), 0) < 0) {
rv = EFAULT;
return (rv);
}
buf = NULL;
} else {
buf = (caddr_t)kmem_alloc(PAGESIZE, KM_SLEEP);
pa = va_to_pa(buf);
pa += offset;
offset += 64;
if (offset >= PAGESIZE)
offset = 0;
}
switch (cmd) {
case MCI_CE:
(void) mc_inject_error(MC_INJECT_INTERMITTENT_CE, pa, flags);
break;
case MCI_PERM_CE:
(void) mc_inject_error(MC_INJECT_PERMANENT_CE, pa, flags);
break;
case MCI_UE:
(void) mc_inject_error(MC_INJECT_UE, pa, flags);
break;
case MCI_M_CE:
(void) mc_inject_error(MC_INJECT_INTERMITTENT_MCE, pa, flags);
break;
case MCI_M_PCE:
(void) mc_inject_error(MC_INJECT_PERMANENT_MCE, pa, flags);
break;
case MCI_M_UE:
(void) mc_inject_error(MC_INJECT_MUE, pa, flags);
break;
case MCI_CMP:
(void) mc_inject_error(MC_INJECT_CMPE, pa, flags);
break;
case MCI_NOP:
(void) mc_inject_error(MC_INJECT_NOP, pa, flags); break;
case MCI_SHOW_ALL:
mc_debug_show_all = 1;
break;
case MCI_SHOW_NONE:
mc_debug_show_all = 0;
break;
case MCI_ALLOC:
/*
* just allocate some kernel memory and never free it
* 512 MB seems to be the maximum size supported.
*/
cmn_err(CE_NOTE, "Allocating kmem %d MB\n", flags * 512);
for (i = 0; i < flags; i++) {
kbuf = kmem_alloc(512 * 1024 * 1024, KM_SLEEP);
cmn_err(CE_NOTE, "kmem buf %llx PA %llx\n",
(u_longlong_t)kbuf, (u_longlong_t)va_to_pa(kbuf));
}
break;
case MCI_SUSPEND:
(void) opl_mc_suspend();
break;
case MCI_RESUME:
(void) opl_mc_resume();
break;
default:
rv = ENXIO;
}
if (buf)
kmem_free(buf, PAGESIZE);
return (rv);
}
#endif /* DEBUG */